
 1

SAS® Helps Those Who Help Themselves:
Creating Tools to Aid in Your Application Development

Pete Lund, Looking Glass Analytics, Olympia, WA

Abstract

Writing code, organizing output, managing
datasets--all these things and more go into
development of a successful application.
SAS provides a wonderful environment to
develop code, but there are times when the
Enhanced Editor or SAS Explorer just isn’t
enough to develop your application in the
most efficient manner.

This paper presents some tips and tricks for
simplifying development tasks. Some are
user-written macros to aid in code
development, data management, and
process tracking. Some are little known or
little used SAS tools.

The goal of the paper is not intended to go
into line-by-line detail on all these tips, but to
inspire you to think of ways to improve your
own processes. I feel kind of cheated if I
make it through a whole project without
acquiring a new utility macro to add to my
toolbox. I hope this paper leaves you
looking at your work in the same way.
Besides, I’ll send you the source code for all
the examples so you can play with them and
learn on your own!

SAS Tools

The SAS tools mentioned here are specific
to the Windows V8+ Enhanced Editor (“the
editor”). I realize that many of us develop on
other platforms or using other editors. But,
highlighting some of the tools built into the
SAS editor might convince some that the

SAS environment can support efficient
application development.

Syntax Highlighting

By default the editor will highlight SAS
program syntax for you. This is extremely
helpful in eliminating non-matching quotes
and misspelled keywords. Consider a few
changes that make the programming
environment even friendlier.

To edit editor options, go to the Tools menu
and select Options…Enhanced Editor.

From there go to the Appearance tab. On
this tab you can change the color and style
of a number of program elements. One
change that I strongly urge is adding a
background color to comments. It makes
them stand out so much more on the
screen.

SUGI 28 Applications Development

 2

I’ve also made my comments bold so they
are even more obvious.

It’s important to note that the SAS editor
does not print the highlighted syntax. I often
use a programmer’s editor, such as
UltraEdit, to print code for production
documentation. A number of these editors
support onscreen and printable syntax
highlighting.

One of the categories of file elements to
highlight is “User defined keyword.” One
place to take advantage of this is to
“register” your user-written macros. From
the “General” tab of the Enhanced Editor
options click “User Defined Keywords.”
Enter the names of macros that you’ve
written (without the leading “%”). Now,
whenever you call your macros the macro
name will be highlighted in the manner
you’ve defined for user defined keywords.

In the above example, it’s easy for me to tell
when I’ve spelled the macro name correctly.

Keyboard Macros

Keyboard macros can be recorded or written
in a keyboard macro editor. To get to the
recorder or editor, select the Tools menu
and Keyboard Macros.

I would suggest that you quickly learn how
to create your own, rather than record them
as you have much more control how they
look and act.

I use keyboard macros for a number of
program documentation tasks. Let’s walk
through creating a simple, but useful,
documentation aid and you’ll begin to see
the usefulness of this tool.

We want to put a standard comment header
in our program whenever we make a change
to production code. The header should look
like this, containing the current date and
your initials:

 ********************************;
 * Modified: 04/01/2003 PJL *;
 ------------------------------;

The comment will contain the current date
and your initials. Here’s how we can
automate that with a keyboard macro.

1. Go to Tools…Keyboard Macros…Macros
2. Select Create
3. Give the macro a name (ModifyHeader)
4. From the list of commands:

a) Select “Move cursor to column 1” and click the
little double arrow () to place it in your contents
list.

b) Select “Insert a string”
 Enter “*******************************;”

c) Select “Insert a carriage return”
d) Select “Insert a string”

 Enter “* Modified: ”
e) Select “Insert current month index”
f) Select “Insert a character” and enter “/”
g) Select “Insert current day of month”
h) Select “Insert a character” and enter “/”
i) Select “Insert current year”
j) Select “Insert a string”

 Enter “ PJL *;”
k) Select “Insert a carriage return”
l) Select “Insert a string”

 Enter “*-----------------------------*;”
m) Select “Insert a carriage return”

5. Select OK
6. Click “ModifyHeader” in the macro list and select

“Assign Keys”
7. Highlight “None” in the “Press new shortcut key” box

and press a key combination, like alt-M. It will tell you
if that combination is already assigned to another
function.

SUGI 28 Applications Development

 3

8. Select Assign
9. Select OK
10. Select Close

Now, back in the editor, hit alt-M and you will
see your comment appear in your program.
It will contain the current date and your
initials every time you use it.

If you spend any time looking at the list of
available commands you see that there is a
great deal you can do with keyboard
macros. Some of the things I use keyboard
macros for are:

• Program header template – this is about 40 lines
long

• Comment template – so all my comments are
the same width and style

• Macro call template – I now don’t have to
remember the syntax of some of my macros

There are a couple tips I’ll pass along. First,
play around with the use of carriage returns,
moving to column 1, moving to the end of
the current line, etc. These type of
commands give you a lot of control as to
how your text will be inserted in the midst of
existing text.
Second, you can export macros so that
others can use them (by importing them). If
you have an office standard for program
headers or comment style this can save a lot
of duplicated effort.

A note on exporting keyboard macros: the
exported files, with an extension of .kmf,
look a lot like plain text files. You might be
tempted to edit them in your favorite editor,
save them, and import them back into SAS.
Don’t! SAS will probably lock up and most
likely require a reboot. Maintain and edit
your keyboard macros in SAS.

SAS Explorer Tools

There are some options available in the SAS
Explorer which can be used to facilitate your
application development.

If you work on more than one project at a
time, as we all do, you may want to take
advantage of the “Favorite Folders” feature
of SAS Explorer. If the “Favorite Folders”
icon does not appear in your SAS Explorer
list you’ll need in initialize it.

To initialize this option, go to the Tools menu
and select Options…Explorer. (You’ll only
see this menu if SAS Explorer is the current
active window).

From there, select Initialize from the drop-
down list at the top of the screen. Select
Favorite Folders and Add. When you go
back to your SAS Explorer window you will
see a “Favorite Folders” icon.

Double-click on the icon and then right-click
in the empty window and select “New
Favorite Folder.” You can now select a
directory and give it a meaningful name.
Double-clicking on that entry brings up a list
of all files in that directory. I find it much
simpler to move around between all my SAS
project code directories if they’re in the
favorite folders list than navigating up and
down through File…Open.

Another feature available for SAS Explorer
is to view and manage all you file references
(filerefs). These are available under the
“File Shortcuts” icon. (Follow the same
initialization steps above if you do not see
this item.) From here you can see all filerefs
you’ve set up with FILENAME statements.

SUGI 28 Applications Development

 4

You can also set up filerefs directly from
here and add an option to have them
initialized at startup.

I’d encourage you to explore all the features
of the SAS Explorer – there are a number of
features and tools that can make your
programming tasks just a bit smoother.

Develop Your Own Tools

I have written a number of SAS macros that
are solely for the purpose of enhancing the
development process. We’ll look at a few of
them here – hopefully, it will spur you on to
bigger and better things. (The code for all
macros referenced here is available upon
request – as long as you promise to send
me any improvements you make!)

Don’t Forget Your Syntax

It doesn’t take too many macros before you
begin to forget the syntax you wrote for
calling them. I’ve gotten in the habit of
writing a little piece of code at the top of the
macro that checks for the existence of a
required parameter. If there is no value a
log note is created that reminds me of the
syntax. After the log note is created control
jumps to a tag, %Quit:, at the bottom of the
macro.

 %macro Overlap(BD1,ED1,BD2,ED2);
 %if &BD1 eq %str() %then
 %do;
 %put %nrstr(%%)Overlap parameters:;
 %put %str(%()Span 1 Begin Date,;
 %put %str()Span 1 End Date,;
 %put %str()Span 2 Begin Date,;
 %put %str()Span 2 End Date%str(%));
 %goto Quit;
 %end;
 :
 :

If I call the above macro with a null
parameter string, %Overlap(), the
following appears in the SAS log:

 103 %Overlap()
 %Overlap parameters:
 (Span 1 Begin Date,
 Span 1 End Date,
 Span 2 Begin Date,
 Span 2 End Date)

Now all I have to remember is the name of
the macro and it self-reports the syntax.

Setting Up Project Files

I always set up a common directory
structure for my projects. It took a while, but
I finally wrote a little macro to create those
directories for me and to set up macro
variables referencing them.

 %MakeProjectFiles(ClientName=KC Jail,
 ProjectName=SRA Inmates)

There is another parameter, Path, that
contains the path where all these directories
should be located. I assign this a default
value, so I rarely have to change it. Let’s
assume that Path = d:\projects. The call
above would create the following directories:

• d:\projects\CK Jail\SRA Inmates\SAS Code
• d:\projects\CK Jail\SRA Inmates\Results
• d:\projects\CK Jail\SRA Inmates\Data

A series of system MD (make directory)
commands are used to create the
directories:

 x md "&Path\&ClientName\&ProjectName\SAS Code";

The macro also creates three global macro
variables, &_CodePath, &_DataPath and
&_ResultsPath. These make it easier to set
up code that references file locations, such
as FILENAME and LIBNAME statements
and the OUTFILE parameter of PROC
EXPORT.

The FILEEXIST function is used to
determine if the directories already exist.

SUGI 28 Applications Development

 5

 %if %sysfunc(fileexist(&Path\&ClientName\
 &ProjectName\SAS Code)) ne 1 %then...

If the directories already exist only the
macro variables are created. The macro
can easily be modified to create whatever
directory structure you find most useful.

Checking for Duplicates

A very common development task is
checking a dataset for duplicates on a
particular variable(s). A very simple process
is to sort a dataset by the key variables and
then look for observations that are not the
first and last observation in the by-group.
But even simple processes can get tedious
when you’ve done it enough.

This macro simply automates the process by
taking a dataset name and a list of key
variables and creates a duplicates dataset.
It also reports back how many observations
were in the original dataset and how many
duplicate values were found.

For example, this call

 %getdups(dsn=kc.Bookings,
 keyvars=arrestdate arrestlocation)

creates the dataset DUPS and generates
the following log note:

 NOTE: There were 93 duplicates records on
 ARRESTDATE and ARRESTLOCATION in dataset
 KC.BOOKINGS.
 NOTE: (There are 12,346 observations in the
 original dataset)
 NOTE: Dataset DUPS created.

Nothing fancy, but some helpful information.

Reduced to its simplest form the code in the
macro is very simple. The incoming dataset
is sorted by the key variables into a
temporary dataset called __temp. This
dataset is then searched for duplicate values

on the key (log reporting has been removed
from the code).

 data &dupfile
 set __temp end=done;
 by &KeyVars;

 if not (first.&LastKey and last.&LastKey);
 run;

The only little trick is to get the last variable
in a list of multiple variables. In the above
example the &KeyVars parameter was
“ArrestDate ArrestLocation.” We need to
extract ArrestLocation from that string in
order for the first. and last. processing to
work correctly.

The %SCAN function is used to get the last
“word” from the value:

 %let LastKey = %scan(&KeyVars,-1,%str());

This breaks &KeyVars into chucks delimited
by spaces (%str()) and returns the last one
(-1).

Formatted Log Comments

A good format of process documentation is
having good comments in you run log about
what’s happening to your data. The SAS log
notes are pretty good about that, but I often
have code that is %INCLUDEd or generated
in a macro. I often have the NOTES and
SOURCE2 options turned off and it can be
really tricky to follow a problem.

I developed a macro that allows for putting
nicely formatted comments in the SAS log.
Macro variables can be passed and will be
resolved in the comment.

For example, suppose I want to write a note
to the log that I’m starting a particular step
and give the date, time and value of a
couple parameters. The call to the macro
might look like this:

SUGI 28 Applications Development

 6

 %comment(/C,Beginning Booking Report.sas,/L,
 /D,Run Date: %sysfunc(date(),mmddyy10.),
 Run Mode: &mode,
 Output Type: &OutputType);

The following log note would be produced:

 * Beginning Booking Report.sas *

 * Run Date: 12/16/2002 *
 * Run Mode: PROD *
 * Output Type: HTML *

As many lines as needed can be passed to
the macro. Multiple lines are separated by
commas. There are special line values for
controlling the appearance of the comment:

• /C – centers the text
• /L – left justifies the text (default)
• /R – right justifies the text
• /D – prints a line of dashes
• /H – prints a line of asterisks
• /In – indents text n lines

A box of asterisks is produced around the
comment, sized to the length of the longest
line. The line break character can be
changed from a comma to any other
character if commas are included in the text.
This is done by adding DLM=x as the last
portion of the macro call , where x is the
character to use in place of a comma as the
line delimiter.

More detail on the functionality and design
of this macro is available in Lund (2000).

Managing Formats

I can’t tell you how many times I’ve spent
30, 40, 60 minutes trying to figure out why
my formats are not being found or the right
format are not being used only to discover a
problem with my FMTSEARCH option value.

The FMTSEARCH option is necessary if you
ever want to create your own permanent
SAS formats. By default, SAS will only look
in the WORK.FORMATS and
LIBRARY.FORMATS catalogs when a
format or informat is referenced.
FMTSEARCH allows you to specify other
format catalogs to search so that your own
permanent formats can be found.

There are a couple features of the
FMTSEARCH option that can make it a bit
of a trap.

• It is all inclusive - With the exception
of the WORK and LIBRARY libraries,
which are always searched, the only
catalogs searched are those that are in
the FMTSEARCH= list. If you have
formats stored in other catalogs they
will not be found.

• It is ordered - The catalogs are
searched in the order listed. When a
format is found it is used and the
search stops. This is only an issue if
you have formats of the same name in
multiple catalogs. If so, the first one
found will be used.

• It is not validated - No checking on the
validity or existence of a libname or
catalog name is done here. This can
cause a lot of gray hairs is you have a
slight typo in a libref or catalog name.

All of these things can bite you when it’s the
least convenient. To lessen the speed at
which my gray hairs were coming in I wrote
a little macro to manage the FMTSEARCH
option. It addresses all the issues above:

• It will add a catalog to the list, without
removing any catalogs that were
already referenced.

• Placement of the catalog in the list can
be specified: at the beginning, end or

SUGI 28 Applications Development

 7

after WORK and LIBRARY, but before
other catalogs.

• The status of all catalogs currently
reference in the FMTSEARCH option
is reported to the log – i.e., do they
exist or not.

Here’s an example call to the macro and the
log note that is produced:

 %fmtsearch(cat=kc,action=e)

The log contains:

With this log note, you can see the order in
which format catalogs will be searched and
the status of their existence.

One other helpful feature is the inclusion of
WORK and LIBRARY in the list, if they have
not been explicitly referenced. There is a
feature of the FMTSEARCH option value
that can be problematic when trying to look
at the catalog sequence. Try this at home:

Start a new SAS session and submit the
following code:

 %put %sysfunc(getoption(fmtsearch));

You’ll see this in the log:

 1 %put %sysfunc(getoption(fmtsearch));
 (WORK LIBRARY)

Just as expected. However, now add a
catalog with the FMTSEARCH option and
check the option value again.

 options fmtsearch=(MyFmts);
 %put %sysfunc(getoption(fmtsearch));

The value returned is very misleading:

 2 options fmtsearch=(MyFmts);
 3 %put %sysfunc(getoption(fmtsearch));
 (MYFMTS)

The only catalog shown for the
FMTSEARCH value is MyFmts. In reality,
WORK and LIBRARY are both still in the list,
at the beginning. This can be a real
bugaboo when trying to figure out why the
“right” formats are not being used.

The %FMTSEARCH macro accepts two
parameters. CAT names the catalog and
can be either a one- or two-level name. One
level names imply .FORMATS as the
catalog name. ACTION tells the macro what
to do with the catalog:

• D – deletes the catalog from the list
• E – adds (or moves) the catalog to the end of

the search list
• B – adds (or moves) the catalog to the

beginning of the list
• M – adds (or moves) the catalog to the middle

of the list, after WORK and LIBRARY and
before any other catalogs.

• X – resets FMTSEARCH to the default value

More detail on the functionality and design
of this macro is available in Lund (2003).

A Simple Data Dictionary

In many projects there are a great number of
datasets produced. There came a need to
have an easy way of displaying the contents
and properties of all the datasets for a
project in one place.

SUGI 28 Applications Development

 8

A simple data dictionary macro was written
to handle this. A set of HTML pages is
generated by the macro. The call is very
straightforward:

 %DataDictionary(project=KC Jail,
 htmlpath=c:\temp\kc jail,
 framename=jail_datasets,
 dslist=kc.bookings kc.charges);

• Project – simply gives a title for the table of

contents
• HTMLpath –directory where the files will be

stored
• FrameName – name of the HTML page to view
• DSlist – list of datasets, separated by spaces

In the sample call above an HTML page
named jail_datasets.htm would be created in
c:\temp\kc jail. If the directory does not
exist, it will be created automatically.

When you load that page you’ll see a list of
the datasets you referenced in a table of
contents on the left side of the page. Notice
that the table of contents header contains
the value of the “Project” parameter.

By default, information about the first
dataset in the list will be displayed on the
right side of the screen. The information
listed contains much of the information you
would get from PROC CONTENTS including
the variable name, type, length, format and
label. However, there are a couple
important pieces that PROC CONTENTS
does not report.

First, the format catalog for any user-defined
formats is given. The FMTSEARCH option
must be set to the same value it will have
when using the datasets. The catalogs in
the FMTSEARCH option are searched for
the formats associated with variables in the
datasets and the first catalog found for each
format is listed in the Format Catalog
column.

Also, you’ll notice that the user-defined
formats are underlined. They are actually
hyperlinks to pages containing the format
values. Clicking $JURFMT in the page
above will display the following page, listing
all the values of that format.

This macro provides a very handy method
for presenting the information about a
number of datasets in a single place with
access to most relevant information.

SUGI 28 Applications Development

 9

More detail on the functionality and design
of this macro is available in Lund (2002).

Conclusion

I sincerely hope that this paper has inspired
you to look for places in your own
application development process that can be
streamlined or routinized. Development of
applications is often a daunting task. Any
tools that can take away some of the tedium
and smooth some of the rough spots find a
spot in my toolbox.

Acknowledgements

SAS® is a registered trademark of SAS
Institute, Inc. in the USA and other
countries.

UltraEdit is a registered trademark of IDM
Computer Solutions, Inc.

References

Lund, Pete A Macro for Generating
Formatted Log Comments, Proceedings of
the Twenty-Fifth Annual SAS Users Group
International Conference, Cary, NC: SAS
Institute Inc., 2000.

Lund, Pete A Quick and Easy Data
Dictionary Macro, Proceedings of the
Twenty-Seventh Annual SAS Users Group
International Conference, Cary, NC: SAS
Institute Inc., 2002.

Lund, Pete Keep Those Formats Rolling: A
Macro to Manage the FMTSEARCH=
Option, Proceedings of the Twenty-Eigth
Annual SAS Users Group International
Conference, Cary, NC: SAS Institute Inc.,
2003.

Note: Past SUGI proceedings are available
in PDF format on the web at:

www.sas.com/usergroups/sugi/proceedings/index.html

Author Contact Information

Pete Lund
Looking Glass Analytics
215 Legion Way SW
Olympia, WA 98501
(360) 528-8970 voice
(360) 570-7533 fax
pete.lund@lgan.com
www.lgan.com

All code referenced in this paper is available
in electronic format upon request.

SUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

	pnum29-28: Paper 29-28

