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SAS® Helps Those Who Help Themselves: 
Creating Tools to Aid in Your Application Development 

 
Pete Lund, Looking Glass Analytics, Olympia, WA 

 
 

 
Abstract 
 
Writing code, organizing output,   managing 
datasets--all these things and   more go into 
development of a   successful application. 
SAS provides a wonderful environment to 
develop code, but there are times when the 
Enhanced Editor or SAS Explorer just isn’t 
enough to develop your application in the 
most efficient manner. 
 
This paper presents some tips and tricks for 
simplifying development tasks.  Some are   
user-written macros to aid in code 
development, data management, and   
process tracking. Some are little known or 
little used SAS tools.  
 
The goal of the paper is not intended to go 
into line-by-line detail on all these tips, but to 
inspire you to think of ways to improve your 
own processes.  I feel kind of cheated if I 
make it through a whole project without 
acquiring a new utility   macro to add to my 
toolbox.  I hope this paper leaves you 
looking at your work in the same way.  
Besides, I’ll send you the source code for all 
the examples so you can play with them and 
learn on your own! 
 
SAS Tools 
 
The SAS tools mentioned here are specific 
to the Windows V8+ Enhanced Editor (“the 
editor”).  I realize that many of us develop on 
other platforms or using other editors.  But, 
highlighting some of the tools built into the 
SAS editor might convince some that the 

SAS environment can support efficient 
application development. 
 
Syntax Highlighting 
 
By default the editor will highlight SAS 
program syntax for you.  This is extremely 
helpful in eliminating non-matching quotes 
and misspelled keywords.  Consider a few 
changes that make the programming 
environment even friendlier. 
 
To edit editor options, go to the Tools menu 
and select Options…Enhanced Editor. 
 

 
From there go to the Appearance tab.  On 
this tab you can change the color and style 
of a number of program elements.  One 
change that I strongly urge is adding a 
background color to comments.  It makes 
them stand out so much more on the 
screen. 
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I’ve also made my comments bold so they 
are even more obvious. 
 
It’s important to note that the SAS editor 
does not print the highlighted syntax.  I often 
use a programmer’s editor, such as 
UltraEdit, to print code for production 
documentation.  A number of these editors 
support onscreen and printable syntax 
highlighting. 
 
One of the categories of file elements to 
highlight is “User defined keyword.”  One 
place to take advantage of this is to 
“register” your user-written macros.  From 
the “General” tab of the Enhanced Editor 
options click “User Defined Keywords.”  
Enter the names of macros that you’ve 
written (without the leading “%”).  Now, 
whenever you call your macros the macro 
name will be highlighted in the manner 
you’ve defined for user defined keywords.  
 

 
 

In the above example, it’s easy for me to tell 
when I’ve spelled the macro name correctly. 
 
Keyboard Macros 
 
Keyboard macros can be recorded or written 
in a keyboard macro editor.  To get to the 
recorder or editor, select the Tools menu 
and Keyboard Macros. 
 

 

I would suggest that you quickly learn how 
to create your own, rather than record them 
as you have much more control how they 
look and act. 
 
I use keyboard macros for a number of 
program documentation tasks.  Let’s walk 
through creating a simple, but useful, 
documentation aid and you’ll begin to see 
the usefulness of this tool.   
 
We want to put a standard comment header 
in our program whenever we make a change 
to production code.  The header should look 
like this, containing the current date and 
your initials: 
 
  ********************************; 
  * Modified: 04/01/2003  PJL    *; 
  *------------------------------*; 

 
The comment will contain the current date 
and your initials.  Here’s how we can 
automate that with a keyboard macro. 
 
1. Go to Tools…Keyboard Macros…Macros 
2. Select Create 
3. Give the macro a name (ModifyHeader) 
4. From the list of commands: 

a) Select “Move cursor to column 1” and click the 
little double arrow ( ) to place it in your contents 
list.   

b) Select “Insert a string” 
    Enter  “*******************************;” 

c) Select “Insert a carriage return” 
d) Select “Insert a string”  

    Enter  “* Modified: ” 
e) Select “Insert current month index” 
f) Select “Insert a character” and enter “/” 
g) Select “Insert current day of month” 
h) Select “Insert a character” and enter “/” 
i) Select “Insert current year” 
j) Select “Insert a string” 

    Enter   “ PJL    *;” 
k) Select “Insert a carriage return” 
l) Select “Insert a string” 

    Enter  “*-----------------------------*;” 
m) Select “Insert a carriage return” 

5. Select OK 
6. Click “ModifyHeader” in the macro list and select 

“Assign Keys” 
7. Highlight “None” in the “Press new shortcut key” box 

and press a key combination, like alt-M.  It will tell you 
if that combination is already assigned to another 
function. 
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8. Select Assign 
9. Select OK 
10. Select Close 

 
Now, back in the editor, hit alt-M and you will 
see your comment appear in your program.  
It will contain the current date and your 
initials every time you use it. 
 
If you spend any time looking at the list of 
available commands you see that there is a 
great deal you can do with keyboard 
macros.  Some of the things I use keyboard 
macros for are: 
 

• Program header template – this is about 40 lines 
long 

• Comment template – so all my comments are 
the same width and style 

• Macro call template – I now don’t have to 
remember the syntax of some of my macros 

 
There are a couple tips I’ll pass along.  First, 
play around with the use of carriage returns, 
moving to column 1, moving to the end of 
the current line, etc.  These type of 
commands give you a lot of control as to 
how your text will be inserted in the midst of 
existing text. 
Second, you can export macros so that 
others can use them (by importing them).  If 
you have an office standard for program 
headers or comment style this can save a lot 
of duplicated effort. 
 
A note on exporting keyboard macros: the 
exported files, with an extension of .kmf, 
look a lot like plain text files.  You might be 
tempted to edit them in your favorite editor, 
save them, and import them back into SAS.  
Don’t!  SAS will probably lock up and most 
likely require a reboot.  Maintain and edit 
your keyboard macros in SAS. 
 
SAS Explorer Tools 
 

There are some options available in the SAS 
Explorer which can be used to facilitate your 
application development. 
 
If you work on more than one project at a 
time, as we all do, you may want to take 
advantage of the “Favorite Folders” feature 
of SAS Explorer.  If the “Favorite Folders” 
icon does not appear in your SAS Explorer 
list you’ll need in initialize it. 
  
To initialize this option, go to the Tools menu 
and select Options…Explorer.  (You’ll only 
see this menu if SAS Explorer is the current 
active window). 
 

 
From there, select Initialize from the drop-
down list at the top of the screen.  Select 
Favorite Folders and Add.  When you go 
back to your SAS Explorer window you will 
see a “Favorite Folders” icon. 
 
Double-click on the icon and then right-click 
in the empty window and select “New 
Favorite Folder.”  You can now select a 
directory and give it a meaningful name.  
Double-clicking on that entry brings up a list 
of all files in that directory.  I find it much 
simpler to move around between all my SAS 
project code directories if they’re in the 
favorite folders list than navigating up and 
down through File…Open. 
 
Another feature available for SAS Explorer 
is to view and manage all you file references 
(filerefs).  These are available under the 
“File Shortcuts” icon.  (Follow the same 
initialization steps above if you do not see 
this item.)  From here you can see all filerefs 
you’ve set up with FILENAME statements.  
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You can also set up filerefs directly from 
here and add an option to have them 
initialized at startup. 
 
I’d encourage you to explore all the features 
of the SAS Explorer – there are a number of 
features and tools that can make your 
programming tasks just a bit smoother. 
 
Develop Your Own Tools 
 
I have written a number of SAS macros that 
are solely for the purpose of enhancing the 
development process.  We’ll look at a few of 
them here – hopefully, it will spur you on to 
bigger and better things.  (The code for all 
macros referenced here is available upon 
request – as long as you promise to send 
me any improvements you make!) 
 
Don’t Forget Your Syntax 
 
It doesn’t take too many macros before you 
begin to forget the syntax you wrote for 
calling them.  I’ve gotten in the habit of 
writing a little piece of code at the top of the 
macro that checks for the existence of a 
required parameter.  If there is no value a 
log note is created that reminds me of the 
syntax.  After the log note is created control 
jumps to a tag, %Quit:, at the bottom of the 
macro. 
 
 %macro Overlap(BD1,ED1,BD2,ED2); 
  %if &BD1 eq %str() %then 
    %do; 
      %put %nrstr(  %%)Overlap parameters:; 
      %put %str(       %()Span 1 Begin Date,; 
      %put %str(        )Span 1 End Date,; 
      %put %str(        )Span 2 Begin Date,; 
      %put %str(        )Span 2 End Date%str(%)); 
      %goto Quit; 
    %end; 
             : 
             : 

 
If I call the above macro with a null 
parameter string, %Overlap(), the 
following appears in the SAS log: 

 
    103  %Overlap() 
      %Overlap parameters: 
           (Span 1 Begin Date, 
            Span 1 End Date, 
            Span 2 Begin Date, 
            Span 2 End Date) 
 
Now all I have to remember is the name of 
the macro and it self-reports the syntax. 
 
Setting Up Project Files 
 
I always set up a common directory 
structure for my projects.  It took a while, but 
I finally wrote a little macro to create those 
directories for me and to set up macro 
variables referencing them. 
 
    %MakeProjectFiles(ClientName=KC Jail, 
                      ProjectName=SRA Inmates) 

 
There is another parameter, Path, that 
contains the path where all these directories 
should be located.  I assign this a default 
value, so I rarely have to change it.  Let’s 
assume that Path = d:\projects.  The call 
above would create the following directories: 
 

• d:\projects\CK Jail\SRA Inmates\SAS Code 
• d:\projects\CK Jail\SRA Inmates\Results 
• d:\projects\CK Jail\SRA Inmates\Data 

 
A series of system MD (make directory) 
commands are used to create the 
directories: 
 
  x md "&Path\&ClientName\&ProjectName\SAS Code"; 

 
The macro also creates three global macro 
variables, &_CodePath, &_DataPath and 
&_ResultsPath.  These make it easier to set 
up code that references file locations, such 
as FILENAME and LIBNAME statements 
and the OUTFILE parameter of PROC 
EXPORT. 
 
The FILEEXIST function is used to 
determine if the directories already exist. 
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  %if %sysfunc(fileexist(&Path\&ClientName\ 
      &ProjectName\SAS Code)) ne 1 %then... 

 
If the directories already exist only the 
macro variables are created.  The macro 
can easily be modified to create whatever 
directory structure you find most useful. 
 
Checking for Duplicates 
 
A very common development task is 
checking a dataset for duplicates on a 
particular variable(s).  A very simple process 
is to sort a dataset by the key variables and 
then look for observations that are not the 
first and last observation in the by-group.  
But even simple processes can get tedious 
when you’ve done it enough. 
 
This macro simply automates the process by 
taking a dataset name and a list of key 
variables and creates a duplicates dataset.  
It also reports back how many observations 
were in the original dataset and how many 
duplicate values were found. 
 
For example, this call  
 
   %getdups(dsn=kc.Bookings, 
            keyvars=arrestdate arrestlocation) 

 
creates the dataset DUPS and generates 
the following log note: 
 
  NOTE: There were 93 duplicates records on 
     ARRESTDATE and ARRESTLOCATION in dataset 
     KC.BOOKINGS. 
  NOTE: (There are 12,346 observations in the 
     original dataset) 
  NOTE: Dataset DUPS created. 
 
Nothing fancy, but some helpful information. 
 
Reduced to its simplest form the code in the 
macro is very simple.  The incoming dataset 
is sorted by the key variables into a 
temporary dataset called __temp.  This 
dataset is then searched for duplicate values 

on the key (log reporting has been removed 
from the code).   
 
   data &dupfile 
     set __temp end=done; 
     by &KeyVars; 
 
     if not (first.&LastKey and last.&LastKey); 
   run;  

 
The only little trick is to get the last variable 
in a list of multiple variables.  In the above 
example the &KeyVars parameter was 
“ArrestDate ArrestLocation.”  We need to 
extract ArrestLocation from that string in 
order for the first. and last. processing to 
work correctly. 
 
The %SCAN function is used to get the last 
“word” from the value: 
 
   %let LastKey = %scan(&KeyVars,-1,%str( )); 

 
This breaks &KeyVars into chucks delimited 
by spaces (%str( )) and returns the last one 
(-1). 
 
Formatted Log Comments 
 
A good format of process documentation is 
having good comments in you run log about 
what’s happening to your data.  The SAS log 
notes are pretty good about that, but I often 
have code that is %INCLUDEd or generated 
in a macro.  I often have the NOTES and 
SOURCE2 options turned off and it can be 
really tricky to follow a problem. 
 
I developed a macro that allows for putting 
nicely formatted comments in the SAS log.  
Macro variables can be passed and will be 
resolved in the comment. 
 
For example, suppose I want to write a note 
to the log that I’m starting a particular step 
and give the date, time and value of a 
couple parameters.  The call to the macro 
might look like this: 
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 %comment(/C,Beginning Booking Report.sas,/L, 
         /D,Run Date: %sysfunc(date(),mmddyy10.), 
          Run Mode: &mode, 
          Output Type: &OutputType); 

 
The following log note would be produced: 
 
  ******************************** 
  * Beginning Booking Report.sas * 
  *------------------------------* 
  * Run Date: 12/16/2002         * 
  * Run Mode: PROD               * 
  * Output Type: HTML            * 
  ******************************** 
 
As many lines as needed can be passed to 
the macro.  Multiple lines are separated by 
commas.  There are special line values for 
controlling the appearance of the comment: 
 

• /C – centers the text 
• /L – left justifies the text (default) 
• /R – right justifies the text 
• /D – prints a line of dashes 
• /H – prints a line of asterisks 
• /In – indents text n lines 

 
A box of asterisks is produced around the 
comment, sized to the length of the longest 
line.  The line break character can be 
changed from a comma to any other 
character if commas are included in the text.  
This is done by adding DLM=x as the last 
portion of the macro call , where x is the 
character to use in place of a comma as the 
line delimiter. 
 
More detail on the functionality and design 
of this macro is available in Lund (2000). 
 
Managing Formats 
 
I can’t tell you how many times I’ve spent 
30, 40, 60 minutes trying to figure out why 
my formats are not being found or the right 
format are not being used only to discover a 
problem with my FMTSEARCH option value. 
 

The FMTSEARCH option is necessary if you 
ever want to create your own permanent 
SAS formats.  By default, SAS will only look 
in the WORK.FORMATS and 
LIBRARY.FORMATS catalogs when a 
format or informat is referenced.    
FMTSEARCH allows you to specify other 
format catalogs to search so that your own 
permanent formats can be found. 
 
There are a couple features of the 
FMTSEARCH option that can make it a bit 
of a trap. 
 

• It is all inclusive -  With the exception 
of the WORK and LIBRARY libraries, 
which are always searched, the only 
catalogs searched are those that are in 
the FMTSEARCH= list.  If you have 
formats stored in other catalogs they 
will not be found. 

• It is ordered - The catalogs are 
searched in the order listed.  When a 
format is found it is used and the 
search stops.  This is only an issue if 
you have formats of the same name in 
multiple catalogs.  If so, the first one 
found will be used. 

• It is not validated - No checking on the 
validity or existence of a libname or 
catalog name is done here.  This can 
cause a lot of gray hairs is you have a 
slight typo in a libref or catalog name.  

 
All of these things can bite you when it’s the 
least convenient.  To lessen the speed at 
which my gray hairs were coming in I wrote 
a little macro to manage the FMTSEARCH 
option.  It addresses all the issues above: 
 

• It will add a catalog to the list, without 
removing any catalogs that were 
already referenced. 

• Placement of the catalog in the list can 
be specified: at the beginning, end or 
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after WORK and LIBRARY, but before 
other catalogs. 

• The status of all catalogs currently 
reference in the FMTSEARCH option 
is reported to the log – i.e., do they 
exist or not. 

 
Here’s an example call to the macro and the 
log note that is produced: 
 
   %fmtsearch(cat=kc,action=e) 
 
The log contains: 
 

 
 
With this log note, you can see the order in 
which format catalogs will be searched and 
the status of their existence. 
 
One other helpful feature is the inclusion of 
WORK and LIBRARY in the list, if they have 
not been explicitly referenced.  There is a 
feature of the FMTSEARCH option value 
that can be problematic when trying to look 
at the catalog sequence.  Try this at home: 
 
Start a new SAS session and submit the 
following code: 
 
  %put %sysfunc(getoption(fmtsearch)); 
 
You’ll see this in the log: 
 
   1    %put %sysfunc(getoption(fmtsearch)); 
   (WORK LIBRARY) 
 

Just as expected.  However, now add a 
catalog with the FMTSEARCH option and 
check the option value again. 
 
   options fmtsearch=(MyFmts); 
   %put %sysfunc(getoption(fmtsearch)); 
 
The value returned is very misleading: 
 
   2    options fmtsearch=(MyFmts); 
   3    %put %sysfunc(getoption(fmtsearch)); 
   (MYFMTS) 
 
The only catalog shown for the 
FMTSEARCH value is MyFmts.  In reality, 
WORK and LIBRARY are both still in the list, 
at the beginning.  This can be a real 
bugaboo when trying to figure out why the 
“right” formats are not being used. 
 
The %FMTSEARCH macro accepts two 
parameters.  CAT names the catalog and 
can be either a one- or two-level name.  One 
level names imply .FORMATS as the 
catalog name.  ACTION tells the macro what 
to do with the catalog: 
 

• D – deletes the catalog from the list 
• E – adds (or moves) the catalog to the end of 

the search list 
• B – adds (or moves) the catalog to the 

beginning of the list 
• M – adds (or moves) the catalog to the middle 

of the list, after WORK and LIBRARY and 
before any other catalogs. 

• X – resets FMTSEARCH to the default value 
 
More detail on the functionality and design 
of this macro is available in Lund (2003). 
 
A Simple Data Dictionary 
 
In many projects there are a great number of 
datasets produced.  There came a need to 
have an easy way of displaying the contents 
and properties of all the datasets for a 
project in one place.   
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A simple data dictionary macro was written 
to handle this.  A set of HTML pages is 
generated by the macro.  The call is very 
straightforward: 
 
  %DataDictionary(project=KC Jail, 
                  htmlpath=c:\temp\kc jail, 
                  framename=jail_datasets, 
                  dslist=kc.bookings kc.charges); 

 
• Project – simply gives a title for the table of 

contents 
• HTMLpath –directory where the files will be 

stored 
• FrameName – name of the HTML page to view 
• DSlist – list of datasets, separated by spaces 

 
In the sample call above an HTML page 
named jail_datasets.htm would be created in 
c:\temp\kc jail.  If the directory does not 
exist, it will be created automatically. 
 
When you load that page you’ll see a list of 
the datasets you referenced in a table of 
contents on the left side of the page.  Notice 
that the table of contents header contains 
the value of the “Project” parameter. 
 

 
 
 
By default, information about the first 
dataset in the list will be displayed on the 
right side of the screen.  The information 
listed contains much of the information you 
would get from PROC CONTENTS including 
the variable name, type, length, format and 
label.  However, there are a couple 
important pieces that PROC CONTENTS 
does not report. 

First, the format catalog for any user-defined 
formats is given.  The FMTSEARCH option 
must be set to the same value it will have 
when using the datasets.  The catalogs in 
the FMTSEARCH option are searched for 
the formats associated with variables in the 
datasets and the first catalog found for each 
format is listed in the Format Catalog 
column. 
 

 
 
Also, you’ll notice that the user-defined 
formats are underlined.  They are actually 
hyperlinks to pages containing the format 
values.  Clicking $JURFMT in the page 
above will display the following page, listing 
all the values of that format. 
 

 
 
This macro provides a very handy method 
for presenting the information about a 
number of datasets in a single place with 
access to most relevant information. 

SUGI 28 Applications Development



 9

 
More detail on the functionality and design 
of this macro is available in Lund (2002). 
 
Conclusion 
 
I sincerely hope that this paper has inspired 
you to look for places in your own 
application development process that can be 
streamlined or routinized.    Development of 
applications is often a daunting task.  Any 
tools that can take away some of the tedium 
and smooth some of the rough spots find a 
spot in my toolbox. 
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