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Abstract 
 
SAS software macros provide the flexibility to 
perform advanced programming techniques such as 
processing real-time user-entered parameters to 
determine which blocks of code will run and how 
often.  In my previous paper (Part I), I described how 
to use these techniques to write more elegant code.  
In this paper, I will show how to apply these 
techniques to read multiple external files based on a 
user query. 
  
Specifically, I will use a real life application and show 
how it was implemented, using a tightly written 
program comprised of macros.   I needed to 
determine how often the public accessed the files on 
my web server. Through iterations of programs that 
were the evolution of a thought process, I have 
developed SAS programs that read the web server's 
log files based on the time periods requested in an 
interactive SAS macro window.  These programs 
can generate a summarized report of web usage. 
 
This paper is a learning tool for the professional 
programmer on conceiving and generating a 
computer program, using SAS Base and macro 
software.  Those who also want to track hits to their 
web servers will find this information useful. 
 
Introduction 
 
In my previous paper (Part I), I explained how to use 
SAS macros to create user interfaces (Macro 
Windows), how to store common code in code 
libraries, how to prepare top-down structured 
programs using macro modules and how to run 
batch processing with specialized SAS icons.  In this 
paper, I take some of these SAS macro techniques 
and apply them to a real application, tracking web 
page usage. 
 
As a learning tool, I will first analyze the need for this 
web site tracking application.  Next, I will discuss 
different approaches to writing it and finally I will 
explain how this computer program evolved into its 
final form.  Not only will programmers be able to see 
how SAS macros can be used creatively, but also 
how a concept becomes a production application. 
 

What is the problem?  
 
We maintain our own web server.  We create web 
applications and perform all necessary system 
administration on that box.  As application 
developer/analysts, we need to know what people 
want from our web page.  If certain web pages are 
used more than others, we will devote more 
resources to maintaining the information on those 
pages.  If pages are little used, we should either 
drop them, moving those resources into maintaining 
more popular pages, or we will need to improve 
those pages to encourage more usage.  The number 
of web page hits will assist us in deciding how to 
allocate our resources. 
 
Additionally, we need to know if users are accessing 
restricted areas, particularly those intrusions with 
bad intentions.  Some malevolent users like to hack 
into web servers, damage files on them and then try 
to intrude beyond the web server into internal server 
systems.  Besides setting up security measures to 
stop these intrusions, we need to know if these 
measures work.   
 
To track web server usage, good or bad, we can 
skim the daily-generated log files.1  These files are 
at least ½ megabyte each.  One can use a text 
editor and check these files, but that would be a 
tedious process.  Some log files have almost 50,000 
records.  One easily could miss some signs of 
suspicious activity.  As for determining popular web 
pages, it would be too much information to absorb 
and to tabulate.  For handling, summarizing, and 
analyzing lots of information, SAS software is the 
solution. 
 
How to Proceed (The Evolution of the 
Analysis) 
 
As first, I would check the log files manually.  Using 
a text editor, I could open these files and check for 
obvious intrusions, such as a “cmd.exe” commands 
with return codes of 200 (meaning the query was 
successful).  Since this type of checking is tedious, it 
                                                 
1 We’re using Microsoft Windows NT 4.0 operating 
system, with Internet Information Server (IIS) 4.0.  We 
plan to update to Windows 20000 with Internet 
Information Server 5.0 during Summer 2002. 
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was done only occasionally.  Moreover, this 
eyeballing technique was not reliable.  With luck, 
one may find an intrusion attempt or even an 
intrusion breach.  However, a few years ago, when 
the web server was first set up, security was not a 
major concern.  Web page intrusions, unlike now, 
were rare. 
 
There always has been a need to record the web 
page hits to justify maintaining the web page, as well 
as, to determine how to allocate resources for 
updating the information in these pages. Initially our 
counting was performed using Perl software.  
Whenever a web page was hit, a Perl application 
would increment a number in a text file.  Each web 
page had its own count in its own text file.  Later I 
developed a Lotus Notes application that would take 
the data from these text files and put them in a Lotus 
Notes document.  Once a month I would create a 
new document with the latest counts.  I then created 
an agent that would export these documents to a 
spreadsheet and create a monthly and cumulative 
hits display for each type of web page, including line 
graphs for showing a time-series. 
 
This Perl/Lotus Notes/spreadsheet system had 
many shortcomings: 

1. It was complicated.  It had too many steps. 
2. It was inflexible.  Usually I ran it at the end of a 

month to create monthly comparisons.  If I 
forgot to run it at the end of the month, I would 
be missing a month’s hits records. 

3. It was unreliable.  The information is discrete.  
In each Perl-generated text files, I only have 
one number. What if that file became 
damaged?  Then I would have to start over 
again.  For one month, Perl was not running 
properly.  My counts became more unreliable. 

4. It was incomplete. All I had were total hits.  I 
did not know when the hits were made and by 
whom. 

5. It was difficult to maintain and created an 
additional layer of complexity.  I have to learn 
Perl, build my skills in it, and administer it on 
the web server.  Ideal web security 
administration is running as few services as 
possible.  More services means more potential 
security holes. 

 
Originally, I decided to use Perl because I 
anticipated creating other Perl applications.  These 
applications never materialized.  After the tweaking 
of some settings on the web server brought down 
Perl, I decided to re-evaluate how to track hits.  
Additionally, security concerns have increased 
dramatically in the past year, especially for 
government websites.  It became apparent that the 
current methods of tracking hits and intrusions were 
insufficient.  I needed better information. 

The solution was obvious.  All of the information that 
I needed was stored in the logs files on the web 
server.  Even the information that I thought was lost 
when Perl was not running on the web server was 
still available.  I had tried before to use over-the-
counter software to analyze the logs and generate 
reports, but I found them hard to use and inadequate 
for my needs.  Why depend on someone else’s 
clunky front end to the logs files when I could create 
my own custom log files checks using SAS 
software? 
 
Types of reports 
Web Intrusions- This report is the most critical 
for security’s sake, although once an intrusion is 
discovered, it may be too late.  The user already 
may have damaged the web server, modified or 
deleted the data, or may even have used the server 
entry as a means for further intrusions.  However, 
checking the log files, I can determine whether 
security has been compromised and then I could 
decide on necessary actions to fix the damage to the 
web server and to prevent future successful attacks. 
Those actions are beyond the scope of this paper.   
 
In an IIS web server, using Windows NT, a new log 
file is generated every day.  The name of the file is 
“EX<yymmdd>.LOG”, where yymmdd is the date.  
For example, a log file for May 4, 2002 would be 
called EX020504.LOG.  Every entry in that file will 
be a record of successful and unsuccessful web 
queries on the web server.   A three digit code 
determines the status of the query; a code value of 
200 means that the query was successful.  Those 
successful entries are the ones I want to check.  Any 
other code value was an unsuccessful query, be it 
legitimate or not.  I’m not concerned with them 
because if they were hacker attacks, they didn’t 
succeed.  Besides unsuccessful queries, I also filter 
out the following: 
 

1. my office, U.S. Dept. of Commerce entries 
(using the IP address range) 

2. local entries (IP address 127.0.0.1) 
3. legitimate queries (files with suffixes like 

.htm, .pdf, .txt, and executables that we’ve 
written). 

 
After stripping unsuccessful hits (code > 200) and 
successful but legitimate hits, I’m left with a small list 
only of questionable entries.  This suspicious hit 
report will contain entries showing what html 
command was entered, the user’s ip address and 
the time the data request was made.  In example 1 
below, observations 1-3 are normal “noise” in the 
web logs.  However observation 4 is a hacker 
intrusion.  The web user was able to run the 
“cmd.exe” command on the web server.   
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Example 1. Intrusion detection in Log file of May 19, 2002 
 
                                WEB LOG CHECK- 020519 
                       
Obs       userip     page                                                           time        method    param 
1  192.111.222.40    /                                                             18:48:55     GET       200 
2  192.111.222.11    /fedregs/                                                18:49:34     GET       200 
3  192.111.222.40    /scripts/ss                                              18:49:37     GET       200 
4  192.111.222.40    /scripts/../../winnt/system32/cmd.exe    18:49:40     GET       200 
 
Rather than wading through thousands of records in 
the web log and likely missing particular entries, I 
analyze a few lines of particular interest.  In this 
case, hacker activity was identified. 
 
Hit Activity- This report is crucial for measuring 
the usefulness of the web page to clients.  A 
measurement of usefulness is how often people hit 
(i.e., query) those web pages.  If a web page has 
few hits, either the page is not well known or is not 
useful.  Management may decide to allocate more 
resources to improving those pages and a 
subsequent increase in web hits may validate that 
decision.  On the other hand, a stagnant count of 
hits may give the signal to drop those pages.  
Regardless of how one decides to allocate web 
page data and programming resources, the number 
of hits is the main determining criterion. 
The program originally read the raw number of hits 
per web page.  However that technique inflated the 
numbers since a web user may hit on several items 
within a web page, each one counting as a hit.  For 
instance, if you have a page of different textile 
imports reports by type of clothing, each report 
would count as a hit.  But if you’re concerned only 
with hits to the textiles imports report, you can record 
visits instead of hits.   I defined a visit as hits to a 
particular web page from a unique IP address within 
in certain time period, usually an hour or less.  Every 
web user has an IP address.  I furthered modified it 
based on the hour of the hit.  Any hits by a particular 
IP address between 3:00 a.m. and 3:59 a.m. would 
be considered a visit.  Additionally, I identified the 
major users of our web pages and I produced a 
report on the same database on visits by IP address, 
rather than total visits per web page.  Once the data 
is in an SAS dataset, one can manipulate and 
produce reports based on any combinations of 
fields. 
 
Complications- 
 
While SAS software is easily learned and applied by 
programmers, sometimes complications arise 
beyond the scope of the normal Base SAS 
algorithms, which will require clever use of SAS 
macros.  Here are some complications to consider. 
 

1. Everyday a new web server log file is 
created.  In a year, 365 files will have been 

created, with the name of the file has the 
date built in.  How do you reference a 
particular log file without having to edit the 
SAS program each time? 

2. How do you read multiple log files at a time?  
For instance you may want to see all of the 
web hits for April 2002.  That would require 
reading in 30 log files.  You may want to see 
hits for a particular week, month, year to 
date, calendar year or year ending.  You 
could code in each external file in separate 
filename and set statements but that would 
be more tedious coding. 

3. In addition, suppose you have a range of 
dates you want to see hits, like February 5, 
2002 through June 17, 2002.  How do you 
read multiple log files for an irregular time 
period? 

 
There are many solutions to reading multiple 
external files.  One solution is the brute force 
approach.  Each file reference in a filename 
statement would have to be manually entered in the 
program and then referred to in a set statement of a 
data step.  Not only is this method crude but also it 
wouldn’t make a good SAS conference paper.  The 
preferred and elegant solution to these 
complications is to read multiple external log files in 
a do loop, based on parameters passed through 
macro windows.  That will be illustrated in the 
examples below. 
 
Solution 1- Checking a daily Web log for 
intrusions. 
 
Every morning I check the previous day’s web log for 
intrusions.  I want to make it as simple as possible to 
use and to read.  This program will: 
 
1. query the analyst for a date 
2. use that date to specify which web log file to 

read (if an user specifies May 6, 2002, it will 
reference the web log file created on that day) 

3. filter out unsuccessful or legitimate web queries 
(html code, specific executables)  

4. print a report of suspicious entries. 
 
 
Here is the basic structure of the program, 
annotated:
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Example 2- Program for checking web log for Intrusion 
* Basic housekeeping; 
QUIT; 
RUN; 
 
OPTIONS MPRINT; *useful for debugging, displays in the log-SAS statements generated by macro execution; 
 
OPTIONS MLOGIC; *also useful for debugging macros during execution, especially nested macros; 
 
OPTIONS SYMBOLGEN; *displays results of resolving macro variable references; 
 
%GLOBAL YEAR MONTH DAY; *defining macro variables as global- can be referenced throughout program;RUN; 
*Macro Windows to prompt analyst for which log file to read; 
*display macro window on screen, so that user can input dates into macro variables YEAR, MONTH, and DAY; 
%WINDOW INITVAL COLOR=BLUE 
   #5 @5 "OTEXA LOG FILE CHECK"   @50 "&sysday, &sysdate.." 
   #10 @10 "LOG FILE DATE-" 
   #15 @15 "YEAR? (YY)"  @30 YEAR 2 
       PROTECT=NO ATTR=HIGHLIGHT COLOR=YELLOW REQUIRED=YES 
   #17 @15 "MONTH (MM)" @30 MONTH 2 
       PROTECT=NO ATTR=HIGHLIGHT COLOR=YELLOW REQUIRED=YES 
   #19 @15 "DAY (DD)" @30 DAY 2 
       PROTECT=NO ATTR=HIGHLIGHT COLOR=YELLOW REQUIRED=YES; 
%DISPLAY INITVAL;RUN’; 
*read and filter data; 
FILENAME IN1 "X:\ex&YEAR&MONTH&DAY..log"; 
*pass date values from macro variables year, month and day.  For May 6, 2002, this statement will become-FILENAME 
IN1 “X:\ex020506.log”; 
*Read in log file and strip off unsuccessful hits (param not equal to 200) and legitimate hits (htm and gif files, specific 
executables; 
DATA ONE; 
 INFILE IN1 ; 
 length userip $25 page $90; 
 input  time $ userip $ method $ page $ param ; 
If USERIP= "127.0.0.1" THEN RETURN; *filter out local queries; 
IF INDEX(UPCASE(PAGE),'.GIF') > 0 OR INDEX(UPCASE(PAGE),'.HTM') > 0  OR 
   INDEX(UPCASE(PAGE),'OTEXA.EXE.') > 0  
       THEN RETURN; *filter out legitimate queries; 
IF 0 < PARAM < 300 THEN OUTPUT; *include only successful queries; 
*print out report of suspicious successful queries; 
run; 
PROC PRINT; 
TITLE "WEB LOG CHECK- &year&month&day"; 
(See example 1 for how a sample report may appear) 
 
Solution 2- Tracking hits to the web site 
for a specified period of time. 
 
The next application is counting legitimate hits, to 
analyze how much and how the web site is used.  
The same core program as in Solution 1, Checking 
for web site intrusions is used with some major 
modifications.  The data still has to be filtered, 
including only html and executable files with a 

successful condition code of 200 and then the 
results need to be categorized, summed up and 
printed in a report. 
 
The complication is reading several external log 
files, after entering a range of dates when prompted 
by a macro window.  This solution involves using do 
loops in executing macros, as described below: 
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Example 3- Program for Tracking Web Hits 
. 
. 
. 
*Macro Windows to determine which log file to read;> 
*note that that 2 dates are requested, beginning date and ending date; 
%GLOBAL YEARMODAY BEGINDATE ENDDATE BDATESAS EDATESAS DATESAS; 
*defining macro variables as global- can be referenced throughout program; 
*macro variables Begindate and Enddate contain the user-inputted beginning and ending dates; 
RUN; 
%WINDOW INITVAL COLOR=BLUE 
   #5 @5 "OTEXA Web Counters"   @50 "&sysday, &sysdate.." 
   #10 @10 "LOG FILE DATE-" 
   #15 @15 "Beginning date? (mmddyyyy)"  @45 Begindate 8 
       PROTECT=NO ATTR=HIGHLIGHT COLOR=YELLOW REQUIRED=YES 
   #17 @15 "Ending date? (mmddyyyy)" @45 Enddate 8 
       PROTECT=NO ATTR=HIGHLIGHT COLOR=YELLOW REQUIRED=YES; 
*Macro INPUTDATA is the module to read and filter the data.  It will be called by the macro 
LOOPDATA in a do loop; 
%MACRO INPUTDATA; 
FILENAME INDATA "x:\EX0%left(&yearmoday).log"; 
*dummy data one for errors to prevent double counts; 
DATA ONE; 
LENGTH PAGECAPS $90 ; 
PAGECAPS=" "; 
COUNTS= 0; 
RUN; 
*; 
DATA ONE (KEEP= PAGECAPS COUNTS); 
 INFILE INDATA; 
 length userip $25 page $90; 
 input  time $ userip $ method $ page $ param ; 
IF 0 < PARAM < 300 ; 
COUNTS= 1; 
PAGECAPS= UPCASE(PAGE); 
*filter out gif and jpg files; 
IF INDEX(UPCASE(PAGE),'GIF') > 0  OR INDEX(UPCASE(PAGE),'JPG') > 0  THEN RETURN; 
*filter out local hits; 
IF USERIP = "127.0.0.1" THEN RETURN; 
*include hits for files types I want to count; 
IF INDEX(UPCASE(PAGE),'.STM') > 0 OR INDEX(UPCASE(PAGE),'.HTM') > 0  OR 
   INDEX(UPCASE(PAGE),'.EXE') > 0 OR INDEX(UPCASE(PAGE),'.STM') > 0  OR 
   INDEX(UPCASE(PAGE),'.HTM') > 0 
   THEN OUTPUT; 
run; 
%MEND INPUTDATA; 
*Macro LOOPDATA will read in macro INPUTDATA until all web logs have been read, 
based on beginning and ending dates entered in macro window; 
%MACRO LOOPDATA; 
Data _Null; 
Length BMonth EMonth $2; 
Length BDay EDay $2; 
Length BYear EYear $4; 
BMonth=%Substr(&BeginDate,1,2); 
EMonth=%Substr(&EndDate,1,2); 
BDay=%Substr(&BeginDate,3,2); 
EDay=%Substr(&EndDate,3,2); 
BYear=%Substr(&BeginDate,5,4); 
EYear=%Substr(&EndDate,5,4); 
call symput('BDateSAS',mdy(BMonth,BDay,BYear)); 
call symput('EDateSAS',mdy(EMonth,EDay,EYear)); 
run; 
data _null_; 
call symput('yearmoday',((year(&BdateSAS)-2000)*10000)+(month(&BdateSAS)*100)+day(&BdateSAS)); 
run; 
%INPUTDATA; 
RUN; 
DATA TWO; 
SET ONE; 
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RUN; 
%LET DATESAS=&BDATESAS; 
 %DO %WHILE(&DATESAS < &EDATESAS); 
     %LET DATESAS=&DATESAS+1; 
     Data _Null; 
     call symput('yearmoday',((year(&DateSAS)-2000)*10000)+(month(&DateSAS)*100)+day(&DateSAS)); 
     run;   
     %INPUTDATA; 
     DATA TWO; 
     SET TWO ONE; 
     RUN; 
 %END; 
%MEND LOOPDATA; 
RUN; 
*Macro PROCESS will summarize data and categorize it; 
%MACRO PROCESS; 
PROC SORT DATA=TWO; BY PAGECAPS; 
PROC MEANS SUM NOPRINT; 
BY PAGECAPS; 
VAR COUNTS; 
OUTPUT OUT=COUNTER SUM=COUNTS; 
RUN; 
DATA CTRSUM; 
SET COUNTER; 
LENGTH PGLABEL $ 30; 
SELECT; 
WHEN (INDEX(PAGECAPS,'BILAT') > 0) PGLABEL="BILATERAL AGREEMENTS"; 
WHEN (INDEX(PAGECAPS,'CORRELAT') > 0) PGLABEL="CORRELATION"; 
WHEN (INDEX(PAGECAPS,'EXPORTADVANTAGE') > 0) PGLABEL="EXPORT ADVANTAGE"; 
. 
. 
END; 
RUN; 
PROC SORT DATA=CTRSUM; BY PGLABEL; 
PROC MEANS SUM NOPRINT; 
BY PGLABEL; 
VAR COUNTS; 
OUTPUT OUT=CTRSUM1 SUM=COUNTS; 
RUN; 
PROC SORT; BY DESCENDING COUNTS PGLABEL; 
RUN; 
%LET BEGINDAT1=%SUBSTR(&BeginDate,1,2)/%Substr(&BeginDate,3,2)/%substr(&BeginDate,5,4); 
%LET EndDAT1=%SUBSTR(&EndDate,1,2)/%Substr(&EndDate,3,2)/%substr(&EndDate,5,4); 
RUN; 
PROC PRINT; 
VAR PGLABEL COUNTS; 
FORMAT COUNTS COMMA10.; 
SUM COUNTS; 
TITLE "OTEXA WEB HITS &BEGINDAT1 - &ENDDAT1"; 
RUN;  
%MEND PROCESS; 
*Macro DRIVER (like in top down structured COBOL programming) where each module of 
the program is executed; 
%MACRO DRIVER; 
* prompt user for beginning and ending dates in macro window; 
%DISPLAY INITVAL; 
RUN; 
* read in data from log files, depending on beginning and ending dates; 
%LOOPDATA; 
RUN; 
*process this data for a report; 
%PROCESS; 
RUN; 
%MEND DRIVER; 
%DRIVER; 
RUN; 
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Solution 3- Tracking visits (hits within an 
hour) for a specified period of time. 
 
Suppose a web user hits several pages within a 
section, for instance different phone numbers in the 
office personnel page.  You may not want to count 
each of these hits individually.   Rather, you may 
prefer to count “visits” for each type of section.  My 
precise definition is hits by an IP address for a 
defined category (personnel information, monthly 
commodity imports reports, etc.) for a defined period 
of time.  For simplicity, I created a variable that strips 
off the hour of the query.  All queries for IP 
133.133.133.133 between 9:00 a.m. to 9:59 in the 
personnel files will be counted as one visit.  If that 
same IP also queries the files at 10:02 a.m., it will 
count as another visit. 
 
Solution 4- Other quick programs 
 
Once the basic program is written to read multiple 
external files, one can make many variations on it.  I 
have made other programs from this core that do the 
following: 
 

1. Report by IP address to determine who 
visits the web page the most. 

2. Report web pages visited by a particular IP 
address- If I’ve discovered that a person is 
trying to intrude on my web server (e.g., a 
“cmd.exe” appears in the log file) I want to 
track all of his activity for that day, especially 
successful queries. 

3. Create a time series chart/graph on 
particular web pages to determine what 
future web usage may be. 

 
Conclusion 
 
There’s two ways to write code, either with brute 
force or with elegance.  I prefer the latter.  Both 
methods will produce usable reports, but the former 
will require a lot more typing and debugging.    Just 
reading in a year’s worth of log files would require 
typing in 365 lines of file references, as well as 
several lines of tedious code in the set statement. 
 
Elegant code, if a programmer has enough time, is 
always preferred to brute force code.  Referencing a 
years worth of log files requires only entering the 
correct beginning and ending dates.  The program 
will literally run itself. 
 
Elegant code writing is good code style.  It is brief, to 
the point and easy to read.  As illustrated in this 
paper, using macros and macros windows, one can 

write good code with style.  One is only limited by 
one’s imagination. 
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