
Paper 26-28
Using SAS Software to Analyze Web Logs

Peter Parker, US Dept. of Commerce, Washington, DC

Peter_Parker@ita.doc.gov

Abstract

SAS software macros provide the flexibility to
perform advanced programming techniques such as
processing real-time user-entered parameters to
determine which blocks of code will run and how
often. In my previous paper (Part I), I described how
to use these techniques to write more elegant code.
In this paper, I will show how to apply these
techniques to read multiple external files based on a
user query.

Specifically, I will use a real life application and show
how it was implemented, using a tightly written
program comprised of macros. I needed to
determine how often the public accessed the files on
my web server. Through iterations of programs that
were the evolution of a thought process, I have
developed SAS programs that read the web server's
log files based on the time periods requested in an
interactive SAS macro window. These programs
can generate a summarized report of web usage.

This paper is a learning tool for the professional
programmer on conceiving and generating a
computer program, using SAS Base and macro
software. Those who also want to track hits to their
web servers will find this information useful.

Introduction

In my previous paper (Part I), I explained how to use
SAS macros to create user interfaces (Macro
Windows), how to store common code in code
libraries, how to prepare top-down structured
programs using macro modules and how to run
batch processing with specialized SAS icons. In this
paper, I take some of these SAS macro techniques
and apply them to a real application, tracking web
page usage.

As a learning tool, I will first analyze the need for this
web site tracking application. Next, I will discuss
different approaches to writing it and finally I will
explain how this computer program evolved into its
final form. Not only will programmers be able to see
how SAS macros can be used creatively, but also
how a concept becomes a production application.

What is the problem?

We maintain our own web server. We create web
applications and perform all necessary system
administration on that box. As application
developer/analysts, we need to know what people
want from our web page. If certain web pages are
used more than others, we will devote more
resources to maintaining the information on those
pages. If pages are little used, we should either
drop them, moving those resources into maintaining
more popular pages, or we will need to improve
those pages to encourage more usage. The number
of web page hits will assist us in deciding how to
allocate our resources.

Additionally, we need to know if users are accessing
restricted areas, particularly those intrusions with
bad intentions. Some malevolent users like to hack
into web servers, damage files on them and then try
to intrude beyond the web server into internal server
systems. Besides setting up security measures to
stop these intrusions, we need to know if these
measures work.

To track web server usage, good or bad, we can
skim the daily-generated log files.1 These files are
at least ½ megabyte each. One can use a text
editor and check these files, but that would be a
tedious process. Some log files have almost 50,000
records. One easily could miss some signs of
suspicious activity. As for determining popular web
pages, it would be too much information to absorb
and to tabulate. For handling, summarizing, and
analyzing lots of information, SAS software is the
solution.

How to Proceed (The Evolution of the
Analysis)

As first, I would check the log files manually. Using
a text editor, I could open these files and check for
obvious intrusions, such as a “cmd.exe” commands
with return codes of 200 (meaning the query was
successful). Since this type of checking is tedious, it

1 We’re using Microsoft Windows NT 4.0 operating
system, with Internet Information Server (IIS) 4.0. We
plan to update to Windows 20000 with Internet
Information Server 5.0 during Summer 2002.

SUGI 28 Applications Development

was done only occasionally. Moreover, this
eyeballing technique was not reliable. With luck,
one may find an intrusion attempt or even an
intrusion breach. However, a few years ago, when
the web server was first set up, security was not a
major concern. Web page intrusions, unlike now,
were rare.

There always has been a need to record the web
page hits to justify maintaining the web page, as well
as, to determine how to allocate resources for
updating the information in these pages. Initially our
counting was performed using Perl software.
Whenever a web page was hit, a Perl application
would increment a number in a text file. Each web
page had its own count in its own text file. Later I
developed a Lotus Notes application that would take
the data from these text files and put them in a Lotus
Notes document. Once a month I would create a
new document with the latest counts. I then created
an agent that would export these documents to a
spreadsheet and create a monthly and cumulative
hits display for each type of web page, including line
graphs for showing a time-series.

This Perl/Lotus Notes/spreadsheet system had
many shortcomings:

1. It was complicated. It had too many steps.
2. It was inflexible. Usually I ran it at the end of a

month to create monthly comparisons. If I
forgot to run it at the end of the month, I would
be missing a month’s hits records.

3. It was unreliable. The information is discrete.
In each Perl-generated text files, I only have
one number. What if that file became
damaged? Then I would have to start over
again. For one month, Perl was not running
properly. My counts became more unreliable.

4. It was incomplete. All I had were total hits. I
did not know when the hits were made and by
whom.

5. It was difficult to maintain and created an
additional layer of complexity. I have to learn
Perl, build my skills in it, and administer it on
the web server. Ideal web security
administration is running as few services as
possible. More services means more potential
security holes.

Originally, I decided to use Perl because I
anticipated creating other Perl applications. These
applications never materialized. After the tweaking
of some settings on the web server brought down
Perl, I decided to re-evaluate how to track hits.
Additionally, security concerns have increased
dramatically in the past year, especially for
government websites. It became apparent that the
current methods of tracking hits and intrusions were
insufficient. I needed better information.

The solution was obvious. All of the information that
I needed was stored in the logs files on the web
server. Even the information that I thought was lost
when Perl was not running on the web server was
still available. I had tried before to use over-the-
counter software to analyze the logs and generate
reports, but I found them hard to use and inadequate
for my needs. Why depend on someone else’s
clunky front end to the logs files when I could create
my own custom log files checks using SAS
software?

Types of reports
Web Intrusions- This report is the most critical
for security’s sake, although once an intrusion is
discovered, it may be too late. The user already
may have damaged the web server, modified or
deleted the data, or may even have used the server
entry as a means for further intrusions. However,
checking the log files, I can determine whether
security has been compromised and then I could
decide on necessary actions to fix the damage to the
web server and to prevent future successful attacks.
Those actions are beyond the scope of this paper.

In an IIS web server, using Windows NT, a new log
file is generated every day. The name of the file is
“EX<yymmdd>.LOG”, where yymmdd is the date.
For example, a log file for May 4, 2002 would be
called EX020504.LOG. Every entry in that file will
be a record of successful and unsuccessful web
queries on the web server. A three digit code
determines the status of the query; a code value of
200 means that the query was successful. Those
successful entries are the ones I want to check. Any
other code value was an unsuccessful query, be it
legitimate or not. I’m not concerned with them
because if they were hacker attacks, they didn’t
succeed. Besides unsuccessful queries, I also filter
out the following:

1. my office, U.S. Dept. of Commerce entries
(using the IP address range)

2. local entries (IP address 127.0.0.1)
3. legitimate queries (files with suffixes like

.htm, .pdf, .txt, and executables that we’ve
written).

After stripping unsuccessful hits (code > 200) and
successful but legitimate hits, I’m left with a small list
only of questionable entries. This suspicious hit
report will contain entries showing what html
command was entered, the user’s ip address and
the time the data request was made. In example 1
below, observations 1-3 are normal “noise” in the
web logs. However observation 4 is a hacker
intrusion. The web user was able to run the
“cmd.exe” command on the web server.

SUGI 28 Applications Development

Example 1. Intrusion detection in Log file of May 19, 2002

 WEB LOG CHECK- 020519

Obs userip page time method param
1 192.111.222.40 / 18:48:55 GET 200
2 192.111.222.11 /fedregs/ 18:49:34 GET 200
3 192.111.222.40 /scripts/ss 18:49:37 GET 200
4 192.111.222.40 /scripts/../../winnt/system32/cmd.exe 18:49:40 GET 200

Rather than wading through thousands of records in
the web log and likely missing particular entries, I
analyze a few lines of particular interest. In this
case, hacker activity was identified.

Hit Activity- This report is crucial for measuring
the usefulness of the web page to clients. A
measurement of usefulness is how often people hit
(i.e., query) those web pages. If a web page has
few hits, either the page is not well known or is not
useful. Management may decide to allocate more
resources to improving those pages and a
subsequent increase in web hits may validate that
decision. On the other hand, a stagnant count of
hits may give the signal to drop those pages.
Regardless of how one decides to allocate web
page data and programming resources, the number
of hits is the main determining criterion.
The program originally read the raw number of hits
per web page. However that technique inflated the
numbers since a web user may hit on several items
within a web page, each one counting as a hit. For
instance, if you have a page of different textile
imports reports by type of clothing, each report
would count as a hit. But if you’re concerned only
with hits to the textiles imports report, you can record
visits instead of hits. I defined a visit as hits to a
particular web page from a unique IP address within
in certain time period, usually an hour or less. Every
web user has an IP address. I furthered modified it
based on the hour of the hit. Any hits by a particular
IP address between 3:00 a.m. and 3:59 a.m. would
be considered a visit. Additionally, I identified the
major users of our web pages and I produced a
report on the same database on visits by IP address,
rather than total visits per web page. Once the data
is in an SAS dataset, one can manipulate and
produce reports based on any combinations of
fields.

Complications-

While SAS software is easily learned and applied by
programmers, sometimes complications arise
beyond the scope of the normal Base SAS
algorithms, which will require clever use of SAS
macros. Here are some complications to consider.

1. Everyday a new web server log file is
created. In a year, 365 files will have been

created, with the name of the file has the
date built in. How do you reference a
particular log file without having to edit the
SAS program each time?

2. How do you read multiple log files at a time?
For instance you may want to see all of the
web hits for April 2002. That would require
reading in 30 log files. You may want to see
hits for a particular week, month, year to
date, calendar year or year ending. You
could code in each external file in separate
filename and set statements but that would
be more tedious coding.

3. In addition, suppose you have a range of
dates you want to see hits, like February 5,
2002 through June 17, 2002. How do you
read multiple log files for an irregular time
period?

There are many solutions to reading multiple
external files. One solution is the brute force
approach. Each file reference in a filename
statement would have to be manually entered in the
program and then referred to in a set statement of a
data step. Not only is this method crude but also it
wouldn’t make a good SAS conference paper. The
preferred and elegant solution to these
complications is to read multiple external log files in
a do loop, based on parameters passed through
macro windows. That will be illustrated in the
examples below.

Solution 1- Checking a daily Web log for
intrusions.

Every morning I check the previous day’s web log for
intrusions. I want to make it as simple as possible to
use and to read. This program will:

1. query the analyst for a date
2. use that date to specify which web log file to

read (if an user specifies May 6, 2002, it will
reference the web log file created on that day)

3. filter out unsuccessful or legitimate web queries
(html code, specific executables)

4. print a report of suspicious entries.

Here is the basic structure of the program,
annotated:

SUGI 28 Applications Development

Example 2- Program for checking web log for Intrusion
* Basic housekeeping;
QUIT;
RUN;

OPTIONS MPRINT; *useful for debugging, displays in the log-SAS statements generated by macro execution;

OPTIONS MLOGIC; *also useful for debugging macros during execution, especially nested macros;

OPTIONS SYMBOLGEN; *displays results of resolving macro variable references;

%GLOBAL YEAR MONTH DAY; *defining macro variables as global- can be referenced throughout program;RUN;
*Macro Windows to prompt analyst for which log file to read;
*display macro window on screen, so that user can input dates into macro variables YEAR, MONTH, and DAY;
%WINDOW INITVAL COLOR=BLUE
 #5 @5 "OTEXA LOG FILE CHECK" @50 "&sysday, &sysdate.."
 #10 @10 "LOG FILE DATE-"
 #15 @15 "YEAR? (YY)" @30 YEAR 2
 PROTECT=NO ATTR=HIGHLIGHT COLOR=YELLOW REQUIRED=YES
 #17 @15 "MONTH (MM)" @30 MONTH 2
 PROTECT=NO ATTR=HIGHLIGHT COLOR=YELLOW REQUIRED=YES
 #19 @15 "DAY (DD)" @30 DAY 2
 PROTECT=NO ATTR=HIGHLIGHT COLOR=YELLOW REQUIRED=YES;
%DISPLAY INITVAL;RUN’;
*read and filter data;
FILENAME IN1 "X:\ex&YEAR&MONTH&DAY..log";
*pass date values from macro variables year, month and day. For May 6, 2002, this statement will become-FILENAME
IN1 “X:\ex020506.log”;
*Read in log file and strip off unsuccessful hits (param not equal to 200) and legitimate hits (htm and gif files, specific
executables;
DATA ONE;
 INFILE IN1 ;
 length userip $25 page $90;
 input time $ userip $ method $ page $ param ;
If USERIP= "127.0.0.1" THEN RETURN; *filter out local queries;
IF INDEX(UPCASE(PAGE),'.GIF') > 0 OR INDEX(UPCASE(PAGE),'.HTM') > 0 OR
 INDEX(UPCASE(PAGE),'OTEXA.EXE.') > 0
 THEN RETURN; *filter out legitimate queries;
IF 0 < PARAM < 300 THEN OUTPUT; *include only successful queries;
*print out report of suspicious successful queries;
run;
PROC PRINT;
TITLE "WEB LOG CHECK- &year&month&day";
(See example 1 for how a sample report may appear)

Solution 2- Tracking hits to the web site
for a specified period of time.

The next application is counting legitimate hits, to
analyze how much and how the web site is used.
The same core program as in Solution 1, Checking
for web site intrusions is used with some major
modifications. The data still has to be filtered,
including only html and executable files with a

successful condition code of 200 and then the
results need to be categorized, summed up and
printed in a report.

The complication is reading several external log
files, after entering a range of dates when prompted
by a macro window. This solution involves using do
loops in executing macros, as described below:

SUGI 28 Applications Development

Example 3- Program for Tracking Web Hits
.
.
.
*Macro Windows to determine which log file to read;>
*note that that 2 dates are requested, beginning date and ending date;
%GLOBAL YEARMODAY BEGINDATE ENDDATE BDATESAS EDATESAS DATESAS;
*defining macro variables as global- can be referenced throughout program;
*macro variables Begindate and Enddate contain the user-inputted beginning and ending dates;
RUN;
%WINDOW INITVAL COLOR=BLUE
 #5 @5 "OTEXA Web Counters" @50 "&sysday, &sysdate.."
 #10 @10 "LOG FILE DATE-"
 #15 @15 "Beginning date? (mmddyyyy)" @45 Begindate 8
 PROTECT=NO ATTR=HIGHLIGHT COLOR=YELLOW REQUIRED=YES
 #17 @15 "Ending date? (mmddyyyy)" @45 Enddate 8
 PROTECT=NO ATTR=HIGHLIGHT COLOR=YELLOW REQUIRED=YES;
*Macro INPUTDATA is the module to read and filter the data. It will be called by the macro
LOOPDATA in a do loop;
%MACRO INPUTDATA;
FILENAME INDATA "x:\EX0%left(&yearmoday).log";
*dummy data one for errors to prevent double counts;
DATA ONE;
LENGTH PAGECAPS $90 ;
PAGECAPS=" ";
COUNTS= 0;
RUN;
*;
DATA ONE (KEEP= PAGECAPS COUNTS);
 INFILE INDATA;
 length userip $25 page $90;
 input time $ userip $ method $ page $ param ;
IF 0 < PARAM < 300 ;
COUNTS= 1;
PAGECAPS= UPCASE(PAGE);
*filter out gif and jpg files;
IF INDEX(UPCASE(PAGE),'GIF') > 0 OR INDEX(UPCASE(PAGE),'JPG') > 0 THEN RETURN;
*filter out local hits;
IF USERIP = "127.0.0.1" THEN RETURN;
*include hits for files types I want to count;
IF INDEX(UPCASE(PAGE),'.STM') > 0 OR INDEX(UPCASE(PAGE),'.HTM') > 0 OR
 INDEX(UPCASE(PAGE),'.EXE') > 0 OR INDEX(UPCASE(PAGE),'.STM') > 0 OR
 INDEX(UPCASE(PAGE),'.HTM') > 0
 THEN OUTPUT;
run;
%MEND INPUTDATA;
*Macro LOOPDATA will read in macro INPUTDATA until all web logs have been read,
based on beginning and ending dates entered in macro window;
%MACRO LOOPDATA;
Data _Null;
Length BMonth EMonth $2;
Length BDay EDay $2;
Length BYear EYear $4;
BMonth=%Substr(&BeginDate,1,2);
EMonth=%Substr(&EndDate,1,2);
BDay=%Substr(&BeginDate,3,2);
EDay=%Substr(&EndDate,3,2);
BYear=%Substr(&BeginDate,5,4);
EYear=%Substr(&EndDate,5,4);
call symput('BDateSAS',mdy(BMonth,BDay,BYear));
call symput('EDateSAS',mdy(EMonth,EDay,EYear));
run;
data _null_;
call symput('yearmoday',((year(&BdateSAS)-2000)*10000)+(month(&BdateSAS)*100)+day(&BdateSAS));
run;
%INPUTDATA;
RUN;
DATA TWO;
SET ONE;

SUGI 28 Applications Development

RUN;
%LET DATESAS=&BDATESAS;
 %DO %WHILE(&DATESAS < &EDATESAS);
 %LET DATESAS=&DATESAS+1;
 Data _Null;
 call symput('yearmoday',((year(&DateSAS)-2000)*10000)+(month(&DateSAS)*100)+day(&DateSAS));
 run;
 %INPUTDATA;
 DATA TWO;
 SET TWO ONE;
 RUN;
 %END;
%MEND LOOPDATA;
RUN;
*Macro PROCESS will summarize data and categorize it;
%MACRO PROCESS;
PROC SORT DATA=TWO; BY PAGECAPS;
PROC MEANS SUM NOPRINT;
BY PAGECAPS;
VAR COUNTS;
OUTPUT OUT=COUNTER SUM=COUNTS;
RUN;
DATA CTRSUM;
SET COUNTER;
LENGTH PGLABEL $ 30;
SELECT;
WHEN (INDEX(PAGECAPS,'BILAT') > 0) PGLABEL="BILATERAL AGREEMENTS";
WHEN (INDEX(PAGECAPS,'CORRELAT') > 0) PGLABEL="CORRELATION";
WHEN (INDEX(PAGECAPS,'EXPORTADVANTAGE') > 0) PGLABEL="EXPORT ADVANTAGE";
.
.
END;
RUN;
PROC SORT DATA=CTRSUM; BY PGLABEL;
PROC MEANS SUM NOPRINT;
BY PGLABEL;
VAR COUNTS;
OUTPUT OUT=CTRSUM1 SUM=COUNTS;
RUN;
PROC SORT; BY DESCENDING COUNTS PGLABEL;
RUN;
%LET BEGINDAT1=%SUBSTR(&BeginDate,1,2)/%Substr(&BeginDate,3,2)/%substr(&BeginDate,5,4);
%LET EndDAT1=%SUBSTR(&EndDate,1,2)/%Substr(&EndDate,3,2)/%substr(&EndDate,5,4);
RUN;
PROC PRINT;
VAR PGLABEL COUNTS;
FORMAT COUNTS COMMA10.;
SUM COUNTS;
TITLE "OTEXA WEB HITS &BEGINDAT1 - &ENDDAT1";
RUN;
%MEND PROCESS;
*Macro DRIVER (like in top down structured COBOL programming) where each module of
the program is executed;
%MACRO DRIVER;
* prompt user for beginning and ending dates in macro window;
%DISPLAY INITVAL;
RUN;
* read in data from log files, depending on beginning and ending dates;
%LOOPDATA;
RUN;
*process this data for a report;
%PROCESS;
RUN;
%MEND DRIVER;
%DRIVER;
RUN;

SUGI 28 Applications Development

Solution 3- Tracking visits (hits within an
hour) for a specified period of time.

Suppose a web user hits several pages within a
section, for instance different phone numbers in the
office personnel page. You may not want to count
each of these hits individually. Rather, you may
prefer to count “visits” for each type of section. My
precise definition is hits by an IP address for a
defined category (personnel information, monthly
commodity imports reports, etc.) for a defined period
of time. For simplicity, I created a variable that strips
off the hour of the query. All queries for IP
133.133.133.133 between 9:00 a.m. to 9:59 in the
personnel files will be counted as one visit. If that
same IP also queries the files at 10:02 a.m., it will
count as another visit.

Solution 4- Other quick programs

Once the basic program is written to read multiple
external files, one can make many variations on it. I
have made other programs from this core that do the
following:

1. Report by IP address to determine who
visits the web page the most.

2. Report web pages visited by a particular IP
address- If I’ve discovered that a person is
trying to intrude on my web server (e.g., a
“cmd.exe” appears in the log file) I want to
track all of his activity for that day, especially
successful queries.

3. Create a time series chart/graph on
particular web pages to determine what
future web usage may be.

Conclusion

There’s two ways to write code, either with brute
force or with elegance. I prefer the latter. Both
methods will produce usable reports, but the former
will require a lot more typing and debugging. Just
reading in a year’s worth of log files would require
typing in 365 lines of file references, as well as
several lines of tedious code in the set statement.

Elegant code, if a programmer has enough time, is
always preferred to brute force code. Referencing a
years worth of log files requires only entering the
correct beginning and ending dates. The program
will literally run itself.

Elegant code writing is good code style. It is brief, to
the point and easy to read. As illustrated in this
paper, using macros and macros windows, one can

write good code with style. One is only limited by
one’s imagination.

References

Art Carpenter, Carpenter's Complete Guide to the
SAS Macro Language, Cary, NC: SAS Institute Inc.,
1998 242 pp.

Parker, Peter (2000) “SAS Software Macros:
You’re Only Limited By Your Imagination” in SESUG
Conference Proceedings and NESUG Conference
Proceedings. Cary, NC: SAS Institute

SAS Institute Inc., SAS Guide to Macro Processing,
Version 6, Second Edition, Cary, NC: SAS Institute
Inc., 1990, 319 pp.

SAS Institute Inc., SAS Macro Language:
Reference, First Edition, Cary, NC: SAS Institute
Inc., 1997. 304 pp.

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries. indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

SUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

