
Paper 25-28

 1

XML in the DATA Step
Michael Palmer, Zurich Biostatistics, Inc., Morristown, New Jersey

ABSTRACT
This paper discusses a DATA-step method to import, export, and
transform user-defined XML vocabularies. It contrasts with SAS®
Institute (SI) XML tools in that it uses a single, uniform methodology
to import, export, and transform a broad class of user-defined XML
vocabularies. This gives more control to SAS users than the SI tools
offer.

From the point of view of a SAS user, XML is trouble for three
reasons: it's hierarchical, it's all text, and all content is explicitly
named. A DATA-step methodology for working with XML should (1)
flatten the hierarchical XML into the rows-and-columns of SAS
datasets without losing the information needed to recreate the
hierarchy and (2) replace with numbers the unpredictably long and
complex text strings that describe paths to data in XML.

A straightforward algorithm for numbering levels of depth in an XML
hierarchy and for numbering siblings at a level satisfies these
conditions but has a problem. The indexes that it produces will not
be invariant to the way an XML instance happens to be put together.
For invariant indexing, the algorithm has to be tied to the XML
vocabulary for the instance, not to the instance itself. The
presentation will discuss how this invariant indexing has been done.
The methodology supports highly generic programming, and relies
on two macros, %importXML and %exportXML.

The method has been in use successfully and supports complex
XML vocabularies such as the pharmaceutical industry's CDISC
XML standard for clinical data. It has scaled to XML files of several
hundred thousand records.

INTRODUCTION
XML is a hierarchical, text-based format consisting of named
content. These three characteristics make it difficult to work with in
the row-and-column-oriented DATA-step and file structure in SAS.
The paper discusses a DATA-step friendly way to work with user-
defined XML vocabularies. The method supports the import of XML
into SAS, the export of XML from SAS, and the processing and
transformation of XML in the DATA-step.

SAS Institute offerings for working with XML include a LIBNAME
engine for importing and exporting some fairly simple types of XML,
including some common industry forms. The XML Map option of the
LIBNAME Engine can import a broader class of XML directly to SAS
datasets. A graphical user interface tool is also provided for
assisting in creation of XMLMaps from raw XML data in a familiar
drag-and-drop motif. ODS can automatically export a SAS-defined
type of XML and some common industry forms. With customized
tagset extension programming, ODS may export some user-defined
types of XML. Version 9 also contains broader support for parsing
XML in the DATA-step.

What's missing from the SAS Institute XML support are,
• a unified way to import and export user-defined XML

vocabularies in the DATA-step, and
• a way to perform basic XML processing such as transforming

one XML instance into another instance in the same XML
vocabulary or in a different vocabulary.

The second bulleted point is functionality similar to XSLT but done in
the DATA-step using familiar DATA-step programming techniques.

The methodology discussed here contrasts with SAS Institute XML
tools in several ways.
1. It works with a very broad class of user-defined XML

vocabularies.
2. It uses one uniform methodology for the import, export, and

transformation of any instance of any data-centric XML
vocabulary.

3. XML work all takes place in the base SAS DATA-step. The
programming techniques necessary to implement the method
are familiar to even beginning SAS programmers.

SI's XML tools do not have these characteristics.

The method has been in use successfully for several years and does
support real life, complex, consortium-developed XML vocabularies
such as the pharmaceutical industry's CDISC XML standard for
clinical study data. The method has scaled successfully to XML files
of several hundred thousand records.

WHAT’S THE PROBLEM WITH XML AND SAS?
XML is hierarchical, unlike the typical SAS dataset. In the typical
SAS setting, data exist in fields on records in datasets. In a given
dataset, every record has precisely the same fields with precisely the
same attributes. One relates a data item to another data item by the
fact that they share, or do not share, key variables and key variable
values. In XML, a data item relates to other data items by the
ancestors, descendants, and siblings that they share. XML is
hierarchical so a data item inherits information from its ancestors,
shares information with its siblings, and passes on information to its
descendents. To identify a data item, one has to literally traverse all
of its ancestors. This traversal creates a path through the XML file.
By contrast, in the typical SAS dataset, one identifies a data item by
looking at key fields on the same record.

XML is text. All XML is text, accessible in a simple text editor. In
SAS datasets, by contrast, fields can be text or numeric and, despite
the rich set of text-processing functions in SAS, numeric data is
easier to process than text data in SAS. In addition, proprietary tools
such as SAS Viewer or the base SAS product are necessary to
access data and attribute information in a SAS dataset.

XML consists of named content. The name of each item in an XML
file is written completely in text when that element's scope begins
and written out again completely when that element's scope ends.
The sequence of items in that scope is predictable to some extent,
but not fixed like it is for a typical SAS dataset. In addition, field
attributes, such as field name, are not explicit in SAS but are stored
separately from the data itself.

From the point of view of a SAS user, XML is trouble for these three
reasons: it's hierarchical, it's all text, and all content is explicitly
named.

Despite these complications, SAS users would like to be able to
import XML, export XML, and work with XML in the DATA-step as
easily as they work with other data originating in other formats.

A SUCCESSFUL METHODOLOGY
A successful methodology for working with XML in the DATA-step
would include the following three features.

One, the methodology should flatten the hierarchical XML structure
into the row-and-column structure of SAS datasets but without
losing the information needed to recreate the hierarchy. That is, the

SUGI 28 Applications Development

2

ancestor-sibling-descendent structure in native XML should be
indexed into a flat representation.

Two, the methodology should replace the unpredictably long and
complex text strings that describe paths to data items in XML with
numbers. Long and complex text strings are cumbersome to work
with in the SAS DATA-step. Numbers are easy to work with.

Three, the methodology should fit the numerically indexed content
into a regular row-and-column SAS dataset.

A straightforward algorithm for numbering levels of depth in an XML
hierarchy and for numbering siblings at a given level satisfies these
three conditions but has a problem. The problem is that, unlike flat
files, XML instances for a given XML vocabulary don't necessarily
have identical, or even similar structures. They can, and often have,
very heterogeneous structures. It's even possible to have the
identical content, that should end up in identical data structures in
SAS, in very different XML structures from the same XML
vocabulary. This situation makes the straightforward algorithm
unreliable because the indexes that it produces will not be invariant
to the way an XML instance happens to be put together. To make
the indexing invariant, it has to be tied to the structure of the XML
vocabulary for the instance, not to the instance itself.

The presentation will discuss how this invariant indexing has been
done. The methodology supports highly generic programming and it
has been implemented to take advantage of that support. In the
author’s implementation, there are two macros, %importXML and
%exportXML. These are available for free from the author.

With these two macros, XML-formatted data from a very broad class
of user-defined XML vocabularies can be imported, exported, and
processed in SAS without having to leave the base SAS
environment. This contrasts with the SAS Institute’s methodology
which directs SAS users to use XSLT outside of SAS for XML
transformations. A significant advantage of %importXML and
%exportXML over SI's XML tools is that they can always import and
export user-defined XML without programming. They work very
much like XML analogs to INPUT and OUTPUT statements in a
DATA-step. This is a significant simplification of XML processing in
SAS.

XML IN THE DATA-STEP
The XML fragment below will be used to illustrate the indexing
algorithm. XML statements begin with a start tag of the form
<TagName> and end with a tag of the form </TagName>. The
scope of a tag may completely include other tags and content:
<Tag00><Tag01>Information</Tag01></Tag00>. In addition, a tag
may have one or more attributes in its scope: <Tag00
Attribute00=”Stuff”>. Tags that do not contain other tags or content
may be written as empty tags: <Tag02 Attribute01=”More stuff”/>.

The XML fragment below has three tag names. <SubjectData> is in
the scope of <ODM> and <ItemData> is in the scope of
<SubjectData>. <ItemData> has two attributes with data: ItemOID
and Value.

<ODM >
<SubjectData>

<ItemData ItemOID="PT" Value="P002"/>
</SubjectData>

</ODM>;

To index this fragment, ODM is at the root, or ultimate, level so it has
a value of 1 for the root level indexing variable. SubjectData is in the
scope of ODM so it inherits a root level indexing variable of 1, and, in
addition, since SubjectData is the first tag one level inside the root
level, it has a second index variable with a value of 1. ItemData,
inside the scope of SubjectData, inherits its index variables and gets
one new one for itself. ItemOID and Value are attributes but, for

purposes of indexing, they are treated just like tags inside the scope
of ItemData. The XML fragment below shows the complete indexing.

1 <ODM >
1 1 <SubjectData >
1 1 1 <ItemData
1 1 1 1 ItemOID="PT"
1 1 1 2 Value="P002"/>

</SubjectData >
</ODM>

Looking at the indexed XML, it’s straightforward to see how it could
be stored in a SAS dataset, and Figure 1 shows this fragment
imported into a SAS dataset.

SIMPLE PROGRAMMING TECHNIQUES WORK
The SAS DATA-step code below shows how this XML imported into
a SAS dataset can be processed using familiar DATA-step
techniques and put directly into two fields, NAME and VALUE, in a
SAS dataset.

/*<ItemData ItemOID=""/>*/
if ID01=1 and ID02=1 and ID03=1 and ID04=1
then NAME=trim(left(content0));

/*<ItemData Value=""/>*/
if ID01=1 and ID02=1 and ID03=1 and ID04=2
then VALUE=trim(left(content0));

output;
run;

In the next XML fragment below, a second <ItemData> element is
added and indexed.

1 <ODM >
1 1 <SubjectData >
1 1 1 <ItemData
1 1 1 1 ItemOID="PT"
1 1 1 2 Value="P002"/>
1 1 2 <ItemData
1 1 2 1 ItemOID="PT"
1 1 2 2 Value="P002"/>

</SubjectData >
</ODM>

In order to process this new ItemData, the SAS code would also
have to be modified to pickup the new 1 1 2 element. Obviously, a
method of handling XML in SAS that required custom code to match
the XML instance would not be useful.

The indexing algorithm has to recognize repeating XML structures
and give them identical indexes, as below.

1 <ODM >
1 1 <SubjectData >
1 1 1 <ItemData
1 1 1 1 ItemOID="PT"
1 1 1 2 Value="P002"/>
1 1 1 <ItemData
1 1 1 1 ItemOID="PT"
1 1 1 2 Value="P002"/>

</SubjectData >
</ODM>

With both ItemData elements indexed the same, the SAS code
sample becomes more generic and practical.

A GENERAL SOLUTION
A general solution to the need for an indexing algorithm that is
invariant to the XML instance, but depends on the underlying
structure of the XML vocabulary is called, in Zurich Biostatistics’
Tekoa Technologysm, a canonical document (a candoc). The candoc
for the XML fragment under discussion is, in indexed form,

1 <ODM >
1 1 <SubjectData >

SUGI 28 Applications Development

3

1 1 1 <ItemData
1 1 1 1 ItemOID=""
1 1 1 2 Value=""/>

</SubjectData >
</ODM>

The candoc contains no content but defines the permitted tag
names, attribute names, and relationships between all tags and
attributes. It’s a template to guide the import and export of an XML
vocabulary. Using the candoc, every ItemOID with a path through
the XML of <ODM><SubjectData><ItemData> will have exactly the
same ID: 1 1 1 1, and will be processed correctly in the SAS
code sample above. In other words, the code sample will work very
much like a traditional INPUT statement in a DATA-step.

This brings the SAS programmer control of XML processing in the
DATA-step but does not require knowledge of XPath. Since the
%importXML tool automatically indexes any canonical document and
automatically indexes any XML instance, the SAS programmer can
use familiar DATA-step programming techniques, as shown above,
to work with XML.

Figure 2 shows the canonical document for this XML imported into a
SAS dataset. From here, it is used to guide import and export of
XML.

Figure 3 shows the XML fragment with two ItemData statements
imported to a SAS dataset according to the candoc. From this
dataset, the XML is ready for DATA-step processing using familiar
techniques.

A 100% BASE SAS SOLUTION FOR ALL XML (AND NO ODS!)
Candocs guide the import of XML to SAS and they guide the export
of XML from SAS. ZBI’s %exportXML tool uses a candoc to write
XML from the kind of XML SAS dataset discussed in this paper. The
XML export does not require ODS or Java or perl. Export, like
import, is done completely in the base SAS DATA-step using
familiar techniques.

Candocs, since they are completely under the control of the user,
allow anyone who is comfortable with DATA-step programming to
import and export any data-centric XML vocabulary.

XSLT-TYPE TRANSFORMATIONS
XSLT-type transformations can be done in the DATA-step using this
indexing approach. To transform, the index ID values are changed
with DATA-step programming statements. Since the index ID values
identify paths in XML, one instance can be transformed to another
by changing the ID values and exporting the resulting XML with the
appropriate candoc.

SUMMARY
To summarize, XML's hierarchical, text-based, named content
nature makes it cumbersome to import, export, and transform in the
DATA-step. A sleek way of handling XML in the DATA-step involves
flattening the hierarchical representation into a numerically indexed
representation that presents nothing new to the SAS programmer,
unlike native XML. This method has been implemented in a highly
generic way, used with real life XML, and scaled up to production-
size XML files of several hundred thousand records.

CONCLUSION
Despite unfortunate experiences that savvy SAS programmers have
had working with XML in the SAS DATA-step, XML and SAS can
coexist nicely, for import of XML into SAS, export of XML from SAS,
and transformation of one XML instance into another. This is true for
any data-centric XML that a user may encounter.

REFERENCES

Zurich Biostatistics, Inc. presentations archive:
www.zbi.net/NewFiles/leadership.html

SAS Institute XML web pages:
www.sas.com/rnd/base/index-xml-resources.html

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Additionally, free copies of %importXML and %exportXML are
available from the author.

Contact the author at:
Michael Palmer
Zurich Biostatistics, Inc.
45 Park Place, So., PMB 178
Morristown, NJ 07960
Phone: 973-277-9034
Email: mcpalmer@zbi.net
Web: www.zbi.net

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Tekoa Technologysm is a service mark of Zurich Biostatistics, Inc.

Other brand and product names are trademarks of their respective
companies.

SUGI 28 Applications Development

4

FIGURES

Figure 1. XML instance in SAS dataset with ID variables.

Figure 2. Canonical XML document.

SUGI 28 Applications Development

5

Figure 3. XML instance in SAS dataset with ID variables. Note that the repeating <ItemData> group in the XML has repeating Ids.

SUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

