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XML in the DATA Step
Michael Palmer, Zurich Biostatistics, Inc., Morristown, New Jersey

ABSTRACT
This paper discusses a DATA-step method to import, export, and
transform user-defined XML vocabularies. It contrasts with SAS®
Institute (SI) XML tools in that it uses a single, uniform methodology
to import, export, and transform a broad class of user-defined XML
vocabularies. This gives more control to SAS users than the SI tools
offer.

From the point of view of a SAS user, XML is trouble for three
reasons: it's hierarchical, it's all text, and all content is explicitly
named. A DATA-step methodology for working with XML should (1)
flatten the hierarchical XML into the rows-and-columns of SAS
datasets without losing the information needed to recreate the
hierarchy and (2) replace with numbers the unpredictably long and
complex text strings that describe paths to data in XML.

A straightforward algorithm for numbering levels of depth in an XML
hierarchy and for numbering siblings at a level satisfies these
conditions but has a problem. The indexes that it produces will not
be invariant to the way an XML instance happens to be put together.
For invariant indexing, the algorithm has to be tied to the XML
vocabulary for the instance, not to the instance itself. The
presentation will discuss how this invariant indexing has been done.
The methodology supports highly generic programming, and relies
on two macros, %importXML and %exportXML.

The method has been in use successfully and supports complex
XML vocabularies such as the pharmaceutical industry's CDISC
XML standard for clinical data. It has scaled to XML files of several
hundred thousand records.

INTRODUCTION
XML is a hierarchical, text-based format consisting of named
content. These three characteristics make it difficult to work with in
the row-and-column-oriented DATA-step and file structure in SAS.
The paper discusses a DATA-step friendly way to work with user-
defined XML vocabularies. The method supports the import of XML
into SAS, the export of XML from SAS, and the processing and
transformation of XML in the DATA-step.

SAS Institute offerings for working with XML include a LIBNAME
engine for importing and exporting some fairly simple types of XML,
including some common industry forms. The XML Map option of the
LIBNAME Engine can import a broader class of XML directly to SAS
datasets. A graphical user interface tool is also provided for
assisting in creation of XMLMaps from raw XML data in a familiar
drag-and-drop motif. ODS can automatically export a SAS-defined
type of XML and some common industry forms. With customized
tagset extension programming, ODS may export some user-defined
types of XML. Version 9 also contains broader support for parsing
XML in the DATA-step.

What's missing from the SAS Institute XML support are,
• a unified way to import and export user-defined XML

vocabularies in the DATA-step, and
• a way to perform basic XML processing such as transforming

one XML instance into another instance in the same XML
vocabulary or in a different vocabulary.

The second bulleted point is functionality similar to XSLT but done in
the DATA-step using familiar DATA-step programming techniques.

The methodology discussed here contrasts with SAS Institute XML
tools in several ways.
1. It works with a very broad class of user-defined XML

vocabularies.
2. It uses one uniform methodology for the import, export, and

transformation of any instance of any data-centric XML
vocabulary.

3. XML work all takes place in the base SAS DATA-step. The
programming techniques necessary to implement the method
are familiar to even beginning SAS programmers.

SI's XML tools do not have these characteristics.

The method has been in use successfully for several years and does
support real life, complex, consortium-developed XML vocabularies
such as the pharmaceutical industry's CDISC XML standard for
clinical study data. The method has scaled successfully to XML files
of several hundred thousand records.

WHAT’S THE PROBLEM WITH XML AND SAS?
XML is hierarchical, unlike the typical SAS dataset. In the typical
SAS setting, data exist in fields on records in datasets. In a given
dataset, every record has precisely the same fields with precisely the
same attributes. One relates a data item to another data item by the
fact that they share, or do not share, key variables and key variable
values. In XML, a data item relates to other data items by the
ancestors, descendants, and siblings that they share. XML is
hierarchical so a data item inherits information from its ancestors,
shares information with its siblings, and passes on information to its
descendents. To identify a data item, one has to literally traverse all
of its ancestors. This traversal creates a path through the XML file.
By contrast, in the typical SAS dataset, one identifies a data item by
looking at key fields on the same record.

XML is text. All XML is text, accessible in a simple text editor. In
SAS datasets, by contrast, fields can be text or numeric and, despite
the rich set of text-processing functions in SAS, numeric data is
easier to process than text data in SAS. In addition, proprietary tools
such as SAS Viewer or the base SAS product are necessary to
access data and attribute information in a SAS dataset.

XML consists of named content. The name of each item in an XML
file is written completely in text when that element's scope begins
and written out again completely when that element's scope ends.
The sequence of items in that scope is predictable to some extent,
but not fixed like it is for a typical SAS dataset. In addition, field
attributes, such as field name, are not explicit in SAS but are stored
separately from the data itself.

From the point of view of a SAS user, XML is trouble for these three
reasons: it's hierarchical, it's all text, and all content is explicitly
named.

Despite these complications, SAS users would like to be able to
import XML, export XML, and work with XML in the DATA-step as
easily as they work with other data originating in other formats.

A SUCCESSFUL METHODOLOGY
A successful methodology for working with XML in the DATA-step
would include the following three features.

One, the methodology should flatten the hierarchical XML structure
into the row-and-column structure of SAS datasets but without
losing the information needed to recreate the hierarchy. That is, the
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ancestor-sibling-descendent structure in native XML should be
indexed into a flat representation.

Two, the methodology should replace the unpredictably long and
complex text strings that describe paths to data items in XML with
numbers. Long and complex text strings are cumbersome to work
with in the SAS DATA-step. Numbers are easy to work with.

Three, the methodology should fit the numerically indexed content
into a regular row-and-column SAS dataset.

A straightforward algorithm for numbering levels of depth in an XML
hierarchy and for numbering siblings at a given level satisfies these
three conditions but has a problem. The problem is that, unlike flat
files, XML instances for a given XML vocabulary don't necessarily
have identical, or even similar structures. They can, and often have,
very heterogeneous structures. It's even possible to have the
identical content, that should end up in identical data structures in
SAS, in very different XML structures from the same XML
vocabulary. This situation makes the straightforward algorithm
unreliable because the indexes that it produces will not be invariant
to the way an XML instance happens to be put together. To make
the indexing invariant, it has to be tied to the structure of the XML
vocabulary for the instance, not to the instance itself.

The presentation will discuss how this invariant indexing has been
done. The methodology supports highly generic programming and it
has been implemented to take advantage of that support. In the
author’s implementation, there are two macros, %importXML and
%exportXML. These are available for free from the author.

With these two macros, XML-formatted data from a very broad class
of user-defined XML vocabularies can be imported, exported, and
processed in SAS without having to leave the base SAS
environment. This contrasts with the SAS Institute’s methodology
which directs SAS users to use XSLT outside of SAS for XML
transformations. A significant advantage of %importXML and
%exportXML over SI's XML tools is that they can always import and
export user-defined XML without programming. They work very
much like XML analogs to INPUT and OUTPUT statements in a
DATA-step. This is a significant simplification of XML processing in
SAS.

XML IN THE DATA-STEP
The XML fragment below will be used to illustrate the indexing
algorithm. XML statements begin with a start tag of the form
<TagName> and end with a tag of the form </TagName>. The
scope of a tag may completely include other tags and content:
<Tag00><Tag01>Information</Tag01></Tag00>. In addition, a tag
may have one or more attributes in its scope: <Tag00
Attribute00=”Stuff”>. Tags that do not contain other tags or content
may be written as empty tags: <Tag02 Attribute01=”More stuff”/>.

The XML fragment below has three tag names. <SubjectData> is in
the scope of <ODM> and <ItemData> is in the scope of
<SubjectData>. <ItemData> has two attributes with data: ItemOID
and Value.

<ODM >
<SubjectData>

<ItemData ItemOID="PT" Value="P002"/>
</SubjectData>

</ODM>;

To index this fragment, ODM is at the root, or ultimate, level so it has
a value of 1 for the root level indexing variable. SubjectData is in the
scope of ODM so it inherits a root level indexing variable of 1, and, in
addition, since SubjectData is the first tag one level inside the root
level, it has a second index variable with a value of 1. ItemData,
inside the scope of SubjectData, inherits its index variables and gets
one new one for itself. ItemOID and Value are attributes but, for

purposes of indexing, they are treated just like tags inside the scope
of ItemData. The XML fragment below shows the complete indexing.

1 <ODM >
1 1 <SubjectData >
1 1 1 <ItemData
1 1 1 1 ItemOID="PT"
1 1 1 2 Value="P002"/>

</SubjectData >
</ODM>

Looking at the indexed XML, it’s straightforward to see how it could
be stored in a SAS dataset, and Figure 1 shows this fragment
imported into a SAS dataset.

SIMPLE PROGRAMMING TECHNIQUES WORK
The SAS DATA-step code below shows how this XML imported into
a SAS dataset can be processed using familiar DATA-step
techniques and put directly into two fields, NAME and VALUE, in a
SAS dataset.

/*<ItemData ItemOID=""/>*/
if ID01=1 and ID02=1 and ID03=1 and ID04=1
then NAME=trim(left(content0));

/*<ItemData Value=""/>*/
if ID01=1 and ID02=1 and ID03=1 and ID04=2
then VALUE=trim(left(content0));

output;
run;

In the next XML fragment below, a second <ItemData> element is
added and indexed.

1 <ODM >
1 1 <SubjectData >
1 1 1 <ItemData
1 1 1 1 ItemOID="PT"
1 1 1 2 Value="P002"/>
1 1 2 <ItemData
1 1 2 1 ItemOID="PT"
1 1 2 2 Value="P002"/>

</SubjectData >
</ODM>

In order to process this new ItemData, the SAS code would also
have to be modified to pickup the new 1 1 2 element. Obviously, a
method of handling XML in SAS that required custom code to match
the XML instance would not be useful.

The indexing algorithm has to recognize repeating XML structures
and give them identical indexes, as below.

1 <ODM >
1 1 <SubjectData >
1 1 1 <ItemData
1 1 1 1 ItemOID="PT"
1 1 1 2 Value="P002"/>
1 1 1 <ItemData
1 1 1 1 ItemOID="PT"
1 1 1 2 Value="P002"/>

</SubjectData >
</ODM>

With both ItemData elements indexed the same, the SAS code
sample becomes more generic and practical.

A GENERAL SOLUTION
A general solution to the need for an indexing algorithm that is
invariant to the XML instance, but depends on the underlying
structure of the XML vocabulary is called, in Zurich Biostatistics’
Tekoa Technologysm, a canonical document (a candoc). The candoc
for the XML fragment under discussion is, in indexed form,

1 <ODM >
1 1 <SubjectData >

SUGI 28 Applications Development



3

1 1 1 <ItemData
1 1 1 1 ItemOID=""
1 1 1 2 Value=""/>

</SubjectData >
</ODM>

The candoc contains no content but defines the permitted tag
names, attribute names, and relationships between all tags and
attributes. It’s a template to guide the import and export of an XML
vocabulary. Using the candoc, every ItemOID with a path through
the XML of <ODM><SubjectData><ItemData> will have exactly the
same ID: 1 1 1 1, and will be processed correctly in the SAS
code sample above. In other words, the code sample will work very
much like a traditional INPUT statement in a DATA-step.

This brings the SAS programmer control of XML processing in the
DATA-step but does not require knowledge of XPath. Since the
%importXML tool automatically indexes any canonical document and
automatically indexes any XML instance, the SAS programmer can
use familiar DATA-step programming techniques, as shown above,
to work with XML.

Figure 2 shows the canonical document for this XML imported into a
SAS dataset. From here, it is used to guide import and export of
XML.

Figure 3 shows the XML fragment with two ItemData statements
imported to a SAS dataset according to the candoc. From this
dataset, the XML is ready for DATA-step processing using familiar
techniques.

A 100% BASE SAS SOLUTION FOR ALL XML (AND NO ODS!)
Candocs guide the import of XML to SAS and they guide the export
of XML from SAS. ZBI’s %exportXML tool uses a candoc to write
XML from the kind of XML SAS dataset discussed in this paper. The
XML export does not require ODS or Java or perl. Export, like
import, is done completely in the base SAS DATA-step using
familiar techniques.

Candocs, since they are completely under the control of the user,
allow anyone who is comfortable with DATA-step programming to
import and export any data-centric XML vocabulary.

XSLT-TYPE TRANSFORMATIONS
XSLT-type transformations can be done in the DATA-step using this
indexing approach. To transform, the index ID values are changed
with DATA-step programming statements. Since the index ID values
identify paths in XML, one instance can be transformed to another
by changing the ID values and exporting the resulting XML with the
appropriate candoc.

SUMMARY
To summarize, XML's hierarchical, text-based, named content
nature makes it cumbersome to import, export, and transform in the
DATA-step. A sleek way of handling XML in the DATA-step involves
flattening the hierarchical representation into a numerically indexed
representation that presents nothing new to the SAS programmer,
unlike native XML. This method has been implemented in a highly
generic way, used with real life XML, and scaled up to production-
size XML files of several hundred thousand records.

CONCLUSION
Despite unfortunate experiences that savvy SAS programmers have
had working with XML in the SAS DATA-step, XML and SAS can
coexist nicely, for import of XML into SAS, export of XML from SAS,
and transformation of one XML instance into another. This is true for
any data-centric XML that a user may encounter.
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FIGURES

Figure 1. XML instance in SAS dataset with ID variables.

Figure 2. Canonical XML document.
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Figure 3. XML instance in SAS dataset with ID variables. Note that the repeating <ItemData> group in the XML has repeating Ids.
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