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Tips from the Hood: Challenging Problems and Tips from SAS-L 
William W. Viergever, Viergever & Associates, Sacramento, CA 

 
 

ABSTRACT 
Ever have one of those days where you just can't find the solution 
to a problem? SAS-L is the electronic user group where you can 
get help for your SAS® problems from other SAS users.  
 
However, even the experts of SAS-L sometimes need help or 
stumble over a question. This paper will cover some examples 
from SAS-L that challenged the experts in recent months as well 
as offered a few tips that you might not know. The author reads 
SAS-L many times a day and is a frequent SAS-L poster, 
although he admits that not all his posts are serious answers! 
<g> 
 
Intended audience: basically – a good knowledge of Base SAS. 
This paper will cover several topics so attendees may find some 
examples more challenging than others. 

INTRODUCTION 
Someone once told me “the answer is the question” (and I hated 
it when he said that) and with respect to the SAS-L this is 
especially true. Often initial questions are posed that may be 
clear to the poster but are ambiguous to the many other SAS-
Listas (lista – a member of a mailing list). Replies often iterate 
towards one or more correct answers or solutions 
 
In addition, many times a post will touch on other, broader, issues 
and as such, will often elicit very detailed, almost academic, 
replies. Although some of these type replies may appear to be 
overkill, most of the Listas still enjoy these occasional pearls of 
wisdom and treasure them accordingly. 
 
Keeping the above in mind, I’d like to now walk you through a few 
interesting “threads” (initial posts and relevant replies on a single 
subject) that caught my eye over the last year on the SAS-L. I’ll 
start w/ the original posts and then walk you through the various 
replies, providing my own “play-by-play” as to how the thread 
evolved. 
 
Note: all posts can be found on-line at the SAS-L Archives: 
http://www.listserv.uga.edu/archives/sas-l.html 

“FILL UP” 
On a fine April Friday in 2002 someone started a thread with the 
subject “Fill Up”. 
 

Hi people, I have a problem, I need to be 
able to fill up.  I have a dataset but need 
it to look like dataset2? If I could just 
FILL UP the X Y I can easily retain the 
parameters. 
 
THANKS a lot. 

 
Dataset1; 
 
Parameter Value     X    Y 
A         .99       .    . 
AB        1         .    . 
B         1.2       .    . 
BB        0.2       .    . 
C         0.3       .    . 
CC        1.2       1    1 
.         .98       .    . 

.         .99       .    . 

.         1.3       .    . 

.         0.1      .    . 

.         0.4      .    . 

.         1.7      1    2 
 
Dataset2; 
 
Parameter Value     X    Y 
A         .99  1    1 
AB        1    1    1 
B         1.2  1    1 
BB        0.2  1    1 
C         0.3  1    1 
CC        1.2  1    1 
A         .98  1    2 
AB        .99  1    2 
B         1.3  1    2 
BB        0.1  1    2 
C         0.4  1    2 
CC        1.7  1    2 
data one; 
set two; 
if mix(var1, var2) > 0 then do; 

 
No, they weren’t having trouble at the gas station and although 
the suggestion was not tested and no output presented, the first 
reply seemed to provide a quick solution: 
 

if X = . then X = 1; 
 
for large numbers of missing variables 
use an array: 
array Nmbrs (*) _numeric_; 
drop I; 
do I = 1 to dim(Nmbrs); 
if Nmbrs(I) = . then Nmbrs(I) = 1;end; 
filling their carContinuation of body – after 
source code. 

 
For now the X’s will all be 1’s as the poster desired. However, the 
original poster came back with: 
 

I Forgot to mention, that it isn't always 
one, my X goes upto 32 and the Y 332. The 
point was how to Fill up the dataset from the 
bottom because my only reference to the XY 
appears at the bottom.  Thanks. 

 
Aha!  - sighs the collective SAS-L, not just the X’s but the Y’s too. 
So another Lista proffers another suggestion: 
 

This may not be very elegant (I'm not a very 
elegant guy), but if DATASET1 is sorted on 
PARAMETER (it appears that it is ascending 
alphabetically), you could run PROC SORT by 
DESCENDING PARAMETER.  Create a second 
dataset, set DATASET1 (RENAME = (X = X1 Y = 
Y2)), retain vars X and Y, and then let X = 
X1 and Y = Y1.  Drop X1 and Y1 after setting 
them equal to X and Y, and resort PARAMETER. 
 
That should do it. 

 
But does it? 
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Another replies with: 
 

If I understand the problem correctly, the 
following (untested) code should 
help: 
 
Data dataset1 ; 
  set dataset2 ; 
  if (parm ne '')  ; 
    do i = 1 to 2 ; 
      x = 1 ; 
      y = i ; 
      output ; 
 end ; 
run ; 

 
It appears that both of these replies were closer to a solution for, 
with the original poster’s elaboration, in that they both recognized 
the need to grab some data from the end of the data and use 
that to populate the earlier data. 
 
Unfortunately, of the two replies, the former only populates X/Y 
data for a given PARAMETER, (which is not what the poster was 
after) and the latter reply, although it technically replicates the 
desired X and Y data values and fills up PARAMTER (given the 
poster’s example data), it results in incorrect values for VALUE. 
 
Once again, our original poster, liking that PARAMTER is now 
getting filled, offers a tad more info: 
 

I wanted to fill in the character values 
also. My dataset is not sorted and is 
much longer than the example I posted I have 
hundreds of coordinates( so I can’t 
sort until the x y is filled)!!!!  I’ve only 
just read the file in with the filename 
statement … And my parameter names aren't 
A.B.C etc there random mixed names, I only 
used what I did so... 

 
Now the plot thickens, for another pleas for some clarity: 
 

What you want to fill up into the char 
fields? The sequence of the non-missing 
fields or what? 
 
… but there has to be any kind of logic! If 
they are randomly mixed, would you distribute 
them also randomly to the empty fields? So 
the rest of any record is also kind of random 
- why do you read them? Just use the ranuni 
function! 
 
So do you mean, the sequence is the same as 
A, B, C, D and is repeated as A, B, C, D and 
the second A, B, C... has the same contents 
(or should be filled up with the same 
contents...)? 

 
Now before the original poster had a chance to answer these 
questions, another reply hit the SAS-L: 
 

*** fill from the bottom; 
 
data d2 Parm(keep = Parameter); 
  do k = nobs to 1 by -1; 
  set d1(rename = (x=x2 y=y2)) nobs = nobs 
point = k; 
  if x2 ne . then x = x2; 
  if y2 ne . then y = y2; 
 
  output d2; 
 

  if Parameter ne '' then output parm; 
  end; 
  stop; 
  drop x2 y2; 
run; 
 
 
*** reverse the order to the original and 
fill "parameter"; 
 
data d3; 
 
  do k = nobs to 1 by -1; 
  set d2 nobs = nobs point = k; 
 
  j +  -1; 
  if j le (0) then j = nparms ; 
  set parm point = j nobs = nparms; 
 
 
  output; 
  end; 
  stop; 
run; 
proc print data = d3; 
run; 

 
Now this looks interesting. The comments mention “filling from 
the bottom” and “reversing the order”, yet I see no PROC SORTs 
in this code. Perhaps we should delve a wee bit deeper. 
 
In data step D2 we see the novel use of a loop and two SET 
statement options: NOBS and POINT. 
 
NOBS tells us (generally) how many OBS are in a dataset and is 
thus a number available at compile time. Thus the loop has us 
reading the source dataset, D1 in this example, backwards from 
the last OBS to the first. 
 
It does this by using the POINT option and setting POINT equal 
to the index of the loop. 
 
This being Advanced Tutorials, many of you will recognize that 
POINT specifies a temporary variable whose (numeric) value 
determines which observation is read; i.e., POINT= causes the 
SET statement to use direct access to read a SAS data set. 
 
So by “looping” from NOBS back to OBS 1, POINT reads each 
OBS from NOBS back to one. D2 thus looks like: 
 

Obs    parameter    value    x    y 
 
  1                  1.7     1    2 
  2                  0.4     1    2 
  3                  0.1     1    2 
  4                  1.3     1    2 
  5                  .99     1    2 
  6                  .98     1    2 
  7       CC         1.2     1    1 
  8       C          0.3     1    1 
  9       BB         0.2     1    1 
 10       B          1.2     1    1 
 11       AB         1       1    1 
 12       A          .99     1    1 

 
Well this looks more like it – except for the missing values for 
PARAMETER in OBS 1 through 6. But wait, the respondent has a 
last step where they reverse the order and fills PARAMETER. 
 
In this last step we again see the use of a loop and the POINT 
option – but now we see two SET statements. 
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The data step again begins by creating a loop and, using the 
POINT option, reading the input dataset in backwards which 
clearly will reverse the OBS back to their original order. 
 
Very slick! However, another novel trick here is the second 
dataset being read (also backwards!). 
 
In their first step when they “filled from the bottom” they also 
outputted a second dataset called PARM, which was a unique set 
of non-missing PARAMETER values, albeit in reverse order: 
 

Obs    parameter 
 
 1        CC 
 2        C 
 3        BB 
 4        B 
 5        AB 
 6        A 

 
Well as Professor Higgins might say, “by George, I think we have 
it!” for now, as we reverse-read each of the reversed OBS with 
the “filled up” X’s and Y’s, we also reverse-read in the repeating, 
non-missing, values for PARAMETER. 
 
Here is what each iteration of this last loop looks like: 
 

parameter=A value=.99 x=1 y=1 k=12 j=6 
parameter=AB value=1 x=1 y=1 k=11 j=5 
parameter=B value=1.2 x=1 y=1 k=10 j=4 
parameter=BB value=0.2 x=1 y=1 k=9 j=3 
parameter=C value=0.3 x=1 y=1 k=8 j=2 
parameter=CC value=1.2 x=1 y=1 k=7 j=1 
parameter=A value=.98 x=1 y=2 k=6 j=6 
parameter=AB value=.99 x=1 y=2 k=5 j=5 
parameter=B value=1.3 x=1 y=2 k=4 j=4 
parameter=BB value=0.1 x=1 y=2 k=3 j=3 
parameter=C value=0.4 x=1 y=2 k=2 j=2 
parameter=CC value=1.7 x=1 y=2 k=1 j=1 

 
Another SAS-Lista also replied with a “loop & POINT” example, 
but before it hit the SAS-L the original poster had replied with: 
 

I have my answer, thanks to all who reply'd I 
know my interpretation was a bit 
flaky but … 

 
Which I think was an understatement <g> 
 
Regardless, via this example, we see a typical scenario, played 
out daily, on the SAS-L: a (perhaps ambiguous) question is 
posed, eliciting (hopefully) numerous replies, slowly iterating 
towards a solution/answer. 
 
In this example we were introduced to the concept of “looping” to 
read data, and the use of the POINT option to effect direct 
access reads of SAS datasets. Not bad for our first lesson, eh? 

“HOWTO: FIND LAST FRIDAY OF MONTH” 
Suffice it to say, after a tough week, the above subject line 
caught my eye. So, thinking this would be an easy one, I opened 
the post: 
 

Does anyone have a tip of how to find the 
last Friday of a month? 
 
The last day of the month can be found with 
the INTNX function: 
lastDay=intnx('month',today(),0,'E'); 

This gives the SAS date value of the last day 
of the current month. 
 
Anyone have a suggestion? 
 

Recognizing that the above INTNX function would return a SAS 
date of the last day of the current month, I glibly replied: 
 

Do a WEEKDAY on this and go from there? 
 
Which was similar to a few other replies that basically required 
code to IF/THEN your way from a given last day of month 
backwards to the Friday prior: 
 

data _null_; 
lastDay=intnx('month',today(),0,'E'); 
put lastday ddmmyy10.; 
day=weekday(lastday); 
put day=; 
if day=6 then friday=lastday; 
else if day=7 then friday=lastday-1; 
else if day<6 then friday=lastday-(day+1); 
put friday ddmmyy10.; 
run; 

 
Brute force, yes – but it did answer the question. However, as the 
SAS-L is wont to do, someone else posted: 
 

Will this do it? 
 
Use the date of the first of the following 
month and apply this. 
 
lastfri=intnx('week.6',date-1,0); 

 
Clean, simple …Dot 6?? But before I could post a reply someone 
else wrote: 
 

Can anyone tell me where the dot notation on 
the interval is documented? 

 
And of course, the SAS-L responded: 
 

It's in SAS Language Reference: 
Concepts; Part 1: SAS System Concepts; 
Dates, Times, and Intervals 

 
Not being familiar with this notation I went to the above reference 
and found that: 
 

The form of an interval is  
 
name<multiple><.starting-point> 

 
where 
 

multiple 
creates a multiple of the interval. Multiple 
can be any positive number. The default is 1. 
For example, YEAR2 indicates a two-year 
interval. 
 
.starting-point 
is the starting point of the interval. By 
default, the starting point is 1. A value 
greater than 1 shifts the start to a later 
point within the interval. The unit for 
shifting depends on the interval, as shown in 
the following table. For example, YEAR.3 
specifies a yearly period from the first of 
March through the end of February of the 
following year. 
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Thus, for a given date, we take the last day of that month, and 
then figure a week interval for that last day, where the interval 
begins with the 6th day –i.e., Friday. 
 

lastfri = 
intnx('week.6',intnx('month',dt,0,'E'),0); 

 
Although I knew about the INTNX function, I wasn’t aware of the 
nuances of the interval with it’s multiple and starting point 
parameters. To me, this is what make the SAS-L so valuable. 
Routine reading of the SAS-L is almost like you’re enrolled in a 
SAS “Continuing Ed” class. In fact, as a follow-up to this thread, a 
SAS-L regular, referring to the documentation on intervals, wrote: 
 

After looking at it, I first thought you 
could do the same thing with 
months. You cannot.  They gave an example 
"MONTH2.2" so I tried "MONTH1.3", 
no good.  Ah-ha, new system.  So I tried 
 
905  data _null_ ; 
906     dt = "1nov2002"d ; 
907     y = intnx ("month.3" , dt , 0 ) ; 
908     x1 = intnx ( "month3.1" , dt, 0 ) ; 
909     x2 = intnx ( "month3.2" , dt, 0 ) ; 
910     x3 = intnx ( "month3.3" , dt, 0 ) ; 
911     format _all_ date9. ; 
912  run ; 
 
NOTE: Invalid argument to function INTNX at 
line 907 column 8. 
dt=01NOV2002 y=. x1=01OCT2002 x2=01NOV2002 
x3=01SEP2002 _ERROR_=1 _N_=1 
NOTE: Mathematical operations could not be 
performed at the following places. The 
results of the operations have been set to 
missing values. 
Each place is given by: (Number of times) at 
(Line):(Column). 
      1 at 907:8 
NOTE: DATA statement used: 
      real time           0.04 seconds 
 
Can anyone explain in English what this 
means?  (I am not interested in the mistake 
[I broke the rules to indicate the month 
rules are different from the week rules and 
to get some output cheaply].  It is the 
"good" values that I want to understand.)  At 
first I thought "MONTHm.n" might mean the nth 
month of a sequence of m months beginning 
some time.  X1 and X2 appear 
to be consistent with this theory.  
 
Here if my final attempt at understanding 
before asking for help. 
 
1071  data _null_ ; 
1072     dt = "1jan2002"d ; 
1073     do until ( dt > "1dec2002"d ) ; 
1074        x1 = intnx ( "month5.1" , dt, 0 ) 
; 
1075        z1 = intnx ( "month5.1" , dt, 1 ) 
; 
1076        x2 = intnx ( "month5.2" , dt, 0 ) 
; 
1077        x3 = intnx ( "month5.3" , dt, 0 ) 
; 
1078        x4 = intnx ( "month5.4" , dt, 0 ) 
; 
1079        x5 = intnx ( "month5.5" , dt, 0 ) 
; 
1080        y1 = intnx ( "month3.1" , dt, 0 ) 

; 
1081        z2 = intnx ( "month3.1" , dt, 0 ) 
; 
1082        y2 = intnx ( "month3.2" , dt, 1 ) 
; 
1083        y3 = intnx ( "month3.3" , dt, 0 ) 
; 
1084        put dt= / (x1 z1 x2-x5) (=) / (y1 
z2 y2-y3) (=) ; 
1085        dt = intnx ( "month" , dt , 1) ; 
1086     end ; 
1087     format _all_ date9. ; 
1088  run ; 

 
One SAS-Lista responded and succinctly described the 
“month3.x” interpretations: 
 

MONTH3.1 means a 3-month interval beginning 
with the default month of Jan. Thus the 
intervals will be Jan - Mar, Apr -Jun, Jul - 
Sep, Oct - Dec. In your first example, dt is 
1NOV2002 which falls within the Oct - Dec 
interval. The result in x1 is the first day 
in the interval, 1OCT2002. For x2, the 
function uses another 3-month interval, but 
the interval begins in Feb. The intervals are 
Feb - Apr, May - Jul, Aug - Oct, Nov - Jan 
(of following year). dt falls within the Nov 
- Jan interval, so x2 contains the first day 
in that interval, 1NOV2002. For x3, dt is 
within the interval of Sep - Nov, so the 
result of the function is 1SEP2002 

 
This seemed fine given that are exactly 4 3-month intervals in a 
year. But what then is the “month5.x” interpretation? Another 
esteemed Lista responded with: 
 

I guess 5 month intervals are in blocks from 
Jan60, so..... 
 
15JAN02 is in the "month5" interval from 
SEP2001-JAN2002 (using simple "month 
arithmetic" 
   Jan2002=( 2002*12+1) =24025 
   Jan1960=( 1960*12+1) =23521 
   dif = 504 
   mod(dif, 5) = 4 
So Jan2002 is the final month of the month5 
interval starting Sep2001 
 
The .2 offset implies intervals starting as 
at Feb1960 Using the month arithmetic from 
Feb1960 results in a dif=503 and mod(503, 5) 
= 3, so the month5.2 interval covering 
Jan2002 runs from Oct2001  (= Jan2002 -3 
months ) 

 
Of course! - the infamous “January 1960” rears its head once 
again <g>. And sure enough, the above mentioned OnLineDocs 
explains this clearly under the sub-topics “Multiunit” and “Shifted” 
Intervals. In fact, it even describes why "MONTH1.3" didn’t work: 
 

In addition, you cannot shift an interval by 
itself. For example, you cannot shift the 
interval MONTH because the shifting subperiod 
for MONTH is one month and MONTH contains 
only one monthly subperiod. However, you can 
shift multi-unit intervals by the subperiod. 
For example, MONTH2.2 specifies bimonthly 
periods starting on the first day of the 
second month. 

 
This has been an example of those SAS-L questions where, 
although they may appear elementary, end up triggering an 
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exchange that exposes one to some of the nuances of SAS – for 
both novices and wizards/gurus/mavens alike. 

“RENAME MACRO.CODE” 
Posts involving the renaming of large numbers of variables 
appear frequently on the SAS-L. What caught my eye on this one 
was that the poster was asking for macro code to accomplish 
this. Macro code is often the answer to posts such as this; not 
necessarily the question. 
 

I've written some code to rename 250 
variables in my dataset. The code works but 
it is extremely inefficient. Too much 
iteration. Would appreciate your advice. 
Thanks. 
 
* to produce sample data ; 
%let class=alpha ; 
data oldset_&class ; 
 do i=1 to 250 ; 
  val = int(ranuni(1)*100) ; 
 output ; 
 end ; 
 drop i ; 
run ; 
proc transpose data=oldset_&class 
out=newset_&class(drop=newname) 
name=newname prefix=Var  ;  run ; 
 
* can the following code be made more 
efficient? too much iteration. 
can a call symput statement be used to dump 
the entire 'chngname' string 
into macro rename1 ? ; 
%macro rename1(chgname=chgname, 
class=&class); 
options mprint mlogic ; 
data newset&class ; 
 set newset&class ; 
 rename &chgname ; 
 label &chgname ; 
run ; 
%mEnd rename1 ; 
 
%macro rename2(class=alpha) ; 
options mprint mlogic ; 
proc contents data=newset_&class 
out=list_&class (keep=name) noprint ; run ; 
data name_&class ; 
 set list_&class ; 
 if name not in ('Var2','Var100') then 
chgname = 
trim(name)||"="||trim(name)||"_&class" ; * 
Var2 & Var100 excluded ; 
 call execute 
('%rename1(chgname='||chgname||",class=_&clas
s)" ) ; * rename2 
calls rename1 ; 
run ; 
%mEnd rename2 ; 
 
%rename2(class=alpha) 

 
Let’s see now; we have a nested macro to do the renames, with 
one macro doing a PROC CONTENTS to get the variable names, 
and then a CALL EXECUTE of the other macro which uses a 
data step to apply the renames. 
 
But the nature of the CALL EXECUTE is such that it’s calling 
macro one repeatedly, once for every variable to be renamed. 
The poster was correct, this is inefficient code. 
 

Another SAS-Lista spotted this promptly offered a little 
admonishment: 
 

Horror of horrors in macro!  Repetition 
should be wielded like a scalpel not a sledge 
hammer.  See the archives and search for 
"rename" any two month period will probably 
be enough. 
 
In short, use PROC SQL with the dictionary 
files to the names of the variables and make 
the macro variables.  then use PROC DATASETS 
to apply the renames and labels.  No data at 
all should be read! (Unless you need a copy 
of the data and then only once.) 

 
To which the original poster came back with a revised rename1 
macro: 
 

%macro rename1(chgname=chgname, class=&class, 
name2=name2); 
proc datasets lib=work nodetails nolist ; 
modify newset&class ;  
rename &chgname ; 
label &name2=&name2 ; 
run ; 
quit ; 
%mEnd rename1 ; 

 
Now, however, even though they were now using PROC 
DATASETS (vs. reading the entire dataset), because of all the 
CALL EXECUTEs, they were still doing it as many times as there 
were variables to rename. 
 
Another SAS-Lista spotted this and offered the code for the 
above mentioned PROC SQL and PROC DATASETS approach 
 

To avoid all those CALL EXECUTES you could 
 
%let class=alpha; 
 
%macro rename (libname=work, dsn=, 
class=alpha); 
proc sql; 
select trim(name) into :nm1 through :nm9999 
   from sashelp.vcolumn 
   where libname eq "%upcase(&libname)" 
   and upcase(memname) eq "%upcase(&dsn)" 
   and upcase(name) not in ('VAR2', 'VAR5') 
   ; 
%let n_nm = &sqlobs; 
 
proc datasets lib=&libname nodetails nolist; 
modify &dsn; 
rename 
%do i = 1 %to &n_nm; 
   &&nm&i = &&nm&i.._&class 
%end; 
; 
%mend; 
 
%rename(dsn=newset_&class,class=alpha); 
run;  

 
This appeared to end this thread. The original poster had 
received both code for the recommended solution, as well a 
some discussion on why it was preferred, i.e., avoiding reading 
any data, and avoiding the repetition due to all the CALL 
EXECUTEs. 
 
Yet, almost as a challenge, the SAS-L offered an alternative 
approach explicitly utilizing CALL EXECUTE: 
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%let class=alpha ;  
data _null_ ; 
   set new_&class ( obs = 1 ) ; 
   array __nums (*) _numeric_ ; 
   call execute ( "proc datasets lib = work ; 
modify new_&class ; rename " ); 
   do __i = 1 to dim ( __nums ) ; 
     call execute(trim(vname(__nums[__i]))|| 
"="||trim(vname(__nums[__i]))||"_&class"); 
   end ; 
 
   call execute ( "; label " ); 
   do __i = 1 to dim ( __nums ) ; 
      call execute ( trim(vname(__nums[__i])) 
|| _&class="||quote(trim(vname(__nums[__i]))) 
); 
   end ; 
   call execute ( ";run;quit;" ) ; 
run ; 

 
In this scenario, we do read just the first OBS of data but that is 
used to generate an array of the variables to be renamed.  
 
From there, the code uses a null data step and begins “writing” a 
PROC DATASETS via a CALL EXECUTE, and continues, 
looping through the array, using the VNAME function to grab the 
variable names and constructing the actual rename (and label) 
lines which via more CALL EXECUTES are added to the 
developing PROC DATASETS. A final CALL EXECUTE runs the 
PROC DATASETS. 
 
I found this piece of code to be pretty slick; a nifty alternative to 
the more common PROC SQL / PROC DATASETS approach. 
Bottom-line, another arrow for my SAS-quiver. 

CONCLUSION 
The SAS-L is a very cool place. The Archives contain a trove of 
SAS knowledge, and the List proper, a community of fellow users 
always available for help and advice. The examples given herein 
cover just a few of the various topics routinely discussed on the 
List; ones that caught my eye this last year. 
 
I hope the examples discussed today did not bore you. Writing 
this paper proved somewhat a challenge. As I was reviewing 
various posts of interest, I found I had to skip some because 
many of them either evolved into very complex threads that didn’t 
afford brief summarization (or I didn’t understand?), or there were 
others that contained so much code proper that either they were 
either self-explanatory or could have been SUGI papers by 
themselves. Also, there many parts of SAS I do not use regularly, 
and hence tend to skip posts with those subjects. 
 
I’ve been coding SAS since 1976 and tend to get set in my ways. 
I think that’s why I like the SAS-L so much: I continue to learn 
new things about SAS from it; almost daily. 
 
Won’t you give it a whirl, too? 

REFERENCES 
As mentioned above, all examples in this paper have been culled 
from the SAS-L and can be found at: 
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