
Paper 20-28

- 1 -

Tips from the Hood: Challenging Problems and Tips from SAS-L
William W. Viergever, Viergever & Associates, Sacramento, CA

ABSTRACT
Ever have one of those days where you just can't find the solution
to a problem? SAS-L is the electronic user group where you can
get help for your SAS® problems from other SAS users.

However, even the experts of SAS-L sometimes need help or
stumble over a question. This paper will cover some examples
from SAS-L that challenged the experts in recent months as well
as offered a few tips that you might not know. The author reads
SAS-L many times a day and is a frequent SAS-L poster,
although he admits that not all his posts are serious answers!
<g>

Intended audience: basically – a good knowledge of Base SAS.
This paper will cover several topics so attendees may find some
examples more challenging than others.

INTRODUCTION
Someone once told me “the answer is the question” (and I hated
it when he said that) and with respect to the SAS-L this is
especially true. Often initial questions are posed that may be
clear to the poster but are ambiguous to the many other SAS-
Listas (lista – a member of a mailing list). Replies often iterate
towards one or more correct answers or solutions

In addition, many times a post will touch on other, broader, issues
and as such, will often elicit very detailed, almost academic,
replies. Although some of these type replies may appear to be
overkill, most of the Listas still enjoy these occasional pearls of
wisdom and treasure them accordingly.

Keeping the above in mind, I’d like to now walk you through a few
interesting “threads” (initial posts and relevant replies on a single
subject) that caught my eye over the last year on the SAS-L. I’ll
start w/ the original posts and then walk you through the various
replies, providing my own “play-by-play” as to how the thread
evolved.

Note: all posts can be found on-line at the SAS-L Archives:
http://www.listserv.uga.edu/archives/sas-l.html

“FILL UP”
On a fine April Friday in 2002 someone started a thread with the
subject “Fill Up”.

Hi people, I have a problem, I need to be
able to fill up. I have a dataset but need
it to look like dataset2? If I could just
FILL UP the X Y I can easily retain the
parameters.

THANKS a lot.

Dataset1;

Parameter Value X Y
A .99 . .
AB 1 . .
B 1.2 . .
BB 0.2 . .
C 0.3 . .
CC 1.2 1 1
. .98 . .

. .99 . .

. 1.3 . .

. 0.1 . .

. 0.4 . .

. 1.7 1 2

Dataset2;

Parameter Value X Y
A .99 1 1
AB 1 1 1
B 1.2 1 1
BB 0.2 1 1
C 0.3 1 1
CC 1.2 1 1
A .98 1 2
AB .99 1 2
B 1.3 1 2
BB 0.1 1 2
C 0.4 1 2
CC 1.7 1 2
data one;
set two;
if mix(var1, var2) > 0 then do;

No, they weren’t having trouble at the gas station and although
the suggestion was not tested and no output presented, the first
reply seemed to provide a quick solution:

if X = . then X = 1;

for large numbers of missing variables
use an array:
array Nmbrs (*) _numeric_;
drop I;
do I = 1 to dim(Nmbrs);
if Nmbrs(I) = . then Nmbrs(I) = 1;end;
filling their carContinuation of body – after
source code.

For now the X’s will all be 1’s as the poster desired. However, the
original poster came back with:

I Forgot to mention, that it isn't always
one, my X goes upto 32 and the Y 332. The
point was how to Fill up the dataset from the
bottom because my only reference to the XY
appears at the bottom. Thanks.

Aha! - sighs the collective SAS-L, not just the X’s but the Y’s too.
So another Lista proffers another suggestion:

This may not be very elegant (I'm not a very
elegant guy), but if DATASET1 is sorted on
PARAMETER (it appears that it is ascending
alphabetically), you could run PROC SORT by
DESCENDING PARAMETER. Create a second
dataset, set DATASET1 (RENAME = (X = X1 Y =
Y2)), retain vars X and Y, and then let X =
X1 and Y = Y1. Drop X1 and Y1 after setting
them equal to X and Y, and resort PARAMETER.

That should do it.

But does it?

SUGI 28 Advanced Tutorials

2

Another replies with:

If I understand the problem correctly, the
following (untested) code should
help:

Data dataset1 ;
 set dataset2 ;
 if (parm ne '') ;
 do i = 1 to 2 ;
 x = 1 ;
 y = i ;
 output ;
 end ;
run ;

It appears that both of these replies were closer to a solution for,
with the original poster’s elaboration, in that they both recognized
the need to grab some data from the end of the data and use
that to populate the earlier data.

Unfortunately, of the two replies, the former only populates X/Y
data for a given PARAMETER, (which is not what the poster was
after) and the latter reply, although it technically replicates the
desired X and Y data values and fills up PARAMTER (given the
poster’s example data), it results in incorrect values for VALUE.

Once again, our original poster, liking that PARAMTER is now
getting filled, offers a tad more info:

I wanted to fill in the character values
also. My dataset is not sorted and is
much longer than the example I posted I have
hundreds of coordinates(so I can’t
sort until the x y is filled)!!!! I’ve only
just read the file in with the filename
statement … And my parameter names aren't
A.B.C etc there random mixed names, I only
used what I did so...

Now the plot thickens, for another pleas for some clarity:

What you want to fill up into the char
fields? The sequence of the non-missing
fields or what?

… but there has to be any kind of logic! If
they are randomly mixed, would you distribute
them also randomly to the empty fields? So
the rest of any record is also kind of random
- why do you read them? Just use the ranuni
function!

So do you mean, the sequence is the same as
A, B, C, D and is repeated as A, B, C, D and
the second A, B, C... has the same contents
(or should be filled up with the same
contents...)?

Now before the original poster had a chance to answer these
questions, another reply hit the SAS-L:

*** fill from the bottom;

data d2 Parm(keep = Parameter);
 do k = nobs to 1 by -1;
 set d1(rename = (x=x2 y=y2)) nobs = nobs
point = k;
 if x2 ne . then x = x2;
 if y2 ne . then y = y2;

 output d2;

 if Parameter ne '' then output parm;
 end;
 stop;
 drop x2 y2;
run;

*** reverse the order to the original and
fill "parameter";

data d3;

 do k = nobs to 1 by -1;
 set d2 nobs = nobs point = k;

 j + -1;
 if j le (0) then j = nparms ;
 set parm point = j nobs = nparms;

 output;
 end;
 stop;
run;
proc print data = d3;
run;

Now this looks interesting. The comments mention “filling from
the bottom” and “reversing the order”, yet I see no PROC SORTs
in this code. Perhaps we should delve a wee bit deeper.

In data step D2 we see the novel use of a loop and two SET
statement options: NOBS and POINT.

NOBS tells us (generally) how many OBS are in a dataset and is
thus a number available at compile time. Thus the loop has us
reading the source dataset, D1 in this example, backwards from
the last OBS to the first.

It does this by using the POINT option and setting POINT equal
to the index of the loop.

This being Advanced Tutorials, many of you will recognize that
POINT specifies a temporary variable whose (numeric) value
determines which observation is read; i.e., POINT= causes the
SET statement to use direct access to read a SAS data set.

So by “looping” from NOBS back to OBS 1, POINT reads each
OBS from NOBS back to one. D2 thus looks like:

Obs parameter value x y

 1 1.7 1 2
 2 0.4 1 2
 3 0.1 1 2
 4 1.3 1 2
 5 .99 1 2
 6 .98 1 2
 7 CC 1.2 1 1
 8 C 0.3 1 1
 9 BB 0.2 1 1
 10 B 1.2 1 1
 11 AB 1 1 1
 12 A .99 1 1

Well this looks more like it – except for the missing values for
PARAMETER in OBS 1 through 6. But wait, the respondent has a
last step where they reverse the order and fills PARAMETER.

In this last step we again see the use of a loop and the POINT
option – but now we see two SET statements.

SUGI 28 Advanced Tutorials

3

The data step again begins by creating a loop and, using the
POINT option, reading the input dataset in backwards which
clearly will reverse the OBS back to their original order.

Very slick! However, another novel trick here is the second
dataset being read (also backwards!).

In their first step when they “filled from the bottom” they also
outputted a second dataset called PARM, which was a unique set
of non-missing PARAMETER values, albeit in reverse order:

Obs parameter

 1 CC
 2 C
 3 BB
 4 B
 5 AB
 6 A

Well as Professor Higgins might say, “by George, I think we have
it!” for now, as we reverse-read each of the reversed OBS with
the “filled up” X’s and Y’s, we also reverse-read in the repeating,
non-missing, values for PARAMETER.

Here is what each iteration of this last loop looks like:

parameter=A value=.99 x=1 y=1 k=12 j=6
parameter=AB value=1 x=1 y=1 k=11 j=5
parameter=B value=1.2 x=1 y=1 k=10 j=4
parameter=BB value=0.2 x=1 y=1 k=9 j=3
parameter=C value=0.3 x=1 y=1 k=8 j=2
parameter=CC value=1.2 x=1 y=1 k=7 j=1
parameter=A value=.98 x=1 y=2 k=6 j=6
parameter=AB value=.99 x=1 y=2 k=5 j=5
parameter=B value=1.3 x=1 y=2 k=4 j=4
parameter=BB value=0.1 x=1 y=2 k=3 j=3
parameter=C value=0.4 x=1 y=2 k=2 j=2
parameter=CC value=1.7 x=1 y=2 k=1 j=1

Another SAS-Lista also replied with a “loop & POINT” example,
but before it hit the SAS-L the original poster had replied with:

I have my answer, thanks to all who reply'd I
know my interpretation was a bit
flaky but …

Which I think was an understatement <g>

Regardless, via this example, we see a typical scenario, played
out daily, on the SAS-L: a (perhaps ambiguous) question is
posed, eliciting (hopefully) numerous replies, slowly iterating
towards a solution/answer.

In this example we were introduced to the concept of “looping” to
read data, and the use of the POINT option to effect direct
access reads of SAS datasets. Not bad for our first lesson, eh?

“HOWTO: FIND LAST FRIDAY OF MONTH”
Suffice it to say, after a tough week, the above subject line
caught my eye. So, thinking this would be an easy one, I opened
the post:

Does anyone have a tip of how to find the
last Friday of a month?

The last day of the month can be found with
the INTNX function:
lastDay=intnx('month',today(),0,'E');

This gives the SAS date value of the last day
of the current month.

Anyone have a suggestion?

Recognizing that the above INTNX function would return a SAS
date of the last day of the current month, I glibly replied:

Do a WEEKDAY on this and go from there?

Which was similar to a few other replies that basically required
code to IF/THEN your way from a given last day of month
backwards to the Friday prior:

data _null_;
lastDay=intnx('month',today(),0,'E');
put lastday ddmmyy10.;
day=weekday(lastday);
put day=;
if day=6 then friday=lastday;
else if day=7 then friday=lastday-1;
else if day<6 then friday=lastday-(day+1);
put friday ddmmyy10.;
run;

Brute force, yes – but it did answer the question. However, as the
SAS-L is wont to do, someone else posted:

Will this do it?

Use the date of the first of the following
month and apply this.

lastfri=intnx('week.6',date-1,0);

Clean, simple …Dot 6?? But before I could post a reply someone
else wrote:

Can anyone tell me where the dot notation on
the interval is documented?

And of course, the SAS-L responded:

It's in SAS Language Reference:
Concepts; Part 1: SAS System Concepts;
Dates, Times, and Intervals

Not being familiar with this notation I went to the above reference
and found that:

The form of an interval is

name<multiple><.starting-point>

where

multiple
creates a multiple of the interval. Multiple
can be any positive number. The default is 1.
For example, YEAR2 indicates a two-year
interval.

.starting-point
is the starting point of the interval. By
default, the starting point is 1. A value
greater than 1 shifts the start to a later
point within the interval. The unit for
shifting depends on the interval, as shown in
the following table. For example, YEAR.3
specifies a yearly period from the first of
March through the end of February of the
following year.

SUGI 28 Advanced Tutorials

4

Thus, for a given date, we take the last day of that month, and
then figure a week interval for that last day, where the interval
begins with the 6th day –i.e., Friday.

lastfri =
intnx('week.6',intnx('month',dt,0,'E'),0);

Although I knew about the INTNX function, I wasn’t aware of the
nuances of the interval with it’s multiple and starting point
parameters. To me, this is what make the SAS-L so valuable.
Routine reading of the SAS-L is almost like you’re enrolled in a
SAS “Continuing Ed” class. In fact, as a follow-up to this thread, a
SAS-L regular, referring to the documentation on intervals, wrote:

After looking at it, I first thought you
could do the same thing with
months. You cannot. They gave an example
"MONTH2.2" so I tried "MONTH1.3",
no good. Ah-ha, new system. So I tried

905 data _null_ ;
906 dt = "1nov2002"d ;
907 y = intnx ("month.3" , dt , 0) ;
908 x1 = intnx ("month3.1" , dt, 0) ;
909 x2 = intnx ("month3.2" , dt, 0) ;
910 x3 = intnx ("month3.3" , dt, 0) ;
911 format _all_ date9. ;
912 run ;

NOTE: Invalid argument to function INTNX at
line 907 column 8.
dt=01NOV2002 y=. x1=01OCT2002 x2=01NOV2002
x3=01SEP2002 _ERROR_=1 _N_=1
NOTE: Mathematical operations could not be
performed at the following places. The
results of the operations have been set to
missing values.
Each place is given by: (Number of times) at
(Line):(Column).
 1 at 907:8
NOTE: DATA statement used:
 real time 0.04 seconds

Can anyone explain in English what this
means? (I am not interested in the mistake
[I broke the rules to indicate the month
rules are different from the week rules and
to get some output cheaply]. It is the
"good" values that I want to understand.) At
first I thought "MONTHm.n" might mean the nth
month of a sequence of m months beginning
some time. X1 and X2 appear
to be consistent with this theory.

Here if my final attempt at understanding
before asking for help.

1071 data _null_ ;
1072 dt = "1jan2002"d ;
1073 do until (dt > "1dec2002"d) ;
1074 x1 = intnx ("month5.1" , dt, 0)
;
1075 z1 = intnx ("month5.1" , dt, 1)
;
1076 x2 = intnx ("month5.2" , dt, 0)
;
1077 x3 = intnx ("month5.3" , dt, 0)
;
1078 x4 = intnx ("month5.4" , dt, 0)
;
1079 x5 = intnx ("month5.5" , dt, 0)
;
1080 y1 = intnx ("month3.1" , dt, 0)

;
1081 z2 = intnx ("month3.1" , dt, 0)
;
1082 y2 = intnx ("month3.2" , dt, 1)
;
1083 y3 = intnx ("month3.3" , dt, 0)
;
1084 put dt= / (x1 z1 x2-x5) (=) / (y1
z2 y2-y3) (=) ;
1085 dt = intnx ("month" , dt , 1) ;
1086 end ;
1087 format _all_ date9. ;
1088 run ;

One SAS-Lista responded and succinctly described the
“month3.x” interpretations:

MONTH3.1 means a 3-month interval beginning
with the default month of Jan. Thus the
intervals will be Jan - Mar, Apr -Jun, Jul -
Sep, Oct - Dec. In your first example, dt is
1NOV2002 which falls within the Oct - Dec
interval. The result in x1 is the first day
in the interval, 1OCT2002. For x2, the
function uses another 3-month interval, but
the interval begins in Feb. The intervals are
Feb - Apr, May - Jul, Aug - Oct, Nov - Jan
(of following year). dt falls within the Nov
- Jan interval, so x2 contains the first day
in that interval, 1NOV2002. For x3, dt is
within the interval of Sep - Nov, so the
result of the function is 1SEP2002

This seemed fine given that are exactly 4 3-month intervals in a
year. But what then is the “month5.x” interpretation? Another
esteemed Lista responded with:

I guess 5 month intervals are in blocks from
Jan60, so.....

15JAN02 is in the "month5" interval from
SEP2001-JAN2002 (using simple "month
arithmetic"
 Jan2002=(2002*12+1) =24025
 Jan1960=(1960*12+1) =23521
 dif = 504
 mod(dif, 5) = 4
So Jan2002 is the final month of the month5
interval starting Sep2001

The .2 offset implies intervals starting as
at Feb1960 Using the month arithmetic from
Feb1960 results in a dif=503 and mod(503, 5)
= 3, so the month5.2 interval covering
Jan2002 runs from Oct2001 (= Jan2002 -3
months)

Of course! - the infamous “January 1960” rears its head once
again <g>. And sure enough, the above mentioned OnLineDocs
explains this clearly under the sub-topics “Multiunit” and “Shifted”
Intervals. In fact, it even describes why "MONTH1.3" didn’t work:

In addition, you cannot shift an interval by
itself. For example, you cannot shift the
interval MONTH because the shifting subperiod
for MONTH is one month and MONTH contains
only one monthly subperiod. However, you can
shift multi-unit intervals by the subperiod.
For example, MONTH2.2 specifies bimonthly
periods starting on the first day of the
second month.

This has been an example of those SAS-L questions where,
although they may appear elementary, end up triggering an

SUGI 28 Advanced Tutorials

5

exchange that exposes one to some of the nuances of SAS – for
both novices and wizards/gurus/mavens alike.

“RENAME MACRO.CODE”
Posts involving the renaming of large numbers of variables
appear frequently on the SAS-L. What caught my eye on this one
was that the poster was asking for macro code to accomplish
this. Macro code is often the answer to posts such as this; not
necessarily the question.

I've written some code to rename 250
variables in my dataset. The code works but
it is extremely inefficient. Too much
iteration. Would appreciate your advice.
Thanks.

* to produce sample data ;
%let class=alpha ;
data oldset_&class ;
 do i=1 to 250 ;
 val = int(ranuni(1)*100) ;
 output ;
 end ;
 drop i ;
run ;
proc transpose data=oldset_&class
out=newset_&class(drop=newname)
name=newname prefix=Var ; run ;

* can the following code be made more
efficient? too much iteration.
can a call symput statement be used to dump
the entire 'chngname' string
into macro rename1 ? ;
%macro rename1(chgname=chgname,
class=&class);
options mprint mlogic ;
data newset&class ;
 set newset&class ;
 rename &chgname ;
 label &chgname ;
run ;
%mEnd rename1 ;

%macro rename2(class=alpha) ;
options mprint mlogic ;
proc contents data=newset_&class
out=list_&class (keep=name) noprint ; run ;
data name_&class ;
 set list_&class ;
 if name not in ('Var2','Var100') then
chgname =
trim(name)||"="||trim(name)||"_&class" ; *
Var2 & Var100 excluded ;
 call execute
('%rename1(chgname='||chgname||",class=_&clas
s)") ; * rename2
calls rename1 ;
run ;
%mEnd rename2 ;

%rename2(class=alpha)

Let’s see now; we have a nested macro to do the renames, with
one macro doing a PROC CONTENTS to get the variable names,
and then a CALL EXECUTE of the other macro which uses a
data step to apply the renames.

But the nature of the CALL EXECUTE is such that it’s calling
macro one repeatedly, once for every variable to be renamed.
The poster was correct, this is inefficient code.

Another SAS-Lista spotted this promptly offered a little
admonishment:

Horror of horrors in macro! Repetition
should be wielded like a scalpel not a sledge
hammer. See the archives and search for
"rename" any two month period will probably
be enough.

In short, use PROC SQL with the dictionary
files to the names of the variables and make
the macro variables. then use PROC DATASETS
to apply the renames and labels. No data at
all should be read! (Unless you need a copy
of the data and then only once.)

To which the original poster came back with a revised rename1
macro:

%macro rename1(chgname=chgname, class=&class,
name2=name2);
proc datasets lib=work nodetails nolist ;
modify newset&class ;
rename &chgname ;
label &name2=&name2 ;
run ;
quit ;
%mEnd rename1 ;

Now, however, even though they were now using PROC
DATASETS (vs. reading the entire dataset), because of all the
CALL EXECUTEs, they were still doing it as many times as there
were variables to rename.

Another SAS-Lista spotted this and offered the code for the
above mentioned PROC SQL and PROC DATASETS approach

To avoid all those CALL EXECUTES you could

%let class=alpha;

%macro rename (libname=work, dsn=,
class=alpha);
proc sql;
select trim(name) into :nm1 through :nm9999
 from sashelp.vcolumn
 where libname eq "%upcase(&libname)"
 and upcase(memname) eq "%upcase(&dsn)"
 and upcase(name) not in ('VAR2', 'VAR5')
 ;
%let n_nm = &sqlobs;

proc datasets lib=&libname nodetails nolist;
modify &dsn;
rename
%do i = 1 %to &n_nm;
 &&nm&i = &&nm&i.._&class
%end;
;
%mend;

%rename(dsn=newset_&class,class=alpha);
run;

This appeared to end this thread. The original poster had
received both code for the recommended solution, as well a
some discussion on why it was preferred, i.e., avoiding reading
any data, and avoiding the repetition due to all the CALL
EXECUTEs.

Yet, almost as a challenge, the SAS-L offered an alternative
approach explicitly utilizing CALL EXECUTE:

SUGI 28 Advanced Tutorials

6

%let class=alpha ;
data _null_ ;
 set new_&class (obs = 1) ;
 array __nums (*) _numeric_ ;
 call execute ("proc datasets lib = work ;
modify new_&class ; rename ");
 do __i = 1 to dim (__nums) ;
 call execute(trim(vname(__nums[__i]))||
"="||trim(vname(__nums[__i]))||"_&class");
 end ;

 call execute ("; label ");
 do __i = 1 to dim (__nums) ;
 call execute (trim(vname(__nums[__i]))
|| _&class="||quote(trim(vname(__nums[__i])))
);
 end ;
 call execute (";run;quit;") ;
run ;

In this scenario, we do read just the first OBS of data but that is
used to generate an array of the variables to be renamed.

From there, the code uses a null data step and begins “writing” a
PROC DATASETS via a CALL EXECUTE, and continues,
looping through the array, using the VNAME function to grab the
variable names and constructing the actual rename (and label)
lines which via more CALL EXECUTES are added to the
developing PROC DATASETS. A final CALL EXECUTE runs the
PROC DATASETS.

I found this piece of code to be pretty slick; a nifty alternative to
the more common PROC SQL / PROC DATASETS approach.
Bottom-line, another arrow for my SAS-quiver.

CONCLUSION
The SAS-L is a very cool place. The Archives contain a trove of
SAS knowledge, and the List proper, a community of fellow users
always available for help and advice. The examples given herein
cover just a few of the various topics routinely discussed on the
List; ones that caught my eye this last year.

I hope the examples discussed today did not bore you. Writing
this paper proved somewhat a challenge. As I was reviewing
various posts of interest, I found I had to skip some because
many of them either evolved into very complex threads that didn’t
afford brief summarization (or I didn’t understand?), or there were
others that contained so much code proper that either they were
either self-explanatory or could have been SUGI papers by
themselves. Also, there many parts of SAS I do not use regularly,
and hence tend to skip posts with those subjects.

I’ve been coding SAS since 1976 and tend to get set in my ways.
I think that’s why I like the SAS-L so much: I continue to learn
new things about SAS from it; almost daily.

Won’t you give it a whirl, too?

REFERENCES
As mentioned above, all examples in this paper have been culled
from the SAS-L and can be found at:
http://www.listserv.uga.edu/archives/sas-l.html
The above (quoted) section headings above are from the
SUBJECT lines for these 2002 SAS-L posts; search accordingly.

ACKNOWLEDGMENTS
First off, to Joe, the List owner – for if not Joe, no List. Secondly,
to the misc. Masters, Wizards, Gurus, and even Mavens – for if
not them, no “interesting” List. Thirdly, to the masses, for with out
us, who would the Masters, Wizards, Gurus, Mavens expound to?

And lastly, to Deb Cassidy for the idea & invite, and her patience
in putting up with this harried first-time writer.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

William W. Viergever
 Viergever & Associates
 2920 Arden Way Ste N
 Sacramento, CA 95825
 V: 916-483-8398
 F: 916-486-1488
 wwvierg@attglobal.net

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

SUGI 28 Advanced Tutorials

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

