
Undocumented and Hard-to-find SQL Features

Kirk Paul Lafler, Software Intelligence Corporation

Abstract
The SQL Procedure contains many powerful and
elegant language features for advanced SQL users.
This paper presents SQL topics that will help
programmers unlock the many hidden features,
options, and other hard-to-find gems found in the SQL
universe. Topics include CASE logic; the COALESCE
function; SQL statement options _METHOD, _TREE,
and other useful options; dictionary tables; automatic
macro variables; and performance issues.

Finding the First Non-Missing Value
The SQL procedure provides a way to find the first
non-missing value in a column or list. Specified in a
SELECT statement, the COALESCE function inspects
a column, or in the case of a list scans the arguments
from left to right, and returns the first non-missing or
non-NULL value. If all values are missing, the result is
missing.

When coding the COALESCE function, all arguments
must be of the same data type. The example shows
one approach on computing the total number of
minutes in the MOVIES table. In the event either the
LENGTH or RATING columns contain a missing
value, a zero is assigned to prevent the propagation
of missing values.

SQL Code

PROC SQL;
 SELECT TITLE,
 RATING,
 (COALESCE(LENGTH, 0))
 AS Tot_Length
 FROM MOVIES;
QUIT;

Results

 The SAS System

Title Rating Tot_Length
ƒƒ
Brave Heart R 177
Casablanca PG 103
Christmas Vacation PG-13 97
Coming to America R 116
Dracula R 130
Dressed to Kill R 105
Forrest Gump PG-13 142
Ghost PG-13 127
Jaws PG 125

Jurassic Park PG-13 127
Lethal Weapon R 110
Michael PG-13 106
National Lampoon's Vacat PG-13 98
Poltergeist PG 115
Rocky PG 120
Scarface R 170
Silence of the Lambs R 118
Star Wars PG 124
The Hunt for Red October PG 135
The Terminator R 108
The Wizard of Oz G 101
Titanic PG-13 194

Summarizing data
Although the SQL procedure is frequently used to
display or extract detailed information from tables in a
database, it is also a wonderful tool for summarizing
(or aggregating) data. By constructing simple queries,
data can be summarized down rows (observations) as
well as across columns (variables). This flexibility
gives SAS users an incredible range of power, and
the ability to take advantage of several SAS-supplied
(or built-in) summary functions. For example, it may
be more interesting to see the average of some
quantities rather than the set of all quantities.

Without the ability to summarize data in SQL, users
would be forced to write complicated formulas and/or
routines, or even write and test DATA step programs
to summarize data. To see how an SQL query can be
constructed to summarize data, two examples will be
illustrated: 1) Summarizing data down rows and 2)
Summarizing data across rows.

1. Summarizing data down rows
The first example shows a single aggregate result
value being produced when movie-related data is
summarized down rows (or observations). The
advantages of using a summary function in SQL is
that it will generally compute the aggregate quicker
than if a user-defined equation were constructed and
it saves the effort of having to construct and test a
program containing the user-defined equation in the
first place. Suppose you wanted to know the average
length of all PG and PG-13 movies in a database
table containing a variety of movie categories. The
following query computes the average movie length
and produces a single aggregate value using the AVG
function.

SUGI 28 Advanced Tutorials

SQL Code

PROC SQL;
 SELECT AVG(LENGTH) AS
 Average_Movie_Length
 FROM MOVIES
 WHERE RATING IN
 (“PG”, “PG-13”);
QUIT;

The result from executing this query shows that the
average movie length rounded to the hundredths
position is 124.08 minutes.

Results

 Average_
Movie_Length
 124.0769

2. Summarizing data across columns
Being able to summarize data across columns often
comes in handy, when a computation is required on
two or more columns in each row. Suppose you
wanted to know the difference in minutes between
each PG and PG-13 movie’s running length with
trailers (add-on specials for your viewing pleasure)
and without trailers.

SQL Code

PROC SQL;
 SELECT TITLE,
 RANGE(LENGTH_TRAIL,
 LENGTH) AS
 Extra_Minutes
 FROM MOVIES
 WHERE RATING IN
 (“PG”, “PG-13”);
QUIT;

This query computes the difference between the
length of the movie and its trailer in minutes and once
computed displays the range value for each row as
Extra_Minutes.

Results

 Extra_
Title Minutes
Casablanca 0
Jaws 0
Rocky 0
Star Wars 0
Poltergeist 0
The Hunt for Red October 15
National Lampoon's Vacation 7
Christmas Vacation 6
Ghost 0
Jurassic Park 33
Forrest Gump 0
Michael 0
Titanic 36

Case Logic
In the SQL procedure, a case expression provides a
way of conditionally selecting result values from each
row in a table (or view). Similar to an IF-THEN
construct, a case expression uses a WHEN-THEN
clause to conditionally process some but not all the
rows in a table. An optional ELSE expression can be
specified to handle an alternative action should none
of the expression(s) identified in the WHEN
condition(s) not be satisfied.

A case expression must be a valid SQL expression
and conform to syntax rules similar to DATA step
SELECT-WHEN statements. Even though this topic is
best explained by example, let’s take a quick look at
the syntax.

CASE <column-name>
 WHEN when-condition THEN result-expression
 <WHEN when-condition THEN result-expression> …
 <ELSE result-expression>
END

A column-name can optionally be specified as part of
the CASE-expression. If present, it is automatically
made available to each when-condition. When it is not
specified, the column-name must be coded in each
when-condition. Let’s examine how a case expression
works.

If a when-condition is satisfied by a row in a table (or
view), then it is considered “true” and the result-
expression following the THEN keyword is processed.
The remaining WHEN conditions in the CASE
expression are skipped. If a when-condition is “false”,
the next when-condition is evaluated. SQL evaluates
each when-condition until a “true” condition is found
or in the event all when-conditions are “false”, it then
executes the ELSE expression and assigns its value
to the CASE expression’s result. A missing value is
assigned to a CASE expression when an ELSE
expression is not specified and each when-condition
is “false”.

In the next example, let’s see how a case expression
actually works. Suppose a value of “Short”, “Medium”,
or “Long” is desired for each of the movies. Using the
movie’s length (LENGTH) column, a CASE
expression is constructed to assign one of the desired
values in a unique column called M_Length for each
row of data. A value of ‘Short’ is assigned to the
movies that are shorter than 120 minutes long, ‘Long’
for movies longer than 160 minutes long, and
‘Medium’ for all other movies. A column heading of
M_Length is assigned to the new derived output
column using the AS keyword.

SQL Code

PROC SQL;
 SELECT TITLE,
 LENGTH,
 CASE

SUGI 28 Advanced Tutorials

 WHEN LENGTH < 120 THEN 'Short'
 WHEN LENGTH > 160 THEN 'Long'
 ELSE 'Medium'
 END AS M_Length
 FROM MOVIES;
QUIT;

Results

 The SAS System

Title Length M_Length
ƒƒƒ
Brave Heart 177 Long
Casablanca 103 Short
Christmas Vacation 97 Short
Coming to America 116 Short
Dracula 130 Medium
Dressed to Kill 105 Short
Forrest Gump 142 Medium
Ghost 127 Medium
Jaws 125 Medium
Jurassic Park 127 Medium
Lethal Weapon 110 Short
Michael 106 Short
National Lampoon's Vacation 98 Short
Poltergeist 115 Short
Rocky 120 Medium
Scarface 170 Long
Silence of the Lambs 118 Short
Star Wars 124 Medium
The Hunt for Red October 135 Medium
The Terminator 108 Short
The Wizard of Oz 101 Short
Titanic 194 Long

In another example suppose we wanted to determine
the audience level (general or adult audiences) for
each movie. By using the RATING column we can
assign a descriptive value with a simple Case
expression, as follows.

SQL Code

PROC SQL;
 SELECT TITLE,
 RATING,
 CASE RATING
 WHEN ‘G’ THEN ‘General’
 ELSE ‘Other’
 END AS Aud_Level
 FROM MOVIES;
QUIT;

Results

 The SAS System

Title Rating Aud_Level

ƒƒƒ
Brave Heart R Other
Casablanca PG Other
Christmas Vacation PG-13 Other
Coming to America R Other
Dracula R Other
Dressed to Kill R Other
Forrest Gump PG-13 Other
Ghost PG-13 Other
Jaws PG Other
Jurassic Park PG-13 Other
Lethal Weapon R Other
Michael PG-13 Other
National Lampoon's Vacat PG-13 Other
Poltergeist PG Other
Rocky PG Other
Scarface R Other
Silence of the Lambs R Other
Star Wars PG Other
The Hunt for Red October PG Other
The Terminator R Other
The Wizard of Oz G General
Titanic PG-13 Other

SQL and the Macro Language
Many software vendors’ SQL implementation permits
SQL to be interfaced with a host language. The SAS
System’s SQL implementation is no different. The
SAS Macro Language lets you customize the way the
SAS software behaves, and in particular extend the
capabilities of the SQL procedure. SQL users can
apply the macro facility’s many powerful features by
interfacing PROC SQL with the macro language to
provide a wealth of programming opportunities.

From creating and using user-defined macro variables
and automatic (SAS-supplied) variables, reducing
redundant code, performing common and repetitive
tasks, to building powerful and simple macro
applications, SQL can be integrated with the macro
language to improve programmer efficiency. The best
part is that you do not have to be a macro language
heavyweight to begin reaping the rewards of this
versatile interface between two powerful Base-SAS
software languages.

Creating a Macro Variable with
Aggregate Functions
Turning data into information, and then saving the
results as macro variables is easy with summary
(aggregate) functions. The SQL procedure provides a
number of useful summary functions to help perform
calculations, descriptive statistics, and other
aggregating computations in a SELECT statement or
HAVING clause. These functions are designed to
summarize information and not display detail about
data. In the next example, the MIN summary function
is used to determine the least expensive product from

SUGI 28 Advanced Tutorials

the PRODUCTS table with the value stored in the
macro variable MIN_PRODCOST using the INTO
clause. The results are displayed on the SAS log.

SQL Code

PROC SQL NOPRINT;
 SELECT MIN(LENGTH)
 INTO :MIN_LENGTH
 FROM MOVIES;
QUIT;
%PUT &MIN_LENGTH;

SAS Log Results

PROC SQL NOPRINT;
 SELECT MIN(LENGTH)
 INTO :MIN_LENGTH
 FROM MOVIES;
QUIT;
NOTE: PROCEDURE SQL used:
 real time 0.00 seconds

%PUT &MIN_LENGTH;
97

Building Macro Tools
The Macro Facility, combined with the capabilities of
the SQL procedure, enables the creation of versatile
macro tools and general-purpose applications. A
principle design goal when developing user-written
macros should be that they are useful and simple to
use. A macro that violates this tenant of little
applicability to user needs, or with complicated and
hard to remember macro variable names, are usually
avoided.

As tools, macros should be designed to serve the
needs of as many users as possible. They should
contain no ambiguities, consist of distinctive macro
variable names, avoid the possibility of naming
conflicts between macro variables and data set
variables, and not try to do too many things. This
utilitarian approach to macro design helps gain the
widespread approval and acceptance by users.

Column cross-reference listings come in handy when
you need to quickly identify all the SAS library data
sets a column is defined in. Using the COLUMNS
dictionary table a macro can be created that captures
column-level information including column name,
type, length, position, label, format, informat, indexes,
as well as a cross-reference listing containing the
location of a column within a designated SAS library.
In the next example, macro COLUMNS consists of an
SQL query that accesses any single column in a SAS
library. If the macro was invoked with a user-request
consisting of %COLUMNS(PATH,TITLE);, the macro

would produce a cross-reference listing on the user
library PATH for the column TITLE in all DATA types.

SQL Code

%MACRO COLUMNS(LIB, COLNAME);
PROC SQL;
 SELECT LIBNAME, MEMNAME
 FROM DICTIONARY.COLUMNS
 WHERE UPCASE(LIBNAME)=”&LIB” AND
 UPCASE(NAME)=”&COLNAME” AND
 UPCASE(MEMTYPE)=”DATA”;
QUIT;
%MEND COLUMNS;

%COLUMNS(PATH,TITLE);

Results

The SAS System

Library
Name Member Name
ƒƒ
PATH ACTORS
PATH MOVIES

Submitting a Macro and SQL Code with a
Function Key
For interactive users using the SAS Display Manager
System, a macro can be submitted with a function
key. This simple, but effective, technique makes it
easy to run a macro with the touch of a key anytime
and as often as you like. All you need to do is define
the macro containing the instructions you would like to
have it perform, include the macro in each session
you want to use it in, and enter the SUBMIT
command as part of each macro statement to execute
the macro. Then, define the desired function key by
opening the KEYS window, add the macro name, and
save. Anytime you want to execute the macro, simply
press the designated function key.

Suppose you wanted to determine the values of all
automatic variables set during the current session. In
the next example, you enter and save the following
macro statement to inspect the values of current
automatic variable settings. By pressing the
designated function key, the macro is submitted,
executed, and the results displayed.

SQL Code

SUBMIT “%PUT _AUTOMATIC_;”;

SUGI 28 Advanced Tutorials

Debugging SQL Processing
The SQL procedure offers a couple new options in the
debugging process. Two options of critical importance
are _METHOD and _TREE. By specifying a
_METHOD option on the SQL statement, it displays
the hierarchy of processing that occurs. Results are
displayed on the Log using a variety of codes (see
table).

Codes Description
sqxcrta Create table as Select
Sqxslct Select
sqxjsl Step loop join (Cartesian)
sqxjm Merge join
sqxjndx Index join
sqxjhsh Hash join
sqxsort Sort
sqxsrc Source rows from table
sqxfil Filter rows
sqxsumg Summary stats with GROUP BY
sqxsumn Summary stats with no GROUP BY

In the next example a _METHOD option is specified
to show the processing hierarchy in a two-way equi-
join.

SQL Code

PROC SQL _METHOD;
 SELECT MOVIES.TITLE, RATING, ACTOR_LEADING
 FROM MOVIES,
 .ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;
Results

NOTE: SQL execution methods chosen are:
 sqxslct
 sqxjhsh
 sqxsrc(MOVIES)
 sqxsrc(ACTORS)
Another option that is useful for debugging purposes
is the _TREE option. In the next example the SQL
statements are transformed into an internal form
showing a hierarchical layout with objects and a
variety of symbols. Inspecting the tree output can
frequently provide a greater level of understanding of
what happens during SQL processing.

SQL Code

PROC SQL _TREE;
 SELECT MOVIES.TITLE, RATING, ACTOR_LEADING
 FROM MOVIES,
 .ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;

Results

NOTE: SQL execution methods chosen are:
sqxslct
 sqxjhsh
 sqxsrc(MOVIES)
 sqxsrc(.ACTORS)

Tree as planned.
 /-SYM-V-(MOVIES.Title:1 flag=0001)
 /-OBJ----|
 | |--SYM-V-(MOVIES.Rating:6 flag=0001)
 | |--SYM-V-(MOVIES.Length:2 flag=0001)
 | \-SYM-V-(ACTORS.Actor_Leading:2
flag=0001)
 /-JOIN---|
 | | /-SYM-V-(MOVIES.Title:1
flag=0001)
 | | /-OBJ----|
 | | | |--SYM-V-(MOVIES.Rating:6
flag=0001)
 | | | \-SYM-V-(MOVIES.Length:2
flag=0001)
 | | /-SRC----|
 | | | \-TABL[WORK].MOVIES opt=''
 | |--FROM---|
 | | | /-SYM-V-(ACTORS.Title:1
flag=0001)
 | | | /-OBJ----|
 | | | | \-SYM-V-
(ACTORS.Actor_Leading:2 flag=0001)
 | | \-SRC----|
 | | \-TABL[WORK].ACTORS opt=''
 | |--empty-
 | | /-SYM-V-(MOVIES.Title:1)
 | \-CEQ----|
 | \-SYM-V-(ACTORS.Title:1)
 --SSEL---|If you have surplus virtual memory, you can
achieve faster access to matching rows from one or
more small input data sets. Referred to as a Hash join
the BUFFERSIZE= option can be used to let the SQL
procedure hash join larger tables. The default
BUFFERSIZE=n option is 64000 when not specified.
In the next example, a BUFFERSIZE=256000 is
specified to utilize available memory to load rows. The
result is faster performance because of a hash join.
SQL Code

PROC SQL _method BUFFERSIZE=256000;
 SELECT MOVIES.TITLE, RATING, ACTOR_LEADING
 FROM MOVIES, ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;
Results

NOTE: SQL execution methods chosen are:
 sqxslct
 sqxjhsh
 sqxsrc(MOVIES)
 sqxsrc(ACTORS)

SUGI 28 Advanced Tutorials

Acknowledgments
I would like to thank Deb Cassidy of Cardinal
Distribution for accepting my abstract and paper, as
well as the SUGI Leadership for their support of a
great Conference.

References
Lafler, Kirk.; Ten Great Reasons to Learn the SQL

Procedure, SAS Users Group International, 1999.
Lafler, Kirk.; Power SAS: A Survival Guide, First Edition;

Apress, Berkeley, CA, USA, 2002.
SAS® Guide to the SQL Procedure: Usage and

Reference, Version 6, First Edition; SAS Institute,
Cary, NC, USA; 1990.

SAS® SQL Procedure User’s Guide, Version 8; SAS
Institute Inc., Cary, NC, USA; 2000.

SAS® SQL Programming Tips: Version 8; Software
Intelligence Corporation, Spring Valley, CA, USA;
2002.

Trademark Citations
SAS and SAS Certified Professional are registered
trademarks of SAS Institute Inc. in the USA and other
countries. The ® symbol indicates USA registration.

Bio
Kirk Paul Lafler is a SAS® Consultant and SAS
Certified Professional® with 25 years of SAS software
experience. He has written four books and over one
hundred articles for professional journals and SAS
User Group proceedings. Kirk’s popular SAS Tips
column appears regularly in the BASAS, SANDS, and
SESUG Newsletters. His expertise spans application
design and development, training, and programming
using base-SAS, SQL, ODS, SAS/FSP, SAS/AF,
SCL, FRAME, and SAS/EIS software.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Software Intelligence Corporation

P.O. Box 1390
Spring Valley, California 91979-1390

E-mail: KirkLafler@cs.com
http://www.software-intelligence.com

Voice: 619.660.2400

SUGI 28 Advanced Tutorials

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

	pnum19-28: Paper 19-28

