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Abstract 
The SQL Procedure contains many powerful and 
elegant language features for advanced SQL users. 
This paper presents SQL topics that will help 
programmers unlock the many hidden features, 
options, and other hard-to-find gems found in the SQL 
universe. Topics include CASE logic; the COALESCE 
function; SQL statement options _METHOD, _TREE, 
and other useful options; dictionary tables; automatic 
macro variables; and performance issues. 
 
 
Finding the First Non-Missing Value 
The SQL procedure provides a way to find the first 
non-missing value in a column or list. Specified in a 
SELECT statement, the COALESCE function inspects 
a column, or in the case of a list scans the arguments 
from left to right, and returns the first non-missing or 
non-NULL value. If all values are missing, the result is 
missing.  
 
When coding the COALESCE function, all arguments 
must be of the same data type. The example shows 
one approach on computing the total number of 
minutes in the MOVIES table. In the event either the 
LENGTH or RATING columns contain a missing 
value, a zero is assigned to prevent the propagation 
of missing values. 
 
SQL Code 
 
PROC SQL; 
  SELECT TITLE, 
         RATING, 
         (COALESCE(LENGTH, 0)) 
               AS Tot_Length 
    FROM MOVIES; 
QUIT; 
 
 
Results 
 
                 The SAS System 
 
Title                     Rating Tot_Length 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Brave Heart               R             177 
Casablanca                PG            103 
Christmas Vacation        PG-13          97 
Coming to America         R             116 
Dracula                   R             130 
Dressed to Kill           R             105 
Forrest Gump              PG-13         142 
Ghost                     PG-13         127 
Jaws                      PG            125 

 
Jurassic Park             PG-13         127 
Lethal Weapon             R             110 
Michael                   PG-13         106 
National Lampoon's Vacat  PG-13          98 
Poltergeist               PG            115 
Rocky                     PG            120 
Scarface                  R             170 
Silence of the Lambs      R             118 
Star Wars                 PG            124 
The Hunt for Red October  PG            135 
The Terminator            R             108 
The Wizard of Oz          G             101 
Titanic                   PG-13         194 
 
 
Summarizing data 
Although the SQL procedure is frequently used to 
display or extract detailed information from tables in a 
database, it is also a wonderful tool for summarizing 
(or aggregating) data. By constructing simple queries, 
data can be summarized down rows (observations) as 
well as across columns (variables). This flexibility 
gives SAS users an incredible range of power, and 
the ability to take advantage of several SAS-supplied 
(or built-in) summary functions. For example, it may 
be more interesting to see the average of some 
quantities rather than the set of all quantities. 
 
Without the ability to summarize data in SQL, users 
would be forced to write complicated formulas and/or 
routines, or even write and test DATA step programs 
to summarize data. To see how an SQL query can be 
constructed to summarize data, two examples will be 
illustrated: 1) Summarizing data down rows and 2) 
Summarizing data across rows. 
 
1. Summarizing data down rows 
The first example shows a single aggregate result 
value being produced when movie-related data is 
summarized down rows (or observations). The 
advantages of using a summary function in SQL is 
that it will generally compute the aggregate quicker 
than if a user-defined equation were constructed and 
it saves the effort of having to construct and test a 
program containing the user-defined equation in the 
first place. Suppose you wanted to know the average 
length of all PG and PG-13 movies in a database 
table containing a variety of movie categories. The 
following query computes the average movie length 
and produces a single aggregate value using the AVG 
function. 
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SQL Code 
 
PROC SQL; 
 SELECT AVG(LENGTH) AS 
      Average_Movie_Length 
  FROM MOVIES 
   WHERE RATING IN 
         (“PG”, “PG-13”); 
QUIT; 
 
The result from executing this query shows that the 
average movie length rounded to the hundredths 
position is 124.08 minutes. 
 
Results 
 

      Average_ 
Movie_Length 
   124.0769 

 
 
2. Summarizing data across columns 
Being able to summarize data across columns often 
comes in handy, when a computation is required on 
two or more columns in each row. Suppose you 
wanted to know the difference in minutes between 
each PG and PG-13 movie’s running length with 
trailers (add-on specials for your viewing pleasure) 
and without trailers. 
 
SQL Code 
 
PROC SQL; 
 SELECT TITLE, 
        RANGE(LENGTH_TRAIL, 
              LENGTH) AS 
          Extra_Minutes 
  FROM MOVIES 
   WHERE RATING IN 
         (“PG”, “PG-13”); 
QUIT; 

 
This query computes the difference between the 
length of the movie and its trailer in minutes and once 
computed displays the range value for each row as 
Extra_Minutes. 
 
Results 
 
                                 Extra_ 
Title                    Minutes  
Casablanca                            0 
Jaws                                  0 
Rocky                                 0 
Star Wars                             0 
Poltergeist                           0 
The Hunt for Red October             15 
National Lampoon's Vacation           7 
Christmas Vacation                    6 
Ghost                                 0 
Jurassic Park                        33 
Forrest Gump                          0 
Michael                               0 
Titanic                              36 

Case Logic 
In the SQL procedure, a case expression provides a 
way of conditionally selecting result values from each 
row in a table (or view). Similar to an IF-THEN 
construct, a case expression uses a WHEN-THEN 
clause to conditionally process some but not all the 
rows in a table. An optional ELSE expression can be 
specified to handle an alternative action should none 
of the expression(s) identified in the WHEN 
condition(s) not be satisfied. 
 
A case expression must be a valid SQL expression 
and conform to syntax rules similar to DATA step 
SELECT-WHEN statements. Even though this topic is 
best explained by example, let’s take a quick look at 
the syntax. 
 
CASE <column-name> 
      WHEN when-condition THEN result-expression 
     <WHEN when-condition THEN result-expression> … 
     <ELSE result-expression> 
END 
 
A column-name can optionally be specified as part of 
the CASE-expression. If present, it is automatically 
made available to each when-condition. When it is not 
specified, the column-name must be coded in each 
when-condition. Let’s examine how a case expression 
works. 
 
If a when-condition is satisfied by a row in a table (or 
view), then it is considered “true” and the result-
expression following the THEN keyword is processed. 
The remaining WHEN conditions in the CASE 
expression are skipped. If a when-condition is “false”, 
the next when-condition is evaluated. SQL evaluates 
each when-condition until a “true” condition is found 
or in the event all when-conditions are “false”, it then 
executes the ELSE expression and assigns its value 
to the CASE expression’s result. A missing value is 
assigned to a CASE expression when an ELSE 
expression is not specified and each when-condition 
is “false”. 
 
In the next example, let’s see how a case expression 
actually works. Suppose a value of “Short”, “Medium”, 
or “Long” is desired for each of the movies. Using the 
movie’s length (LENGTH) column, a CASE 
expression is constructed to assign one of the desired 
values in a unique column called M_Length for each 
row of data. A value of ‘Short’ is assigned to the 
movies that are shorter than 120 minutes long, ‘Long’ 
for movies longer than 160 minutes long, and 
‘Medium’ for all other movies. A column heading of 
M_Length is assigned to the new derived output 
column using the AS keyword. 
 
SQL Code 
 
PROC SQL; 
  SELECT TITLE, 
         LENGTH, 
         CASE 
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           WHEN LENGTH < 120 THEN 'Short' 
           WHEN LENGTH > 160 THEN 'Long' 
           ELSE 'Medium' 
         END AS M_Length 
    FROM MOVIES; 
QUIT; 
 
 
Results 
 
              The SAS System 
 
Title                      Length  M_Length 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Brave Heart                   177  Long 
Casablanca                    103  Short 
Christmas Vacation             97  Short 
Coming to America             116  Short 
Dracula                       130  Medium 
Dressed to Kill               105  Short 
Forrest Gump                  142  Medium 
Ghost                         127  Medium 
Jaws                          125  Medium 
Jurassic Park                 127  Medium 
Lethal Weapon                 110  Short 
Michael                       106  Short 
National Lampoon's Vacation    98  Short 
Poltergeist                   115  Short 
Rocky                         120  Medium 
Scarface                      170  Long 
Silence of the Lambs          118  Short 
Star Wars                     124  Medium 
The Hunt for Red October      135  Medium 
The Terminator                108  Short 
The Wizard of Oz              101  Short 
Titanic                       194  Long 
 
 
In another example suppose we wanted to determine 
the audience level (general or adult audiences) for 
each movie. By using the RATING column we can 
assign a descriptive value with a simple Case 
expression, as follows. 
 
SQL Code 
 
PROC SQL; 
  SELECT TITLE, 
         RATING, 
         CASE RATING 
           WHEN ‘G’ THEN ‘General’ 
           ELSE ‘Other’ 
         END AS Aud_Level 
    FROM MOVIES; 
QUIT; 
 
 
Results 
 
              The SAS System 
 
Title                    Rating  Aud_Level 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Brave Heart              R       Other 
Casablanca               PG      Other 
Christmas Vacation       PG-13   Other 
Coming to America        R       Other 
Dracula                  R       Other 
Dressed to Kill          R       Other 
Forrest Gump             PG-13   Other 
Ghost                    PG-13   Other 
Jaws                     PG      Other 
Jurassic Park            PG-13   Other 
Lethal Weapon            R       Other 
Michael                  PG-13   Other 
National Lampoon's Vacat PG-13   Other 
Poltergeist              PG      Other 
Rocky                    PG      Other 
Scarface                 R       Other 
Silence of the Lambs     R       Other 
Star Wars                PG      Other 
The Hunt for Red October PG      Other 
The Terminator           R       Other 
The Wizard of Oz         G       General 
Titanic                  PG-13   Other 
 
 
SQL and the Macro Language 
Many software vendors’ SQL implementation permits 
SQL to be interfaced with a host language. The SAS 
System’s SQL implementation is no different. The 
SAS Macro Language lets you customize the way the 
SAS software behaves, and in particular extend the 
capabilities of the SQL procedure. SQL users can 
apply the macro facility’s many powerful features by 
interfacing PROC SQL with the macro language to 
provide a wealth of programming opportunities. 
 
From creating and using user-defined macro variables 
and automatic (SAS-supplied) variables, reducing 
redundant code, performing common and repetitive 
tasks, to building powerful and simple macro 
applications, SQL can be integrated with the macro 
language to improve programmer efficiency. The best 
part is that you do not have to be a macro language 
heavyweight to begin reaping the rewards of this 
versatile interface between two powerful Base-SAS 
software languages. 
 
 
Creating a Macro Variable with 
Aggregate Functions 
Turning data into information, and then saving the 
results as macro variables is easy with summary 
(aggregate) functions. The SQL procedure provides a 
number of useful summary functions to help perform 
calculations, descriptive statistics, and other 
aggregating computations in a SELECT statement or 
HAVING clause. These functions are designed to 
summarize information and not display detail about 
data. In the next example, the MIN summary function 
is used to determine the least expensive product from 
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the PRODUCTS table with the value stored in the 
macro variable MIN_PRODCOST using the INTO 
clause. The results are displayed on the SAS log. 
 
SQL Code 
 
PROC SQL NOPRINT; 
  SELECT MIN(LENGTH)  
    INTO :MIN_LENGTH 
      FROM MOVIES; 
QUIT; 
%PUT &MIN_LENGTH; 

 
 
SAS Log Results 
 
PROC SQL NOPRINT; 
  SELECT MIN(LENGTH) 
    INTO :MIN_LENGTH 
      FROM MOVIES; 
QUIT; 
NOTE: PROCEDURE SQL used: 
      real time           0.00 seconds 
 
%PUT &MIN_LENGTH; 
97 
 
 
Building Macro Tools 
The Macro Facility, combined with the capabilities of 
the SQL procedure, enables the creation of versatile 
macro tools and general-purpose applications. A 
principle design goal when developing user-written 
macros should be that they are useful and simple to 
use. A macro that violates this tenant of little 
applicability to user needs, or with complicated and 
hard to remember macro variable names, are usually 
avoided. 
 
As tools, macros should be designed to serve the 
needs of as many users as possible. They should 
contain no ambiguities, consist of distinctive macro 
variable names, avoid the possibility of naming 
conflicts between macro variables and data set 
variables, and not try to do too many things. This 
utilitarian approach to macro design helps gain the 
widespread approval and acceptance by users. 
 
Column cross-reference listings come in handy when 
you need to quickly identify all the SAS library data 
sets a column is defined in. Using the COLUMNS 
dictionary table a macro can be created that captures 
column-level information including column name, 
type, length, position, label, format, informat, indexes, 
as well as a cross-reference listing containing the 
location of a column within a designated SAS library. 
In the next example, macro COLUMNS consists of an 
SQL query that accesses any single column in a SAS 
library. If the macro was invoked with a user-request 
consisting of %COLUMNS(PATH,TITLE);, the macro 

would produce a cross-reference listing on the user 
library PATH for the column TITLE in all DATA types. 
 
SQL Code 
 
%MACRO COLUMNS(LIB, COLNAME); 
PROC SQL; 
 SELECT LIBNAME, MEMNAME 
    FROM DICTIONARY.COLUMNS 
      WHERE UPCASE(LIBNAME)=”&LIB” AND 
            UPCASE(NAME)=”&COLNAME” AND 
            UPCASE(MEMTYPE)=”DATA”; 
QUIT; 
%MEND COLUMNS; 
 
%COLUMNS(PATH,TITLE); 

 
 
Results 
 
The SAS System 
 
Library 
Name      Member Name 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
PATH      ACTORS 
PATH      MOVIES 
 
 
Submitting a Macro and SQL Code with a 
Function Key 
For interactive users using the SAS Display Manager 
System, a macro can be submitted with a function 
key. This simple, but effective, technique makes it 
easy to run a macro with the touch of a key anytime 
and as often as you like. All you need to do is define 
the macro containing the instructions you would like to 
have it perform, include the macro in each session 
you want to use it in, and enter the SUBMIT 
command as part of each macro statement to execute 
the macro. Then, define the desired function key by 
opening the KEYS window, add the macro name, and 
save. Anytime you want to execute the macro, simply 
press the designated function key. 
 
Suppose you wanted to determine the values of all 
automatic variables set during the current session. In 
the next example, you enter and save the following 
macro statement to inspect the values of current 
automatic variable settings. By pressing the 
designated function key, the macro is submitted, 
executed, and the results displayed. 
 
SQL Code 
 
SUBMIT “%PUT _AUTOMATIC_;”; 
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Debugging SQL Processing 
The SQL procedure offers a couple new options in the 
debugging process. Two options of critical importance 
are _METHOD and _TREE. By specifying a 
_METHOD option on the SQL statement, it displays 
the hierarchy of processing that occurs. Results are 
displayed on the Log using a variety of codes (see 
table). 
 
Codes     Description     
sqxcrta   Create table as Select 
Sqxslct   Select 
sqxjsl    Step loop join (Cartesian) 
sqxjm     Merge join 
sqxjndx   Index join 
sqxjhsh   Hash join 
sqxsort   Sort 
sqxsrc    Source rows from table 
sqxfil    Filter rows 
sqxsumg   Summary stats with GROUP BY 
sqxsumn   Summary stats with no GROUP BY 

In the next example a _METHOD option is specified 
to show the processing hierarchy in a two-way equi-
join. 
 
SQL Code 
 
PROC SQL  _METHOD;                                                                                                                        
   SELECT  MOVIES.TITLE, RATING, ACTOR_LEADING                                                                                   
      FROM MOVIES,                                                                                                                 
                 .ACTORS                                                                                                            
         WHERE MOVIES.TITLE = ACTORS.TITLE;                                                                                              
QUIT;  
Results 
 
NOTE: SQL execution methods chosen are: 
      sqxslct 
          sqxjhsh 
              sqxsrc( MOVIES ) 
              sqxsrc( ACTORS ) 
Another option that is useful for debugging purposes 
is the _TREE option. In the next example the SQL 
statements are transformed into an internal form 
showing a hierarchical layout with objects and a 
variety of symbols. Inspecting the tree output can 
frequently provide a greater level of understanding of 
what happens during SQL processing. 
 
SQL Code 
 
PROC SQL  _TREE;                                                                                                                        
   SELECT  MOVIES.TITLE, RATING, ACTOR_LEADING                                                                                   
      FROM MOVIES,                                                                                                                 
                 .ACTORS                                                                                                            
         WHERE MOVIES.TITLE = ACTORS.TITLE;                                                                                              
QUIT;  
 
 
Results 
 
NOTE: SQL execution methods chosen are: 
sqxslct 
          sqxjhsh 
              sqxsrc( MOVIES ) 
              sqxsrc( .ACTORS ) 

Tree as planned. 
                               /-SYM-V-(MOVIES.Title:1 flag=0001) 
                     /-OBJ----| 
                    |         |--SYM-V-(MOVIES.Rating:6 flag=0001) 
                    |         |--SYM-V-(MOVIES.Length:2 flag=0001) 
                    |          \-SYM-V-(ACTORS.Actor_Leading:2 
flag=0001) 
           /-JOIN---| 
          |         |                              /-SYM-V-(MOVIES.Title:1 
flag=0001) 
          |         |                    /-OBJ----| 
          |         |                   |         |--SYM-V-(MOVIES.Rating:6 
flag=0001) 
          |         |                   |          \-SYM-V-(MOVIES.Length:2 
flag=0001) 
          |         |          /-SRC----| 
          |         |         |          \-TABL[WORK].MOVIES opt='' 
          |         |--FROM---| 
          |         |         |                    /-SYM-V-(ACTORS.Title:1 
flag=0001) 
          |         |         |          /-OBJ----| 
          |         |         |         |          \-SYM-V-
(ACTORS.Actor_Leading:2 flag=0001) 
          |         |          \-SRC----| 
          |         |                    \-TABL[WORK].ACTORS opt='' 
          |         |--empty- 
          |         |          /-SYM-V-(MOVIES.Title:1) 
          |          \-CEQ----| 
          |                    \-SYM-V-(ACTORS.Title:1) 
 --SSEL---|If you have surplus virtual memory, you can 
achieve faster access to matching rows from one or 
more small input data sets. Referred to as a Hash join 
the BUFFERSIZE= option can be used to let the SQL 
procedure hash join larger tables. The default 
BUFFERSIZE=n option is 64000 when not specified. 
In the next example, a BUFFERSIZE=256000 is 
specified to utilize available memory to load rows. The 
result is faster performance because of a hash join. 
SQL Code 
 
PROC SQL  _method  BUFFERSIZE=256000;  
   SELECT MOVIES.TITLE, RATING, ACTOR_LEADING 
      FROM MOVIES,  ACTORS 
         WHERE MOVIES.TITLE = ACTORS.TITLE;  
QUIT;  
Results 
 
NOTE: SQL execution methods chosen are: 
      sqxslct 
          sqxjhsh 
              sqxsrc( MOVIES ) 
              sqxsrc( ACTORS ) 
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