
Paper 18-28

- 1 -

SAS/ACCESS® to External Databases: Wisdom for the Warehouse User
Judy Loren, Health Dialog Data Service, Inc., Portland, ME

ABSTRACT
With SAS/Access, SAS users can read from and write to almost
any database product: DB2, Oracle, Informix, Sybase, MS SQL
Server, or Teradata just to name a few. ODBC opens up even
more warehouse doors.

SAS/Access offers several ways to connect: procs, such as
Import and Export; the libname statement option that treats
database tables like SAS datasets; and pass-through, which
passes user-written SQL directly to the external product to
execute and return the results to SAS. The fun starts when the
warehouse tables are too large or too complex to allow the easy
approach. This tutorial reviews all the techniques briefly, then
focuses on the situations that call for advanced expertise.
Examples demonstrate using SAS with DB2, Oracle and
Microsoft Access. Important details like how to refer to missing
values in various databases, and how to use macros in pass-
through SQL, make the tutorial concrete and useful. Ever had to
select records from a huge external table based on a set of key
values in a SAS dataset? In case you missed it, here's some
shortcut code.

This tutorial is for SAS users who need access to a non-SAS
data warehouse, particularly if that warehouse is really large or
complex. Knowledge of SQL is not necessary, but it will help as
you follow the examples.

INTRODUCTION
The techniques you can use to read and/or write tables that
reside in external databases include:
1) PROC IMPORT / PROC EXPORT
2) LIBNAME statement option
3) Pass-through SQL

This paper shows how to use each technique, and offers
examples based on real world experience.

In all of the following examples, it is assumed that:

1) You have licensed and installed the SAS/Access software

for the DBMS product you need to use. SAS/Access to DB2
is a different product from SAS/Access to Oracle, for
example, and must be licensed separately.

2) SAS/Access is installed on the same platform as the
external database or a client for that database. You can use
SAS/Connect to submit your SAS code from one platform to
another (let’s say from your PC to a central Unix system on
which DB2 resides) but you must have SAS on both
platforms for that to work. You cannot use SAS on your PC
to gain access to DB2 on another platform with having one
of the following: SAS on the DB2 platform, or a DB2 client
on your PC.

3) You have made friends with at least one DBA for the DBMS
product at your site. S/he is an invaluable ally and a
formidable foe. Get to know her. Bring him donuts,
chocolate, flowers, coffee. Make her interests your
interests, in other words, be sensitive to how your use of the
database affects the DBAs and the other users. Always
cooperate fully, and never, never, never do something s/he
has asked you not to do.

PROC IMPORT/ PROC EXPORT
These PROCs are available in the base SAS product, but use of
them is restricted to .csv, .txt. and delimited files. If you license
the product SAS/Access Software for PC File Formats, these
procs work on Microsoft Access files (.mdb) and Excel files (.xls),
as well as dBase(.dbf), Lotus (.wkn) and generic database format
(.dif) files.

IMPORT and EXPORT are very useful for communicating with
non-SAS users. Here is one example, where I had to produce a
list of member IDs and their associated model scores from a SAS
dataset for a Microsoft Access user:

libname in 'f:\dsdw\PRA_Survey_Scores\SAS Data';
data prep;
 set in.score_pramaster(keep=mid_id
 mem_date_of_birth msr_date_completed
 pred_hicost pred_pra_cost cost_group);

PROC EXPORT DATA= prep
 OUTTABLE= "PRA Members"
 DBMS=ACCESS
 REPLACE;
 DATABASE="f:\Judy\PRA List\pra.mdb";
run;

Notes:
1) Using the KEEP= option on the DATA= dataset does not
work, so I had to create a temporary dataset with just the desired
variables to use as input to the EXPORT.
2) The REPLACE option must be included to overwrite an
existing table. It is not necessary if you intend to create a new
table in an existing database.
3) You can write old versions of Access. For example, you can
specify DBMS=ACCESS97.
4) To control the type of field that MS-Access creates from each
variable in the SAS dataset, associate formats with the variables.
For example, a field formatted with a date format such as
yymmdd10. will be converted to a MS-Access date-type field.
Variables with a format of 4. will become integer-type MS-Access
fields.

IMPORT works similarly, but in reverse.

PROC IMPORT OUT= second_level_facts
 DATATABLE= "Second Level Facts"
 DBMS=ACCESS2000 REPLACE;
 DATABASE="e:\Facts\Person_level.mdb";
RUN;

LIBNAME STATEMENT OPTION
This technique is easy to use. You simply put the option for the
desired database product after the libref, then supply the
information necessary to make the connection to the appropriate
database within that product. Because these details vary so
much from site to site, it is difficult to say what yours will look like,
but here are some examples:

LIBNAME warehous DB2 SSID=query AUTHID=pref;

LIBNAME is the keyword introducing the statement. I’ve used an
example libref suggesting that the user thinks of the database
product as the warehouse. The shaded piece is the option that
tells SAS this is not a conventional libref but rather a connection

SUGI 28 Advanced Tutorials

2

to an external database product. Following this option come the
customized pieces for your site.

In this example, the SSID refers to a DB2 subsystem that exists
at the company. The AUTHID is the prefix you want the system
to use with all the DBMS table names you subsequently
reference. You might follow this example LIBNAME statement
with a statement such as

Proc print data=warehous.customer_list;
Where zip = ‘04021’;

Because the AUTHID on the LIBNAME statement is PREF, SAS
will tell DB2 it wants the rows from the table
PREF.CUSTOMER_LIST in the subsystem QUERY.

In this first example, the security access has been set up in the
background so that it is not necessary to specify the user and
password in every access. The system matches the user who
submits the code to a list of authorized users. If a user without
the requisite security clearance attempts to execute this code, it
will fail.

LIBNAME wh ORACLE user=jloren password=sugi
path=SOMEPATH.DIRECTORY.COM;

In the second example, the code contains the security
information. This is convenient, but not particularly secure from
the company’s point of view. Anyone who can open the code
document can execute it, and the security information is open to
anyone who can read.

LIBNAME tdlib TERADATA USER=&tduserid
PASSWD=&tdpasswd SCHEMA='MODQQIA';

In this third example, the userid and password are macro
variables that are not stored in the code. This is a little more
secure than the Oracle example. In this example, the log printed
out the macro variable names, not the contents, which helped
keep the information secure.

The LIBNAME reference to an external database allows the user
to treat a table or a view in an external database as if it were a
SAS dataset. You can do almost anything to it that you can do to
a SAS dataset, with a couple of important exceptions:

1) If you want to SORT the table, you must use the OUT=

option to name a SAS dataset where you want the sorted
copy to reside. You cannot sort a DBMS table in place like
you can a SAS dataset.

2) If you let the DBMS do the ordering, which happens when
you use an ORDER BY clause in PROC SQL or a BY
statement in a DATA step, it is important to understand how
the DBMS treats missing values. In SAS, of course, missing
values are low, but some DBMS's put missing values at the
end of a sorted table.

The LIBNAME technique is very convenient. You can use it for
writing to a database, as well as reading from it. If you want to
load a table, you can just make it the object of a DATA
statement or the OUT= option on a PROC such as SORT. Here
is a simple example of creating a table in an external database
from a SAS file residing on your disk:

LIBNAME warehous DB2 SSID=query AUTHID=pref;
LIBNAME in ‘c:\temp’;

data warehous.customer_local;
 Set in.local_custs;
run;

In this case you are letting SAS and DB2 make all the decisions
about what types of fields to create. The DB2 field names will be
exactly the same as the SAS variable names. The field types will
be based on the type (numeric or character) of SAS variable as
well as some formatting information (the connection is smart
enough to interpret SAS numeric fields with a date type format as
SAS date variables and convert them to DB2 date fields).

This arrangement, where the DBMS takes the field names
directly from the SAS dataset, maintains excellent control of your
data. Situations in which you write your data to a flat file, which is
in turn read by a program that loads the DBMS, are fraught with
danger in that there is a point in the process where the
connection between the data value and the field name it belongs
in is broken.

When your DBMS is Teradata, there is an option called
FASTLOAD= which can be set to YES. The DBA suggested we
use it, and it did make a difference in the load time:

libname td teradata user="&tduserid"
 password="&tdpasswd"
 schema="&tduserid.";
data td.testone(fastload=yes);
 set one;
run;

If you are planning to join your newly created table with an
existing DBMS table, it may enhance performance to create a
primary index on the join field(s).

libname td teradata user="&tduserid"
 password="&tdpasswd"
 schema="&tduserid.";
data td.testone(fastload=yes dbcreate_table_opts
= 'primary index(FIELD NAME OR NAMES HERE)');
 set one;
run;

If this arrangement doesn’t suit you or your DBA (and you should
always cooperate fully with your DBA), you can take the next step
of creating a table shell in the native DBMS language, then using
PROC APPEND to insert the data. This technique retains the
advantage of matching SAS variable names to DB2 field names,
ensuring that you do not inadvertently load values to the wrong
field as may happen if you write and then read a flat file.

You may have occasion to load the same table shell repeatedly
with different sets of values. It is easy to empty a table before
reloading. One way is to use PROC SQL:

LIBNAME warehous DB2 SSID=query AUTHID=pref;

proc sql;
 Delete from warehous.customer_local;
run;

Most databases have table-level security that will not allow you to
do this to tables you don’t own.

A new feature of the LIBNAME access to an external DBMS is
documented clearly in the SAS Online documentation (see
Reference section for complete citation) SAS/ACCESS Software
for Relational Databases: Reference, Part 2, in the chapter
entitled SQL Procedure's Interaction with SAS/ACCESS
Software, under Passing Joins to the DBMS:

Prior to Version 7 of the SAS System, an SQL query
involving one or more DBMS tables or view descriptors was

SUGI 28 Advanced Tutorials

3

processed by the SQL procedure as if the DBMS tables
were individual SAS files. For view descriptors, the SQL
procedure fetched all the rows from each DBMS table and
then performed the join processing within SAS.

Although the SQL Procedure Pass-Through Facility has
always passed joins to the DBMS, it is now possible to pass
joins to the DBMS without using Pass-Through. Beginning in
Version 7, the LIBNAME engine allows you to pass joins to
the DBMS without using Pass-Through but with the same
performance benefits. The DBMS server will perform the join
and return only the results of the join to the SAS software.
This will provide a major performance enhancement for
many of your programs that perform joins across tables in a
single DBMS. Both inner and outer joins are supported in
this new enhancement.

In this example, two large DBMS tables, TABLE1 and
TABLE2, have a column named DEPTNO. An inner join of
these tables is performed where the DEPTNO value in
TABLE1 is equal to the DEPTNO value in TABLE2. This join
will be detected by the SQL Procedure and passed by the
SAS/ACCESS engine directly to the DBMS server. The
resulting rows will be passed back to the SAS System.

proc sql;
select tab1.deptno, dname from
 mydblib.table1 tab1,
 mydblib.table2 tab2
where tab1.deptno=tab2.deptno
 using libname mydblib oracle user=testuser
 password=testpass path=myserver;

If you want to perform a join between a large DBMS table
and a relatively small SAS data file, you may want to specify
the DBKEY= data set option. The DBKEY= data set option
causes the SQL Procedure to pass a WHERE clause to the
DBMS so that only the rows that match the WHERE
condition are retrieved from the DBMS table. Also, if
DEPTNO has an ORACLE index defined on it, using
DBKEY= will greatly enhance the join's performance. In this
example, the DBKEY= option causes only the rows that
match DEPTNO to be retrieved. Without this option, the
SQL Procedure would retrieve all the rows from TABLE1.

libname mydblib oracle user=testuser
password=testpass;
proc sql;
select tab1.deptno, loc from
 mydblib.table1 (dbkey=deptno) tab1,
 sasuser.sasds tab2
 where tab1.deptno=tab2.deptno;

For more information on this data set option, see
SAS/ACCESS Data Set Options.

In that portion of the documentation, we find:

The SQL statement that is created by the SAS/ACCESS
engine and passed to the DBMS is similar to the following;

select deptno, loc
 from bigtab.deptno
 where deptno=:hostvariable;

The host-variable is substituted, one at a time, with
DEPTNO values from the observations in the SAS data file
KEYVALUES. The number of SELECT statements issued
is equal to the number of rows in the data file. Therefore, for
improved performance, the SAS data file should contain
relatively fewer rows than the DBMS table to which it is
being joined.

The advantage to this enhancement is greatly improved
performance of queries written with strictly SAS syntax. It takes

advantage of DBMS indexes and allocates the work appropriately
between the DBMS and SAS, keeping the data transfer between
the two down to the minimum required for the job.

But it is not a panacea. Functions that do not translate well
between SAS and the DBMS cannot be passed. For SAS
datasets with large numbers of key values, this technique can
wear out its welcome. In some cases, you need to talk directly to
the DBMS, and for those there is the PROC SQL Pass-Through
feature.

PROC SQL PASS-THROUGH ACCESS
The most powerful, and therefore most complex, method of
accessing external databases is to specify exactly what you want
the external database to do, in its own language. You have to
learn the SQL features of that database, which are often different
from SAS’s implementation of SQL. If the tables are large, it is
often necessary to learn about table join strategies as well. The
return on this investment is vastly increased throughput, and the
appreciation of all the other warehouse users.

SYNTAX
The components of the pass-through access are:
1) proc sql; All pass-through is done through proc sql.

2) The CONNECT statement, e.g.

connect to oracle (user=jloren password=sugi
path=somepath.directory.com);

3) A query to the automatic macro variable that contains any

error messages from the target database:

%put &sqlxmsg;

This echoes to the log any error messages that might result
from the attempt to connect.

4) The SAS SELECT …FROM statement

create table matchmembers as
select datepart(birth_dt) as patdob

 format=yymmdd10.
 , first_name, last_name

 from connection to oracle

The FROM clause always specifies CONNECTION TO the
database. There is no semicolon yet.

5) The database SQL, enclosed in parentheses.

(select B.birth_dt
 , B.first_name
 , B.last_name
 from dtmttbo.member B
 , dtemp.July_members A
 Where A.patdob=B.birth_dt
 AND A.first_name=B.first_name
 AND A.last_name=B.last_name
 AND birth_dt is not null
order by birth_dt, B.first_name, B.last_name
)

Note that this bit of code is passed to the database for
execution. The only thing SAS does with it is macro
substitution The table names, field names, and SQL syntax
must all be compatible with the external database, not with
SAS.

6) Additional SAS SQL clauses that would normally follow the
FROM clause, such as ORDER BY or GROUP BY. If you

SUGI 28 Advanced Tutorials

4

put the ORDER BY inside the parentheses, the external
database product does the sort before delivering the rows to
SAS. If you put the ORDER BY outside the parentheses,
SAS will do the sort after receiving all the rows. This
difference is important to note for two reasons: 1)
Performance – which place can the sort be accomplished
most efficiently? 2) Platform coding systems. If your
database resides on an EBCDIC platform and you are
submitting the SAS statements from an ASCII platform (or
vice versa), the ORDER BY will actually produce different
results depending on where it is done.

7) The semicolon for the SAS SELECT statement.

8) Another query to the automatic macro variable that contains

any error messages from the target database:

%put &sqlxmsg;

9) The DISCONNECT statement:

disconnect from oracle;

10) Another query to the automatic macro variable that contains
any error messages from the target database:

%put &sqlxmsg;

Putting these pieces together, the code might look like this:

proc sql;
 connect to oracle (user=jloren
 password=sugi
 path=somepath.directory.com);
 %put &sqlxmsg;
 create table matchmembers as
 select datepart(birth_dt) as patdob
 format=yymmdd10.
 , first_name
 , last_name
 from connection to oracle
 (select B.birth_dt
 , B.first_name
 , B.last_name
 from dtmttbo.member B,
 dtemp.July_members A
 Where A.patdob=B.birth_dt
 AND A.first_name=B.first_name
 AND A.last_name=B.last_name
 AND birth_dt is not null
 order by birth_dt
 , B.first_name
 , B.last_name);
 %put &sqlxmsg;
 disconnect from oracle;
 %put &sqlxmsg;
quit;

If this code executes correctly, it will create a temporary SAS
dataset called MATCHMEMBERS in the WORK directory
containing 3 variables: PATDOB, FIRST_NAME and
LAST_NAME. It matches two tables in Oracle (dtmttbo.member
and dtemp.July_members) on 3 variables, and selects only those
where the birth_dt is not missing. Note once again that the
shaded part is passed to the database for execution. The
unshaded part is executed by SAS.

VARIATIONS ON A THEME
To illustrate some of the features of the pass-through syntax, let’s
make a few changes to the code above and see what happens.

1) SELECT *
This is often used for convenience to select all the fields
from a given table or join. If it is used in the SAS portion of
the SQL above, as
 create table matchmembers as
 select *
 from connection to oracle
 (select B.birth_dt
 , B.first_name
 , B.last_name …………….

then all the fields returned by Oracle (in this case birth_dt,
first_name and last_name) will be created as variables in the
SAS dataset. Since Oracle date fields are full timestamps,
the difference will be that birth_dt will not be renamed to
patdob, and it will be full timestamp rather than the datepart
we were asking for. Not a huge difference.

But if the SELECT * is used in the Oracle portion, as

 create table matchmembers as
 select datepart(birth_dt) as patdob
 format=yymmdd10.
 , first_name
 , last_name
 from connection to oracle
 (select *
 from dtmttbo.member B,
 dtemp.July_members A
 where A.patdob=B.birth_dt
 AND …………….

then you may see a degradation in the performance of the
query, depending on how many useless variables result
from the Oracle SQL. With this syntax, Oracle sends all the
fields from both tables in the FROM clause to SAS. The
translation into SAS is accomplished, then SAS selects only
the three variables named in the SAS SELECT clause to
write to the output table. Translating from an external data
source into SAS is a relatively expensive undertaking;
useless translation should be avoided whenever possible.

2) The SAS datepart function.
Oracle does not have a function named datepart. It would
not work to re-write this query as

 create table matchmembers as
 select *
 from connection to oracle
 (select datepart(B.birth_dt) as patdob
 , B.first_name
 , B.last_name
 from dtmttbo.member B,
 dtemp.July_members A ……………

There is a way to accomplish the same thing, but it looks
like

create table matchmembers as
 select *
 from connection to oracle
 (select trunc(B.birth_dt) as patdob
 , B.first_name
 , B.last_name
 from dtmttbo.member B,
 dtemp.July_members A ……………

Note that this version does not associate the yymmdd10.
format with the patdob variable, as is accomplished in the
original code.

SUGI 28 Advanced Tutorials

5

3) Macro substitution

SAS will resolve macro variables in the portion of the code
that is passed through to the DBMS before the code is
passed. Provided the value you want to use does not
involve quotes, it is pretty straightforward.

%let threshold=100;
create table matchmembers as
 select *
 from connection to oracle
 (select trunc(B.birth_dt) as patdob
 , B.first_name
 , B.last_name
 from dtemp.July_members A
 where value > &threshold)
 ;

SAS would replace the &threshold with 100 and send the
code to the DBMS to execute. Things get more complicated
when the values you want to substitute are being compared
with character variables or date fields. In many databases,
including DB2 and Oracle, single quotes and double quotes
are not interchangeable. Dates and character values must
be enclosed in single quotes, and as you know, SAS does
not resolve macro variables within single quotes. There are
many potential solutions to this problem once you are aware
of it. For example, you could include the single quotes as
part of the macro variable value:

%let early_dt='2001-01-31';

Or you could specify a macro variable with the value of a
single quote:

%let q=';
%let early_dt=2001-01-31;

create table matchmembers as
 select *
 from connection to oracle
 (select trunc(B.birth_dt) as patdob
 , B.first_name
 , B.last_name
 from dtemp.July_members A
 where patdob > &q&early_dt&q)
 ;

The &q&early_dt&q is replaced with ‘2001-01-31’ before the
SQL is passed to the DBMS to execute.

4) Macro variable creation

The SQL Procedure has a great feature that allows you to
create a macro variable and store a value in it, much like
CALL SYMPUT in the DATA step. It can be used fruitfully
with an external DBMS. In the following case, I wanted to
write a new row to an existing DBMS table, with a value for
UDD that was 1 greater than the maximum existing value.

proc sql;
connect to db2 (ssid=query);
select maxudd into :maxudd
from connection to DB2
(select max(udd) as maxudd
 from dss.udd_table);

At this point I have a macro variable called MAXUDD which I
use in a DATA step to create single observation that can be
PROC APPENDED to the existing DBMS table
UDD_TABLE.

Note that if I had used the LIBNAME method of accessing
the database, I could have run the following code and gotten
similar performance and identical results:

libname udd db2 ssid=query authid=dss;
proc sql;
select max(udd) into :maxudd
from dss.udd_table;

SAS does pass standard functions such as MAX through to
the DBMS even when using the LIBNAME reference. You
can see this by invoking the following system options:

options SASTRACE= ',,,d' SASTRACELOC=SASLOG;

This option causes information about the query as passed to
the DBMS to printed to the SAS log, so you can monitor
where the work is being done.

5) Missing (NULL) values

SAS uses a period to represent missing numeric values, and
a blank for missing character values. So, for example, to
find records where the first name is missing you can code

Where first_name = ‘ ‘

 Further, missing values are the lowest possible SAS
values, so you can code

Where sasvar > .

to select all non-missing numeric values. Other DBMS
products do not share these conventions. When you want
to refer to missing values in passed-through SQL, always
use IS NULL or IS NOT NULL, e.g.

Where first_name IS NULL

Where dbvar IS NOT NULL

THE DBPASS MACRO

This macro, originally written by Tom Finn, was created before
the DBKEY option existed for linking SAS datasets with DBMS
tables (see above for more detail on the DBKEY option). It can
still come in handy for the times when you have a large number
of values in a SAS dataset and you want to access records in a
DBMS table that match those values. It is different from the
DBKEY= option as described above and in the SAS
documentation in that:

1) It passes a large number of values at a time in a WHERE
clause such as:

select *
from DBMS table
where dbms.keyfield in (value1, value2,..)

2) It can only join on one field.
3) It makes use of PROC SQL pass-through access.
4) The only variable from the SAS dataset containing the key
values that can be saved on the output dataset is the key variable
itself. Others must be joined back on in a later merge.

If the field you are joining on contains an index in the database,
the DBMS will use the index to improve performance.

The DBPASS macro described in this paper allows you to break

SUGI 28 Advanced Tutorials

6

up your list of keys into sets of any size. It then executes multiple
queries, putting the number of key values you specified into each
WHERE clause and looping until all the observations in the SAS
dataset have been passed. This is where you would get
performance improvement over the DBKEY= method, which
creates a separate query for each individual key value you need
to match.

The actual macro code for DBPASS is shown in the Appendix to
this paper. Before use, you should edit it to connect to the
appropriate DBMS for your site. You may want to change some
of the parameters, depending on the connection values needed
for your site. These are the parameters the macro expects as
currently written:

INCOMING DATASET (IDS=)
You can use a two-level name to point to a stored dataset, or you
can read in a WORK dataset coming from a previous DATA or
PROC step.

OUTPUT DATASET (ODS=)
Specify where you want the output from the join to be stored.

HOW MANY KEYS IN ONE WHERE CLAUSE (N=)
You can experiment with the number to get best results. The
limit depends on the number of bytes in your key values and
whether they are character (requiring a set of quotes per value) or
numeric.

THE NAME OF THE SAS KEY VARIABLE (SASVAR=)
DBPASS will take the values of this variable and put them into
the WHERE clause. No other variables from the incoming
dataset can be carried through to the output dataset.

THE TYPE OF THE SAS KEY VARIABLE (TYPE=)
CHAR(acter) or NUM(eric). (Actually the macro just looks for
CHAR; if the value of TYPE is not CHAR, it assumes numeric.)

THE FORMAT OF THE SAS KEY VARIABLE (VARFMT=)
The format only matters if the key value is numeric. It uses the
format to put the numeric values into the WHERE clause.
Character values are put in default format with single quotes
around them.

THE NAME OF THE DBMS KEY FIELD (DBVAR=)
This is the field DBPASS uses in the WHERE clause to compare
to the SAS key values. Note that if this field name appears in
more than one table in your FROM list, you must specify a prefix
(table name or alias) to decide which table's field will be used in
the WHERE clause. You can join multiple DBMS tables in the
WHERE parameter of the macro (described below).

THE DB2 SUBSYSTEM YOUR TABLE RESIDES IN (SSID=)
This parameter is included for those who are using DB2. This
value is supplied in the CONNECT TO DB2 statement. You can
alter the macro to accept and use the appropriate connection
parameters for your site.

YOUR SELECT STATEMENT (SELECT=%STR())
Note that the list of fields you want to extract from the DBMS
should be enclosed in a %STR() function. Note also that this is
the DBMS select, so should contain field names as they appear
in the DBMS.

YOUR FROM STATEMENT (FROM=%STR())
Here's where you identify the fully qualified DBMS table name(s)
containing the fields you want to extract. When you have more
than one table in this list, aliases help in identifying the field
sources.

RENAMING THE DBMS FIELDS FOR SAS (AS=%STR())
This parameter allows you to rename the DBMS fields as they
come into the resulting SAS dataset (ODS, above). It operates
positionally with the SELECT parameter; the first field in the
SELECT parameter receives the first variable name in the AS list,

the second field receives the second variable name, etc. It is not
necessary to rename fields if you don't want to.

ADDITIONAL WHERE RESTRICTIONS (WHERE=%STR())
The match of the SAS key variable with one DBMS field is taken
care of for you by the macro. The WHERE parameter is for
specifying additional restrictions on one table, or join criteria for
other tables included in the FROM parameter.

RESTARTING (FO=)
If the macro fails in the middle, the results of completed queries
remain saved to the output dataset. You can use FO= (stands for
FIRSTOBS=) to tell DBPASS where to start (which observation to
start with) in the incoming dataset.

APPENDING RESULTS TO AN EXISTING DATASET
(FIRSTACT=)
Independently of restarting, you decide whether you want to
create a new dataset with this execution of DBPASS or append to
an existing dataset. FIRSTACT=CREATE will cause the FIRST
query to use CREATE TABLE ... AS; all subsequent queries
generated by that execution of DBPASS will use INSERT INTO.
If you specify FIRSTACT=INSERT, even the first query will use
INSERT INTO.

CONTROLLING THE NUMBER OF LOOPS (NLOOPS=)
You can limit the number of queries DBPASS initiates by coding
a number in this parameter. This would be used in much the
same circumstances as an OPTIONS OBS=. You would
probably then be interested in the TRACK parameter below.

KEEPING TRACK OF WHERE YOU ARE (TRACK=)
Here you specify the name of a dataset that will store the
observation number you should start with if you want to complete
the list of keys after either a failure part way through the list or a
stop caused by hitting the NLOOPS limit you specified.

EXAMPLE OF THE USE OF DBPASS
To illustrate the use of the parameters, suppose we have a list of
customer IDs in a SAS dataset and wish to retrieve name,
address and phone numbers for each customer from a DBMS.
Our list of desired ID numbers resides in a SAS dataset called
WANTED with a variable name of CID.

Using DBPASS, we would code:

libname mac 'c:\mydir\mymacros';
options sasautos=(mac) nomprint;
%DBPASS(IDS=wanted
 ,ODS=addrs
 ,N=1000
 ,SASVAR=cid
 ,DBVAR=a.cust_id
 ,SELECT=%str(a.cust_id, city, state,
addr_line1, addr_line2, zip, name, phone)
 ,AS=%str(cid, city, state, addr1,
addr2, zip, name, phone)
 ,FROM=%str(pref.cust_addr A
 ,pref.cust_phone B
 ,pref.cust_name C)
 ,WHERE=%str(a.cust_id=b.cust_id and
 a.cust_id=c.cust_id)

 ,SSID=query
);

Note that some parameters are not required at all unless you
want to take advantage of a particular feature. Other parameters
can be allowed to default, such as the TYPE=CHAR, if the default
suits your application.

DEFAULTS
You can establish the DBPASS macro at your site with whatever
defaults you find most useful. Although it is not shown this way in
the Appendix, you can even use default values for DBVAR,

SUGI 28 Advanced Tutorials

7

FROM, SASVAR, ODS, etc.

SUGGESTIONS FOR USE
Because of the volume of log generated, it is best to specify the
NOMPRINT option. To further limit the lines of feedback, also
use NOFULLSTATS and NONOTES.

The values of the FROM, WHERE, SELECT, and AS parameters
should be enclosed in the %STR() function. For more complex
strings, subqueries for example, you may have to resort to
%NRBQUOTE() (no rescan blind quote) or another macro.

HOW TO CHOOSE A METHOD

The main thing to keep in mind when using an external database
such as DB2 or Oracle is that you should exercise control over
where and how the processing is being done. Your DBA and the
other warehouse users will appreciate your thoughtfulness.

One way to do this is to make use of the option described above
that prints to the log the query as SAS sent it to the DBMS.

options SASTRACE= ',,,d' SASTRACELOC=SASLOG;

Study this log, and share it with your DBA as necessary when
your queries are taking significant time to execute. Often there
are better ways to approach joins of multiple large tables to
reduce both your wait time and the consumption of system
resources.

CONCLUSION
You have several choices when it comes to reading and/or writing
tables in external databases from SAS. To make good decisions,
understand the structure and volume of the database and of your
target tables. Confer with your local DBA to use methods that not
only enable you to get your work done, but also interfere
minimally with others using the database.

REFERENCES
SAS OnlineDoc®, Version 8, February 2000, Copyright ©2000,
SAS Institute Inc..

Loren and Shoemaker, "Retrieving DATA from Large DB2 Tables
Based on Keys in SAS: The Sequel", NESUG 1995
Proceedings.

ACKNOWLEDGMENTS
Tom Finn was the original creator and author of the DBPASS
macro.

I am indebted to many DBAs and SAS users, some of whom are
SAS-L contributors, for insight, hints and corroborating
information, including but not limited to Sigurd Hermansen, Don
Stanley, Charles Wentzel, Craig Dickstein, Burak Sezen, Gokhan
Cakmakci, Ron Goodling, and Rod Deane.

CONTACT INFORMATION

If you have comments or questions about this paper, please get
in touch with:

Judy Loren
 Health Dialog Data Service, Inc.
 39 Forest Avenue
 Portland, ME 04101
 (207) 822-3708 (W)
 JLoren@HealthDialog.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

SEE FOLLOWING APPENDIX FOR DBPASS
MACRO CODE. THIS CODE IS MADE
AVAILABLE AS IS, WITH NO WARRANTIES
EXPRESSED OR IMPLIED. USE IT AS YOU LIKE
AT YOUR OWN RISK.

SUGI 28 Advanced Tutorials

8

Appendix A
DBPASS code

%MACRO DBPASS(IDS=WANTED
 ,N=400
 ,SASVAR=
 ,TYPE=CHAR
 ,VARFMT=BEST.
 ,ODS=

,SSID=QUERY
,SELECT=%STR()

 ,FROM=
 ,AS=%STR()
 ,WHERE=
 ,WHEREMAC=
 ,TRACK=
 ,FO=1
 ,FIRSTACT=CREATE
 ,NLOOPS=
 ,INOBS=
 ,DBVAR=);
 %* 9409 TCF WHEREMAC AND INOBS
 %* 9408 TCF ADDED TRACK,FO,FIRSTACT AS MACRO PARMS;
 %* 9408 TCF FIXED ABORT;
 %* 9709 CDJ - ADDED FOR FETCH ONLY
 %* ADDED DISCONNECT FROM DB2
 %* DUE TO CONTENTION PROBLEMS
 %LET TYPE=%UPCASE(&TYPE);
 %LOCAL NOBS;
 DATA _NULL_;
 IF _N_=0 THEN SET &IDS NOBS=NOBS;
 PUT NOBS=;
 CALL SYMPUT('NOBS',LEFT(PUT(NOBS,BEST.)));
 STOP;RUN;
 %LOCAL I N STOPRC;
 %LET STOPRC=0;
 %IF &FO NE 1 %THEN %PUT ****** RESTARTING ********;
 %IF &NOBS EQ 0 %THEN %DO;
 %PUT FO=&FO NOBS=&NOBS;
 PROC SQL
 %IF %LENGTH(&INOBS) GT 0 %THEN INOBS=&INOBS;
 ;
 CONNECT TO DB2(SSID=&SSID);
 CREATE TABLE &ODS AS
 SELECT * FROM CONNECTION TO DB2(
 SELECT &SELECT
 FROM &FROM
 %IF &TYPE EQ CHAR %THEN WHERE &DBVAR = ' ';
 %ELSE WHERE &DBVAR = . ;
 %IF %LENGTH(&WHERE) GT 0 %THEN AND &WHERE ;
 %IF %LENGTH(&WHEREMAC) GT 0 %THEN AND %&WHEREMAC ;
 FOR FETCH ONLY
) AS A(&AS);
 %PUT &SQLXRC &SQLXMSG;
 DISCONNECT FROM DB2;
 DATA &ODS; SET &ODS; STOP;
 %END;
 %ELSE %DO %WHILE(&FO LE &NOBS AND &STOPRC EQ 0 AND X&NLOOPS NE X0);
 %PUT FO=&FO NOBS=&NOBS;
 %IF %LENGTH(&NLOOPS) GT 0 %THEN %LET NLOOPS=%EVAL(&NLOOPS-1);
 %IF %LENGTH(&TRACK) GT 0 %THEN %DO;
 DATA &TRACK(KEEP=FO); FO=&FO; IF _N_=1 THEN OUTPUT;

SUGI 28 Advanced Tutorials

9

 %END;
 %ELSE %DO;
 DATA _NULL_;
 %END;
 SET &IDS(KEEP=&SASVAR FIRSTOBS=&FO) END=END;
 LENGTH NN $7.; NN=LEFT(PUT(_N_,BEST.));
 %IF &TYPE EQ CHAR %THEN %DO;
 CALL SYMPUT('V'||NN,"'"||&SASVAR||"'");
 %END;
 %ELSE %DO;
 CALL SYMPUT('V'||NN,LEFT(PUT(&SASVAR,&VARFMT)));
 %END;
 IF END OR _N_ GE &N THEN DO;
 CALL SYMPUT('N',NN);
 STOP;
 END;
 RUN;
 PROC SQL
 %IF %LENGTH(&INOBS) GT 0 %THEN INOBS=&INOBS;
 ;
 CONNECT TO DB2(SSID=&SSID);
 %IF &FIRSTACT EQ CREATE %THEN CREATE TABLE &ODS AS ;
 %ELSE INSERT INTO &ODS ;
 %LET FIRSTACT=INSERT;
 SELECT * FROM CONNECTION TO DB2(
 SELECT &SELECT
 FROM &FROM
 WHERE &DBVAR IN (&V1 %DO I = 2 %TO &N; , &&V&I %END;)
 %IF %LENGTH(&WHERE) GT 0 %THEN AND &WHERE ;
 %IF %LENGTH(&WHEREMAC) GT 0 %THEN AND %&WHEREMAC ;
 FOR FETCH ONLY
) AS A(&AS);
 %PUT &SQLXRC &SQLXMSG;
 %IF &SQLXRC NE 0 %THEN %LET STOPRC=&SQLXRC;
 DISCONNECT FROM DB2;
%LET FO=%EVAL(&FO+&N);
%END;
%IF X&NLOOPS EQ X0 AND %LENGTH(&TRACK) GT 0 %THEN %DO;
 DATA &TRACK(KEEP=FO); FO=&FO; OUTPUT;STOP;
 %END;
%IF &STOPRC NE 0 %THEN %DO;
 DATA _NULL_;
 %IF &STOPRC GT 0 %THEN ABORT &STOPRC ;
 %ELSE ABORT %EVAL(-1*&STOPRC);
 %END;
%MEND;

SUGI 28 Advanced Tutorials

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

