
Paper 13-28

1

The Power of Pictures and Paint:
Using Image Files and Color with ODS, SAS®, and SAS/GRAPH®

LeRoy Bessler, Bessler Consulting & Research, Fox Point, Milwaukee, Wisconsin, USA

Abstract

You might want to use a logo. You can create images with
SAS/GRAPH, other software, or a digital camera. Hardcopy photos or
illustrations, or even a 3D object, can be converted to image files with a
scanner. There are stock photos and clip art, free or for fee, on the web
or bundled with software. This tutorial shows how to create image files
with SAS/GRAPH, and how to imbed an image in a graph, but emphasis
is on numerous ways to imbed image files, from any source, in web
pages (and other output), using the SAS Output Delivery System.
Besides imbedding images in tables, graphs, web pages, etc., you can
import images into Microsoft Word or PowerPoint, for use as is, or after
adjustments there (clipping, resizing, and other manipulation) without
fancy expensive image editing tools. You will learn a trick to export
image files for use elsewhere, after editing them in Word. The tutorial
compares characteristics, advantages, and disadvantages of image file
types (GIF vs. JPEG), and explains how to minimize web download
wait. It also discusses color systems, SAS colors, crucial color concerns
dependent on output destination (especially the web), and design for
effective visual communication (not decoration) with color. SAS 8.2 was
used on Windows 98 Second Edition. ODS (and SAS/GRAPH)
experience is assumed.

Introduction

This is a tutorial about effective visual communication of information,
using images and using color, taught with examples, code, and
guidelines.

My scope is limited to what fits in the page and time constraints.

Slides for the stand-up presentation, and code used here and there, as
well as code omitted in this paper (its omission is usually shown here as
“ . . .”), are available via email in a zip file. If you have comments or
questions, or suggestions on what to cover in a future edition, please
send them.

The Power of Simplicity

The Number One Usability Concern of Web Users = download time.

Simple web pages download faster. So, avoid excessive use of images,
if there only for decoration. Unneeded complexity can distort, distract,
and delay communication. A sparse web page focuses attention. The
Power of Simplicity—Shows Them What’s Important.

Using Images for Communication

Image File Formats for the Web

To reduce download time, all image file formats for the web use
compression. This is the removal of “extra” data from the file that was
the original image. GIF and PNG use lossless compression. JPG uses
lossy compression, but the result usually may not be noticeable.

GIF (Graphic Interchange Format) is used primarily for graphs, logos,
simple cartoon-like illustrations, icons, and other images with areas or
segments of solid color (also called “flat color”). Its advantages include:
(a) small file size—quick download; (b) support for transparency; and
(c) support for animation. Transparency permits the web page
background to show through your image—if you wish that to happen. It
eliminates the effect of a box around each of your graphic images.
Though animation is not usually relevant for business graphics, it can be
used to show evolution over time of measurements that have to be
displayed via a map (e.g., population change over time). GIF animation
is easier and cheaper than any other animation alternative. GIF’s main
“theoretical” disadvantage is the fact that it supports only 256 colors
(8-bit color). This is not necessarily a serious limitation. There are only
216 “browser-safe” (a.k.a. “web-safe”) colors—more about them later.

If you create an image with SAS/GRAPH, you cannot use more than 255
colors. It is unlikely that you would design a graph with anywhere near
255 colors, much less want to use more than the 256-color GIF limit.
GIF is the oldest format used for web images, and the most popular
choice, except when dealing with photographs. It is universally
supported: all browsers, all versions of browsers. All web page screen
images in this paper were captured with Version 7.04 of Jasc Paint Shop
Pro, and saved as GIF files. Except for two photos and the logo, all
images in my web pages were created as GIFs with SAS/GRAPH.

JPG (a.k.a. JPEG, for Joint Photographic Experts Group) is used for
photographs, which are continuous tone images. Its main advantage is its
support for 24-bit color (16.7 million colors). JPG uses a “lossy”
compression. Some of the data is thrown away and not recoverable. You
may not notice the difference, however. Despite compression, JPG files
are usually larger and slower to download, because photographs require
a lot of data to digitally define them. Also decompression by the web
browser takes extra time. JPG has no support for transparency or
animation. The JPG compression algorithm works well for continuous
tone color, but areas of “flat” (or solid) color, areas with sharp edges,
lines, and text are adversely affected. Though JPG supports 16.7 million
colors, if it is displayed on a 256-color display (there are a surprisingly
large number of these out there), the colors are remapped to the 216-
color browser-safe palette and “dithered”. Dithering is a way to try to
simulate the unsupported colors.

Tip: Before you edit a JPG image, be sure to make a duplicate of the
original. When you save the edited image, it gets compressed further.
And if you edit that result and save it, it gets recompressed yet further.
After enough progressive compression, the result will be unacceptable.

Tip: You can mitigate the effect of long download times for a JPG image
(or any other image type). Define a tiny box (1 pixel by 1 pixel) at the
top of a web page, and “load” the JPG file into it. E.g., you can do this
with your home page. You can load multiple such boxes with images. If
a linked web page, which the viewer gets to later, references that image
file at full size, the image file will be retrieved from a place on the
viewer’s PC disk where it has been stored, rather than being downloaded
again over the network. This creates the illusion of instant download. Of
course, enough time must have elapsed since opening the initial web
page. Later discussion will explain how to set up these boxes.

PNG (Portable Network Graphic) is a lossless compression format,
which results in files that are larger than JPG for the same image
content. Besides the 8-bit color supported by GIF, and 24-bit color
supported by JPG, 16-bit gray scale (very useful for medical images)
and 48-bit color are supported by PNG. There are unique features of
PNG, including gamma correction (see below) and variable levels of
transparency, but they are not supported by all creation and browsing
tools. The main disadvantage of PNG is that, despite its benefits, it does
not enjoy the same universality of support as GIF and JPG. Older web
browsers and some PCs might not be able to display it. All illustrations
for my discussion of color in this paper are 300 dpi PNG files.

Gamma Correction. Displays vary in their performance. Images
created on a Mac look dark on a PC or Unix. Images created on a PC or
Unix look washed out on a Mac. Gamma Correction enables a PNG
image to display with its intended brightness regardless of platform.

Reducing Image Size without File Compression

Case 1. Creating an image file with SAS/GRAPH. For how to create a
minimalist image that is communication-effective (in fact, to see how
minimalism enhances communication effectiveness), please see my
Beginning Tutorial (Reference 1). Simpler images are smaller and
download faster.

SUGI 28 Advanced Tutorials

2

Case 2. Working with a pre-existing image. This could be a stock
photo, a digital photo made with your own camera, your output from
scanning, etc. You could use a fancy image-editing tool. If you don’t
have one, and don’t want to get one, all hope is not lost. Let’s assume
that your only need is to crop the image (i.e., to trim off areas from one
or more of the edges of the image), and possibly re-size it (you could
reduce it, or enlarge it). Here is my solution. Open MS Word to create a
new document. Define your page and/or column size any way you like.
Click on Insert. Click on Picture. Click on From File. Find the .GIF or
.JPG (or other file type) you want. Highlight the file, and click on Insert.
Regardless of the “native” (i.e., natural) size of the image, it will be
imported to the space in your page and column. If it is too big, it will
shrink to fit. If it is too small, it will occupy only part of the space. Right
click on the image, and then Format Picture. This brings up a Format
Picture window with five active tabs. The ones of interest are Picture
and Size. On the Picture tab, use the Crop From section, which allows
you to remove a strip of any width from the Left and/or Right and/or
Top and/or Bottom. On the Size tab, use the Size and Rotate section.
When adjusting size, do not change options in the Scale section. The
Lock Aspect Ratio box in the Scale section may already be checked. If
not, check it before changing the size. With Lock Aspect Ratio checked,
you can change either Height or Width, and the other dimension will be
automatically scaled to prevent image distortion. Having cropped and/or
resized the image, now “export” it. Here’s how. In this MS Word
“pseudo-document”, click File, then Save As. For “Save as type”, select
“Web Page”. Enter a folder and filename, and click Save. Now go to that
folder. There you will find an HTML file, with the name you selected. It
is a web page containing only the edited image. This is NOT what you
want. You will also find a subfolder with name
“YourHTMLfilename_files”, where by “YourHTMLfilename” I mean
the name specified when you saved the web page. Inside the folder are
three files. The one you want is called image002, which is the result of
your editing. Rename image002 to something meaningful, and move it
to a permanent folder location. The other three outputs can be deleted.

Getting Pre-existing Images

Formal Means. You can find stock photo and clip art suppliers on the
Internet. Any search engine should help you. These images fall into
three categories: (a) free and unrestricted re-use; (b) free re-use for non-
commercial purposes; and (c) for-fee only.

Informal Means. Besides using the above formally offered sources of
images, you can save to your disk almost any image that is displayed by
a web page. If you place your mouse over the image, and right click it, a
window opens to permit you to do several things. You can display its
Properties: name of the file; type of image file; fully qualified URL for
where the source image file is; file size in bytes (i.e., to judge the impact
of storage on your disk); dimensions of the image in pixels; and dates of
creation and modification. You can save the image to your disk, in either
the same format, or as a BMP (always a much bigger size file).

Caution. Some images are marked with a copyright. Even if it is
permissible to reuse such an image for non-commercial purposes, it
would be tacky, and probably illegal, to crop off the copyright, and
republish the image. A second-hand viewer could assume there was no
copyright asserted for the image, and might reuse it commercially.

Sizing Considerations for Web Images

Screen Resolution. Sizing a web image in centimeters or inches has no
value. The physical dimensions of an image are a function of screen
resolution. It is frequently claimed that the typical screen resolution is as
low as 72 pixels per inch. It is a fact that you can get screen resolutions
at least as high as 133 pixels per inch. So, e.g., an image with a width of
400 pixels will display with a width of 5.5 inches on the low-resolution
screen, but only 3 inches on the high-resolution screen. In any case, you
should plan your web page for the lowest probable resolution, which is
presumably 72 pixels per inch. Also, PCs with higher resolutions are
often set to lower resolutions, perhaps since the user does not know what
is possible.

“Live” Area in the Web Browser Window. Not all the space on the
PC screen is available for web page display. Besides a strip that

Windows uses, the web browser uses space on all four sides, especially
the top. How much depends on the web browser, and its version. And
“progress” is not necessarily increasing the live space. Just as screen
resolution determines physical size of an image, so, too, it determines
how much live space is available to display your images and the rest of
your web page. Limiting consideration to the smaller screen pixel
dimensions, 640 X 480, 800 X 600, and 1024 X 768, some minimum
live areas are, roughly, 625X275, 785 X 400, 1000 X 565.

Scrolling. Do not use scrolling, especially in the horizontal direction, as
a web page design solution. The web page should be designed to fit
entirely in the smallest probable web browser live space in which it will
be displayed. And, certainly, an image—which is intended to be viewed
as a whole—should almost never be sized so as to require scrolling. But
a large detailed map would be a valid application for scrolling.

Creating Images with SAS/GRAPH

goptions reset=all;
goptions device=gif; /* make a simple GIF */
goptions gsfname=anyname gsfmode=replace;
filename anyname
 "&IMGPATH.\ImageAtTopOfBody.gif";
goptions border cback=CX99FFFF;
goptions ftext=CENTX htext=30 PCT;
goptions xpixels=50 ypixels=50; /* size */
proc gslide; /* could be any graph PROC */
title j=C move=(+0 PCT,-5 PCT)
 'Top of' j=C 'Body';

run; quit;

&IMGPATH is a symbolic (or macro) variable that has been previously
initialized with a %LET statement. The above code creates a boring
image of two lines of text in a small box. Most images in this tutorial are
boring. They are not meant to impress you. They are convenient,
compact objects used to illustrate techniques for imbedding images in
web pages. It is necessary in some situations to imbed a blank (or, really,
transparent) GIF as filler. Here is the code used to make one:

goptions reset=all;
goptions device=gif; /* make a filler GIF */
goptions gsfname=anyname gsfmode=replace;
filename anyname "&IMGPATH.\Space50X50.gif";
goptions noborder transparency;
goptions xpixels=100 ypixels=50;
proc gslide; /* make an empty "slide" */
title;
run; quit;

The Base Web Page Before Image Enhancements

Most of the examples involve a simple table, created with PROC PRINT
and the Names and Ages of some students from SAS sample data set
SASHELP.CLASS. The base ODS Style used is a custom style
developed in my web publishing projects with Dr. Francesca Pierri at the
University of Perugia. You can request improved ODS code for our style
via email, or find an early edition in Reference 3. Colors used for image
examples below are NOT inherent to the custom style. Nor are they
necessarily recommended for your web page design. They were chosen
to be bright—for demonstration purposes—and to be browser-safe. You
will see use of base style Styles.SUCHI5Example02, which is a
derivative of our custom style, but amended to the purposes of a (more
detailed) tutorial on images that I presented at the Fifth Annual SAS
Users Chicago International Conference. Many examples in this SUGI
Advanced Tutorial are drawn from that introductory, longer tutorial.

Below is a display of the basic web page. “It sets the data free.” There
are no grid lines or cells for the data. Just as graphic software defaults
reflect the graphic roots of grid paper, pen, and ink, ODS-formatted
tables—because there now is software support—tend to be needlessly
complicated with the grid from the spreadsheet software venue, which in
turn was influenced by its hardcopy roots: a big pad of paper worksheets
with a pre-printed grid for rows and columns.

SUGI 28 Advanced Tutorials

3

Here is the code to create this web page:

ods listing close; ods noresults;
ods html path = "&PATH" (url=none)
 body = "WebPage02.html"
 style = styles.SUCHI5Example02;
goptions reset=all;
proc print data= . . . ;
id name; var age; run;
ods html close; ods listing;

Getting Started with Image Imbedding

To work with images in ODS, we will primarily use these style
parameters: backgroundimage=, preimage=, postimage=, prehtml=,
posthtml=. Their meaning and use is obvious by comparing web page
examples with code. The last two parameters involve HTML coding, but
it is neither difficult nor obscure. They enable you to adjust the position
and spacing when use of preimage= or postimage= does not suffice.

The first example is application of a background image. If the image is
smaller than the web page, it fills the page with tiles, as shown below.

With ODS, titles and footnotes are displayed each in a table of their
own, with a user-specifiable background color. If you do not adjust the
width, the result is a pair of peculiar looking bars across the full width of
the web page. Here is the code to create the style for this web page:

proc template;
edit Styles.SUCHI5Example02
 as Styles.SUCHI5Example04;
style body / backgroundimage =
 "&IMGPATH.\ImageFileNameX.gif";
style SysTitleAndFooterContainer /
 outputwidth = 65%;
end; run;

I do not recommend a tiled background area. The concept is typically
used, however, to compose a finely textured background out of tiles—
which I do not recommend either. The best background is a solid color
in high contrast with the foreground text color.

However, if using a background, it can be useful to make it stay fixed
during scrolling, and to make the title and footnote areas transparent.
The fixed background is called a “watermark”.

By transparent, I mean that the text of the titles and footnotes are
opaque, but their background areas, which were yellow in the above
example, now permit the web page background to show through.

Here is the code to create the style for this web page:

proc template;
edit Styles. SUCHI5Example02
 as Styles.SUCHI5Example07;
style body /
 backgroundimage =
 "&IMGPATH.\SimpleImage.gif"
 watermark = ON;
style SysTitleAndFooterContainer /
 background = _undef_;
style systemtitle / background = _undef_;
style systemfooter / background = _undef_;
end;
run;

A background image too often is merely decorative, or an inessential
add-on. However, it can be useful and appropriate to use a logo, or a
consistent “frame” or backdrop, for every web page in a set.

The ODS style which provides this standard backdrop becomes the
universally applied style for every web page in the set.

When a specific web page needs some other ODS-template-enabled
feature, that standard style serves as the parent style for PROC
TEMPLATE code. It is used as in this statement:
edit Styles.StandardBase as
 Styles.SpecialFeature;

Tip: You can make your SAS/GRAPH output transparent (i.e., with only
the text and graphic elements opaque to the web page background) by
specifying “GOPTIONS TRANSPARENCY;” and using the GIF driver.

Let’s move on to foreground images.

First, we will use a preimage for the web page body.

By default, it would be positioned in the upper left corner. But it can be
centered, as in the example below. A blank TITLE1 is used to get some
space between the image and the first real title line.

SUGI 28 Advanced Tutorials

4

Here is the code to create this web page:

proc template;
edit Styles.SUCHI5Example02
 as Styles.SUCHI5Example10;
style body /
 preimage = "&IMGPATH.\ImageAtTopOfBody.gif"
 prehtml = "<center>" ; /* center the image */
end; run;

ods html path = "&PATH" (url=none)
 body = "WebPage10.html"
 style=styles.SUCHI5Example10;
title1 ' '; /* blank title */
title2 "Real Title";
proc print data= . . . ;
 . . .
run;
ods html close;

How To Hide Preloaded Images for Use Later on Other Pages.

Use the same template code as above, with one change:

style body / prehtml =
"<IMG src='&IMGPATH.BigImage1.gif'
height=1 width=1 border=0>
 /* more image files here */
 <IMG src='&IMGPATH.BigImageN.gif'
height=1 width=1 border=0>";

Use “border=0” to hide the visible box that would be drawn around the
invisible image.

You can insert such IMG tags “by hand” in your HTML file after it has
been built with anything in it that you want or need, and built by any
means, not necessarily ODS. They should be placed after the BODY tag.

You can display the web page, click on View, then Source. That opens
the HTML file with NotePad. You can edit the source. When you close
it, NotePad will ask you, “Do you want to save the changes?” Click Yes.
When the web page is refreshed, your changes take effect.

Now let’s position the image above the titles, but toward the right end of
the title block. It can be done by aligning the image in the upper right
corner, and then shifting it back to the left with a horizontal spacer.

It is an idiosyncrasy that when an image is aligned in the upper right
corner of the web page, it reserves no vertical space at the top of the
page. The solution for this problem is a TITLE1 to create a blank title
with sufficient vertical space to force the first real title below the image.

Here is the result.

Here is the code to create this web page:

proc template;
edit Styles.SUCHI5Example02
 as Styles.SUCHI5Example13;
style body / prehtml =
"<IMG src = &IMGPATH.\ImageAtTopRightOfBody.gif'
 align='right' hspace=255 >";
end; run;

ods html . . . style=styles.SUCHI5Example13;
title1 h = 1 cm ' ';
 . . .
ods html close;

Here is the “converse” of the above example.

Here is the code to create this web page:

proc template;
edit Styles.SUCHI5Example02
 as Styles.SUCHI5Example19;
style body / posthtml = "<IMG
 src='&IMGPATH.ImageAtBottomLeftOfBody.gif'
 align='left' hspace=250 >";
end; run;
ods html . . . style=styles.SUCHI5Example19;
footnote1 "Real Footnote";
footnote2 ' '; /* blank footnote */
proc print . . . ; run;
ods html close;

Rather than imbed the image before the titles or after the footnotes, it is
possible to put an image in a title line, as below.

SUGI 28 Advanced Tutorials

5

This is probably useless if you have multiple title lines, since the image
repeats on every title line. Here is the code to create the style for this
web page:

proc template;
edit Styles.SUCHI5Example02
 as Styles.SUCHI5Example20;
style systemtitle / preimage =
 "&IMGPATH.\ImageAtLeftEndOfEachTitle.gif";
end; run;

And/or you can put images on the footnote line, as shown below.
In fact, you don’t even need any footnote text, as you can see.

Here is the code to create this web page:

proc template;
edit Styles.SUCHI5Example02
 as Styles.SUCHI5Example21;
style systemfooter /
 preimage =
"&IMGPATH.\ImageAtLeftEndOfEachFootnote.gif"
 postimage =
"&IMGPATH.\ImageAtRightEndOfEachFootnote.gif";
end;
run;

ods html . . .
 style=styles.SUCHI5Example21;
footnote6 ' ';
proc print . . . ;
run;
ods html close;

You can put the image between the titles and the table, as shown below.

By default, the image would be placed too close to the table. Here is the
code, which includes a space insertion of 20 pixels, to create the style for
this web page:

proc template;
edit Styles.SUCHI5Example02
 as Styles.SUCHI5Example23;
style table / prehtml = "<IMG
 src='&IMGPATH.\ImageBetweenTitlesAndTable.gif'
 align='bottom' vspace=20 >" ;
end; run;

And here is an image between the table and the footnotes.

And the code to create the style for this web page:

proc template;
edit Styles.SUCHI5Example02
 as Styles.SUCHI5Example25;
style SysTitleAndFooterContainer /
 outputwidth = 72%;
 /* squeeze the area to be able to use j=L with indent */
style table / posthtml = "<IMG src=
 '&IMGPATH.\ImageBetweenTableAndFootnotes.gif'
 align='top' vspace=25 >" ;
end; run;

Images can be imbedded in various parts of a table. You can put an
image to the left of (before) the contents of every cell, and/or to the right
of (after) the contents of every cell, and/or behind the contents of every
cell. You can put an image before and/or after and/or behind the table
column headings. You can put an image before and/or after and/or
behind an ID column heading. You can put an image before and/or after
and/or behind ID values. You can put an image before and/or after
and/or behind data values in table columns or table cells. These five
types of image applications all require some special coding to get things

SUGI 28 Advanced Tutorials

6

to look as you like. If you have an interest in any of those cases, send me
an email request for a solution. Below you can see an important
variation on just one possibility from the extravaganza of possibilities
that I worked on. It is the use of data-dependent images for table data.

The little box after Age value 13 says, “New Teenager, and the little box
after Age value 14 says, “All other ages”. In a more realistic application,
you might use different icons to flag different values or value ranges.
Here is the code to create the web page:

proc format;
value ageimg 13 =
 "<IMG src = '&IMGPATH.\NewTeenAger.gif'
 hspace=15 >"
 other =
 "<IMG src = '&IMGPATH.\AllOtherAges.gif'
 hspace=15 >"; run;
ods html . . . style=styles.SUCHI5Example02;
proc print . . .
 style(total) = [just=right posthtml =
 "<IMG src = '&IMGPATH.\Space50BY50.gif'
 hspace=15 >"];
id name /
 style(header) = [just=left
 postimage = _undef_ posthtml =
 ""]
 style(data) = [just=left
 postimage = _undef_ posthtml =
 ""];
var age /
 style(header) = [just=right posthtml =
 "<IMG src = '&IMGPATH.\Space50BY50.gif'
 hspace=15 >"]
 style(data) = [just=right posthtml = ageimg.];
ods html close;

The base style is still the base established for the first example shown,
the table with no images imbedded anywhere in the web page. All the
heavy work has been done by using the STYLE option available in
PROC PRINT since Release 8.2.

I am sure you can understand the purpose of posthtml = ageimg. in
style(data)= for the var age statement. But why all of these other
complications? Well, as soon as you insert an image anywhere in the
cells of a table, be it in a column heading, a row header, a data cell, etc.,
the situation gets complicated by the need to preserve expected common
alignments of values all the way down each column, and the expected
common height of cells all the way across each row. There is not space
here to show you what happens, but I suggest that back at your office
you create the web page, but omit all the PROC PRINT style code
except that which uses the ageimg. format. If you restore the PROC
PRINT style options one at a time, you will better understand their
respective effects On your ODS HTML statement you can use
Styles.Default. (Use of the ODS default, instead of the custom style used
here, will not cause any problem or diminish the value of your

experiment.) You can create both of the space filler GIFs. The code for
50BY50 was shown earlier. If you do the exercise, you will see why
those amendments had to be done.

Delivery of Full-Size Images Only Upon Demand

It is essential to make wise use of the limited live space on web pages,
and to minimize download time to deliver images. Web pages may
include images that a web viewer may not be interested in, or that other
web viewers are content to see at reduced size. Rather than forcibly
present the full image, a predecessor web page can present a thumbnail
image. Clicking on the thumbnail links to a display of the full image.

The thumbnail may be a size-restricted version of the full-size image file
that is downloaded, or a cropped version of the full-size image file. If the
thumbnail is just a size-restricted version, then the click brings up the
full image instantly; if a different file, then the click triggers a download
and delay. By “size-restricted” I mean the HTML IMG tag HEIGHT and
WIDTH parameters are used to determine display size, rather than the
natural pixel-count dimensions of the image.

Here is a pair of thumbnail-linked web pages.

Here is the linked web page that displays the full-size image.

ALT Text. The popped-up boxes of text where I rested my mouse are
“ALT text”. You can create ALT text for your images with ODS, and/or
with SAS/GRAPH. When working with already finished images, your
own or downloaded ones, you have another option. In the exercise where
I explained how to do image editing with MS Word, there is a point in
the process—when you bring up the Picture and Size tabs—that a Web
tab is also available to which you can click if you wish to assign
“Alternative text” for the image. Please see Reference 2 for a fuller
discussion of ALT text, and why to use it.

SUGI 28 Advanced Tutorials

7

Here is code to create the first web page in two different ways.

Option 1. Using a custom thumbnail image, which could be a cropped
version of the full image, not just a reduced version.

ods html . . . /* Custom Thumbnail Preview */
 body = "ThumbnailImage1.html"
 style = styles.SUCHI5Example37;
 /* titles and footnotes here */
proc print data=fakedata noobs label;
var fakevar / style(data) = [just=right
 posthtml =
 "
 <IMG src='&IMGPATH.\PisaThumbnail.jpg'
 alt='...' > "]; run;
ods html close;

Option 2. Use the full-size image file, but reduce its display area on the
web page with HTML controls for HEIGHT and WIDTH.

ods html . . . /* Reduce Full Image for Thumbnail Preview */
 body = "ThumbnailImage2.html"
 style = styles.SUCHI5Example37;
 /* titles and footnotes here */
proc print data=fakedata noobs label;
var fakevar / style(data) = [just=right
 posthtml =
 "
 <IMG src='&IMGPATH.\PisaFullSizePicture.jpg'
 height=125 width=83 alt='...' > "]; run;
ods html close;

Here is the code to create the second web page:

ods html . . . /* Full-Size View */
 body = "FullSizePicture.html"
 style=Styles.SUCHI5PisaPhoto;
title1; footnote1; /* NO “hard” text on the page */
proc print data=fakedata noobs label;
var fakevar; run;
ods html close;

Here is the code to create the “fake data”:

data fakedata;
length fakevar $ 1; label fakevar = '00'X;
fakevar = ' '; run;

A pseudo-table is used. It consists of one blank as the data, with an
invisible heading. Here is the code to create the styles for the web pages:

%MakeStdStyle(
StyleName=SUCHI5Example37, /* for the full-size photo */
TableHeadingSize = 1,
TableDataSize = 1,
WebPageBackgroundRGBcolor = CXFFFF00,
TableRGBcolor = CXFFFF00,
TableFrame = VOID, TableSpacing = 0)
run;

proc template; /* for the thumbnail */
edit Styles.SUCHI5Example37
 as Styles.SUCHI5PisaPhoto;
style body / prehtml = "<center>
 <IMG src='&IMGPATH.\PisaFullSizePicture.jpg'
 alt=' . . . ' >";
end; run;

You may request the %MakeStdStyle macro code via email. Here are
the functions of the macro parameter selections. The pseudo-table is
designed to minimize space use and to make all unwanted parts of the
table invisible in the context. Fonts for column heading and data are set
to the minimum. All colors of anything that might show are set to the
web page background color (RGB Yellow). All grid or frame elements
are set to null or zero width. For Option 2, the thumbnail image is laid
inside the pseudo-table, with nothing else visible. The full-size image
sits, horizontally centered on its web page, above the tiny invisible
pseudo-table—maximizing web page live space available for the image.

If you want ODS to create the HTML file for you, it is necessary to
execute some SAS (tabular or graphic) PROC inside an ODS HTML
code block. Hence, a pseudo-table or pseudo-graph must be created.

How To Imbed Images in Your SAS Graphs

In the web page of the pie chart below, the SUGI 28 logo has been
imbedded. I hyperlinked the logo to www.sas.com, and supplied ALT
text for it that says, “Logo of SUGI 28. Here linked to the SAS web
site.” The pie chart, rather than being based on real data, is contrived to
be a sample color chart. The pie really should be shifted to the right to
balance the picture, but my effort is focused on showing how to imbed
the image. The key graphic programming tool for this is the
SAS/GRAPH Annotate facility. I will not try to explain all of the
Annotate code. Please see documentation and/or SAS Help, if needed.
The White bar that is (invisibly) annotated behind the image is used
simply as a means to make the image clickable. The HTML Annotate
variable defines the hyperlink with HREF= and the ALT text with
ALT=. The HTML variable is not yet supported by the IMAGE
Annotate function. (Maybe it will be supported in a future release of
SAS/GRAPH.) The Annotate IMAGE function requires you to identify
the image file with the IMGPATH variable. For the IMAGE function,
the (optional) Annotate STYLE variable is either TILE (the default) or
FIT, as used here. When you use FIT, if you under-allocate or over-
allocate space for the image, it will shrink or stretch to fit. If the ratio of
the dimensions of your allocation does not match the ratio of the
dimensions of your source image, the result will be distorted. I rested my
mouse on browser display of the original image, and pressed the right
mouse button to get to see the properties of the image. Knowing those
pixel counts for horizontal and vertical, I was able to size the target area
correctly. (When you specify TILE, the image is laid out like tiles, but
starting at top left and sweeping across and down, to fill the allocated
space. Of course, if the image is too big, you will not see tiles. It may
just be truncated in one or the other direction, or both.) The Annotate
WHEN variable is set to 'B', so that the image is laid down in the
graphic area BEFORE the graph is drawn. In this way, you could use an
image as a background, if you wish. You could overlay the graph, if that
were your design objective, by setting WHEN to 'A', to have the image
laid down in the graphic area AFTER the graph is drawn.

Here is the code to create this web page:

data piedata;
infile cards;
input @1 RGBcolor $8. @10 PieValue 1.;
cards;
CXFF0000 1
CXFFFF00 1
CX00FF00 1
CX00FFFF 1
CX0000FF 1
CXFF00FF 1
;
run;

SUGI 28 Advanced Tutorials

8

data logoanno;
length function $ 8 imgpath html $ 200;
retain xsys ysys '3' when 'B';
function='move';
x=0; y=23.56;
output;
function='bar';
x=22.67; y=100;
style='solid'; color='CXFFFFFF';
html='href="http://www.sas.com" alt="Logo of
SUGI 28. Here linked to ..."';
output;
function='move';
 x=0; y=23.56;
output;
function='image';
x=22.67; y=100;
imgpath="&Folder.\sugi28logo.gif";
style='fit';
output;
run;

goptions reset=all;
ods html path="&Folder" (url=none)
style=Styles.our_style gtitle gfootnote
body="ImageAndColorTogether.html"
(title="The Power of Pictures and Paint");
goptions device=gif transparency;
goptions xpixels=900 ypixels=450;
goptions ftext='Verdana' htext=5 PCT;
proc gchart data=piedata anno=logoanno;
pattern1 v=psolid c=CXFF0000;
pattern2 v=psolid c=CXFFFF00;
pattern3 v=psolid c=CX00FF00;
pattern4 v=psolid c=CX00FFFF;
pattern5 v=psolid c=CX0000FF;
pattern6 v=psolid c=CXFF00FF;
 /* titles and footnotes go here */
pie RGBcolor /
 sumvar=PieValue noheading coutline=CX000000
 midpoints='CXFF0000' 'CXFFFF00' 'CX00FF00'
 'CX00FFFF' 'CX0000FF' 'CXFF00FF'
 slice=outside value=none percent=none;
run;
quit;
ods html close;

Using Color for Communication

Color Does Not Improve Bad Design:
Use Color To Communicate, Not To Decorate

The pie chart below uses color to communicate. If you have no need to
distinguish response levels or categories, use Black and White, or some
other high-contrast color pair for foreground and background. If you
have a few levels or categories, gray shades may suffice. If you have
many levels or categories, color is necessary.

Tip: It is impossible to reliably distinguish more than five shades of a
single hue. Of course, you may be able to expand the palette with Black
and/or White, depending on the application. The proviso of “depending
on the application” means, e.g., that you cannot use Black as an area fill
on a map with Black boundaries.

Use of Color Can Confuse, Rather Than Communicate

Viewers attribute significance/meaning to your use of color, even when
none is intended. So, be careful what you do, whenever you use color.
Use of color without a design objective can disorient, confuse, or even
mislead the viewer.

Failed communication is always the fault of the transmitter,
not the receiver.

The content of the example below is actually different from the
magazine illustration I saw, but its misuse of color is exactly parallel.
There is NO relationship between BrandF and BrandA, and none
between BrandB and BrandC. What does this use of color mean?

For Those Who Can’t See a Color Difference, There Is None

The commonest color blindness cannot distinguish red and green,
a frequently used color combination in the USA. Prof. Jay Neitz of the
Eye Institute of the Medical College of Wisconsin: 8 to 10 percent of
American males have some form of color blindness (due to genetic
differences, only about 0.5 percent of females).

SUGI 28 Advanced Tutorials

9

Maximize Color Contrast between Text and Background

Contrast between foreground and background is essential to
communication. ODS opened the door to “enhancing” tables with color.
Besides the unfortunately popular “Traffic Lighting”, there are problems
using Yellow with White, or Black (or other dark) text on dark or
intense background colors. Evaluate the text-background combinations
in the illustration above. See also the contrast demonstration chart in
Reference 2. It should be noted that adequate contrast for online display
does not guarantee the same for hardcopy, which is not brightly backlit.

Colored Text and Lines Should Be Thicker

Use of Black and White for print in newspapers, magazines, and books
is no accident. Their high contrast makes them the most readable
foreground-background combination. Colored text and lines on a White
background are harder to see. Colored lines should be thickened.
SAS/GRAPH enables this with the W= option for plot lines in the
SYMBOL statement, with the SHAPE=LINE(width-number) option in
the LEGEND statement, and with the WOUTLINE= option for the
statements used with GCHART and GMAP PROCs. ODS lets you
specify Bold for fonts, and SAS/GRAPH has bold versions of many of
its own fonts, as well as allowing you to use Windows TrueType fonts
with Bold (e.g., as in font='Georgia/Bold').

Use “Browser-Safe” or “Web-Safe” Colors

Unlikely as it may seem, many, if not most, web users have displays or
video cards limited to 256 colors. Even when the hardware has a higher
capability, it may be set to display only 256 colors. (To check or change
your own setting on Windows, click Start > Settings > Control Panel >
Display > Settings > Colors.) You may wish to design for the lowest
common denominator. Here is why and how.

To deal with equipment diversity, web browsers determine the currently
set limits of the display, and, if needed, remap colors. Video displays
produce colors as combinations of Red, Green, and Blue. All web
browsers agree on a universal common subset of 216 “browser-safe”
colors. They are RGB colors (Red-Green-Blue combinations), with
names, in SAS language, of the form CXrrggbb. The browser-safe RGB
colors restrict rr, gg, and bb to the six values 00, 33, 66, 99, CC, and FF.
(216 = 6 X 6 X 6.) If a web browser detects a color outside this set on a
web page to be shown on a 256-color display, it remaps it to a browser-
safe one. Then, Web Designer Color does not equal Web Viewer Color.
There are 16.7 million RGB colors, but only 216 are browser-safe.

Both all of the SAS “predefined colors” (see below) and all of the
HTML colors (see below) have RGB equivalents, but only (the same)
seven of each are browser-safe. SAS GREEN, contrary to the RGB
value still listed in the manual, changed in Version 6.12, and is no longer
browser-safe—even though Green is one of the three RGB primaries.

See the Appendix for 81 samples of browser-safe colors. The “basic”
colors are Red (CXFF0000), Yellow (CXFFFF00), Green (CX00FF00),
Cyan (CX00FFFF), Blue (CX0000FF), Magenta (CXFF00FF), Black
(CX000000), and White (CXFFFFFF). The upper chart shows the only
way for RGB colors to vary in lightness with constant hue. It is easy to
vary lightness with constant hue when using the HLS color system. If
your target is hardcopy, HLS colors are an excellent choice, also
providing easy tunability of transition in hue and saturation. See the
SAS/GRAPH documentation for more about HLS colors.

Beware of SAS Color Names, Old and New

There are 292 “SAS Predefined Color Names”, listed in Table 7.2 in the
Version 6 and Version 8 SAS/GRAPH documentation. They have names
such as “PINK”, or “LIPK” for “Light Pink”. However, many of the
names are misleading. If you display or print PINK and LIPK, you will
find that SAS Light Pink is darker than SAS Pink. See the illustration
below. There are other contradictions like this. Also, many of the colors
are too dark to be useful. Make color samples. See example code below.

There are also about 150 new color names in the SAS Color Registry.
You can find them, and their RGB codes, using this click sequence in

your SAS session: Solutions > Accessories > Registry Editor >
Colornames > HTML. With these, too, assume nothing. Make yourself a
sample chart. Only seven of these HTML color names intended for web
use are browser-safe (i.e., web-safe).

Here is the code to create the color samples above:

proc gslide;
note j=C
f='Georgia' h=1 c=CX000000 ' C=LIPK'
move=(+1,-1.5)
f='Monotype Sorts' h=5 c=LIPK '6E'X
move=(+3,+1.5)
f='Georgia' h=1 c=CX000000 'C=Pink'
move=(+1,-1.5)
f='Monotype Sorts' h=5 c=PINK '6E'X;
run; quit;

If you cannot use these Windows TrueType fonts, use f=CENTX and
replace '03'X with '6E'X.

Do You See What I See? Besides the use of browser-unsafe colors, and
the problem of gamma differences between PC, Mac, and Unix, there
are other technology-related sources of variation. CRT monitor color
and LED flat panel color differ. And on an LED panel the lightest RGB
colors wash out to near-White. LED projector color differs from that on
a presenter’s attached PC. CRT or LED color differs from printer color.

Acknowledgements

My thanks to Chris Noto for explaining how to imbed an image in a
graph, and to all the people who have aided me in other ways.

Related Work By the Author

1. “Easy, Elegant, and Effective SAS Graphs: Inform and Influence with
Your Data”, elsewhere in these SUGI 28 Proceedings.
2. “Web Communication Effectiveness: Design and Methods to Get the
Best Out of ODS, SAS, and SAS/GRAPH”, in SUGI 28 Proceedings.
3. With Francesca Pierri, “Show Your Graphs and Tables at Their Best
on the Web with ODS”, Proceedings of the Twenty-Seventh Annual SAS
Users Group International Conference, SAS Institute (Cary, NC), 2002.

Notices

SAS/GRAPH and SAS are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® denotes USA
registration. Other product and brand names are trademarks or registered
trademarks of their respective owners.

Author Information

LeRoy Bessler PhD
Bessler Consulting and Research
PO Box 96. Milwaukee, WI 53201-0096, USA
Phone: 1 414 351 6748
Email: bessler@execpc.com

LeRoy Bessler does general SAS application development, and
communication-effective design and construction of reports, tables,
graphs, and maps for the web and other media. He has expertise in
Software-Intelligent application development, which yields solutions
that are reliable, reusable, maintainable, and extendable.

The Power of Image and Color

SUGI 28 Advanced Tutorials

10

SUGI 28 Advanced Tutorials

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

