

1

Paper 8-28

Fast and Easy Ways To Advance On Your Beginning SAS Coworkers!

Rick M. Mitchell, Westat, Rockville, MD

ABSTRACT

This paper will provide the SAS programmer with
advanced methods of reshaping one’s approach to
problem solving. With the abundance of options
available in SAS, programmers can often rely too much
on the defaults and thus hinder their growth beyond the
beginning level. The primary concept that will be
addressed in this paper is what a programmer must do to
go beyond limiting oneself to an individual SAS tool in
order to reach a more advanced programming level. The
improvement of processes, the incorporation of nifty
macros, and a focus on how to better present
information, are all ingredients that are essential to a
programmer who wants to go the extra mile. For
programmers that have already achieved an advanced
status, beware. There is plenty of room at the top as one
discovers that there are fast and easy ways to advance
on your beginning SAS coworkers!

INTRODUCTION

A major focus of this paper will be on process
improvement and how multiple concepts may be utilized
to advance one’s work. Regardless of how advanced
work may seem, there is often no limit to how far a
program can be advanced. While a programmer may be
considered “advanced” in only SAS/STAT, only
SAS/GRAPH, or only in the area of macros, an even
more advanced programmer is able to apply all of these
tools and others to an overall process. SAS offers a huge
warehouse with a variety of tools that often meet a
programmer’s minimal requirements. However, it is the
advanced programmer who is able to force SAS to
achieve the optimal look and feel that is desired or
needed.

To continue the author’s tradition of providing readers
with “helpful” approaches that may deviate from the
standards, “Fast and Easy Tips” are again provided for
those readers who are looking for quick success or are
perhaps just bored and looking for some fun and
adventure in their lives. These tips, however, should be
used at the programmer’s extreme discretion, and the
author claims no responsibility for their ultimate
consequences!

OVERVIEW

This paper will discuss who fits the mold of an advanced
programmer and how one might take his or her already
“advanced” code to even higher levels by maximizing the
use of multiple SAS tools. Potential areas where an
advanced SAS programmer may be even more
successful are discussed through the following topics:

• The advanced programmer
• Advancing “simple” code
• Advancing a process
• Advancing ODS output/graphics
• Advancing SAS/GRAPH
• Advancing secrets

While the SAS world is comprised of programmers with
varying skill levels across many different disciplines,
there are endless possibilities and opportunities for one to
apply these concepts to everyday work.

THE ADVANCED PROGRAMMER

Fast and Easy Tip #1: Add 5 more years of
experience to your resume!

Before proceeding further, it is important to discuss the
mold that encompasses the advanced programmer.
Because SAS offers such a wide variety of powerful and
flexible tools, it is often possible for the beginning and
advanced programmers to achieve the same or similar
results. Therefore, it can be difficult to differentiate
between the beginner programmer and the advanced
programmer – at least on the surface.

What then distinguishes one from the other and at what
point is one able to say that he or she has gone over the
line into the advanced world of SAS programming? A
beginning programmer may view the workplace as
competitive when it is determined who gets the
“challenging” tasks and who gets the “crumbs.” However,
some advanced programmers may view the “crumb” as
the challenging task. In fact, just how far a task is taken
does not necessarily depend on the request, but more on
the programmer and how far the programmer can take

SUGI 28 Advanced Tutorials

2

the task. It is the truly advanced programmer who can
make a mountain out of a crumb! Let us review the
following questions to look further at these issues:

• What is a beginning programmer?
• What is an advanced programmer?
• Does use of a SAS component such as IML

make a programmer advanced?
• What is opportunity and when does it occur?

Only after one fully understands these questions, may
one begin to hold a firmer grasp on what makes an
advanced programmer tick. Beginners may understand
what direction to go in, while advanced programmers
may see how to go even farther in that direction.

What is a Beginning Programmer?

Fast and Easy Tip #2: Blame mistakes on junior
SAS programmers to ensure that they stay junior!

A beginning SAS programmer is one with either no
experience, some experience, or even many years of
experience covering the basics. These basics may often
be limited to only one or two specific components of SAS.
Years of experience are not always in sync with one’s skill
level. For example, a programmer who has worked for 5
years in SAS could still be considered a beginning
programmer if this individual continued to only utilize the
basics and never took (or never had the opportunity to
take) advantage of additional tools. One who shies away
from PROC TABULATE and hovers safely over multiple
PROC FREQs may be considered a beginner. One who
may be considered advanced in data manipulation but
who prefers to continually export data to other graphics
packages rather than learning the fine details of
SAS/GRAPH might also be considered a beginner in the
graphics area. When met with a challenge that cannot be
met easily with SAS, a beginning programmer may be
heard saying “Sorry, SAS does not do this.”

What is an Advanced Programmer?

Fast and Easy Tip #3: Give hot job tips to
threatening coworkers who infringe on your territory!

A programmer who may be considered advanced is quite
simply one who is able to “wow” everyone. Regardless of
the limitations of the SAS defaults, an advanced
programmer is able to force the software to do absolutely
anything. Difficult problems are rethought and reshaped
such that the advanced programmer is constantly
thinking how he or she might accomplish the task.
Additional routes outside of the norm and odd coding
schemes may be necessary to get SAS to do exactly
what one wants. To the advanced programmer, this is
everyday life in terms of going the extra mile, solving
problems independently, and as a bonus, often giving
something more than was originally requested. Being an
advanced programmer is not necessarily knowing more
complex code, but in a way, knowing where to go and
what tools to take advantage of to successfully complete
a task. Some concepts that an advanced programmer

may use would take beginning programmers eons to
figure out on their own. Advanced programmers are not
merely those who can type the “correct” code the
quickest, but more in how far one can take the task to
fully utilize all of the tools that are provided by SAS.

Does Use of a SAS Component Such as IML Make a
Programmer Advanced?

Fast and Easy Tip #4: Let the SAS/IML
programmer think that he or she is doing important
work while you do the REAL advanced work!

Most SAS programmers have never and will never use
SAS/IML. It is a component of SAS geared primarily
toward those heavy into mathematical and/or statistical
areas where complex formulas are used involving
calculations across various matrices of different sizes,
with data streaming across rows, columns, and
diagonals. Yuk! But, knowing how to use SAS/IML does
not necessarily make one an advanced programmer, nor
is one classified as a beginner programmer if he or she
has never used SAS/IML. An optimal scenario would be
if one was lucky enough to have an organization with
multiple resources where a SAS/IML programmer could
be utilized for the mathematical component and another
programmer could be used to put all of the pieces
together. The key here is how one would feed
information into a component of SAS such as IML (or any
other specialized SAS module) and how one would
extract this information and present it. It is this process
that is critical to the success of the advanced
programmer.

What is Opportunity and When Does it Occur?

Fast and Easy Tip #5: Always take the most
challenging tasks and leave the crumbs for others!

A large part of becoming an advanced programmer is
knowing what an opportunity is, and knowing when it
presents itself. To some programmers, opportunity may
be the chance to work on something exciting that has
been handed to them personally. This programmer might
be approached with “Here’s a great task. I want you to
have the opportunity to work on it.” But, could
opportunity come along before the “big picture” is so
apparent to everyone? One may never know what gold
may be created out of a crumb without one taking the
initiative and going into every task with an open mind.
Have you ever heard one of your coworkers say “Why did
Elmo get to take the lead on that task?” Perhaps that
same coworker had turned down the opportunity a year
earlier because the project was going nowhere and it just
didn’t seem fun enough. Most tasks have endless
possibilities for advancement that are not always so clear
at the start, and it is the advanced programmer who can
often drive a task farther than all of the other
programmers.

SUGI 28 Advanced Tutorials

3

ADVANCING “SIMPLE” CODE

Fast and Easy Tip #6: Stall the requestor of a task
until the next version of SAS comes out!

Let us begin to look at some examples of beginner code
stretching out to advanced code, and then advancing on
that a little further. Limitations in the flexibility of PROC
FREQ can affect just how good one’s output will look, and
in the case of this example, one is limited to the length of
variable labels. While SAS Version 8 amazed
programmers with the opportunity to go beyond 8
character format labels in the rows of cross tabulations,
the recently new 16 character wrap around feature has its
limitations as well. Beginner programmers may stop and
consider their job completed with the output shown in
Figure 1, although “Less than monthly” and “Daily/almost
daily” are sloppily wrapped. However, advanced
programmers would realize that there’s much more work
to be done. It is not necessarily the code that is
advanced, but the fact that the programmer knows that
there is another angle to solving the problem!

value patfreq

0='Never '
1='Monthly + '
2='Less than monthly '
3='Weekly '
4='Daily/almost daily';

patfreq(Pats on the back)
empmood(Employee Mood)

Frequency ‚Happy ‚Sad ‚ Total
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Never ‚ 5 ‚ 91 ‚ 96
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Monthly + ‚ 9 ‚ 32 ‚ 41
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Less than monthl ‚ 15 ‚ 11 ‚ 26
y ‚ ‚ ‚
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Weekly ‚ 23 ‚ 3 ‚ 26
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Daily/almost dai ‚ 57 ‚ 2 ‚ 59
ly ‚ ‚ ‚
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Total 109 139 248

Figure 1. Beginner Crosstab in PROC FREQ

A quick solution to this problem might simply be to utilize
ODS RTF since the default for such an output would
provide the additional column space needed (See Figure
2).

Figure 2. Default ODS RTF – Without Format Mods

But, let’s say that using ODS was not an option for this
task. What might one do to “pretty up” the output by just
using the immediate “basic” tools? The “advanced”
approach that one might take would be to simply modify
the format labels such that the formats would break
appropriately for a given report as shown in Figure 3.
While this solution seems quite simple, most beginner
programmers may not think of this alternative approach.
Again, having the ability to consider other solutions
outside of the typical boundaries is what helps shape an
advanced programmer. While there is no magical option
to give the programmer immediately what he or she
wants, this does not mean that it cannot be accomplished
in SAS.

value patfreq

0='Never '
1='Monthly + '
2='Less than monthly'
3='Weekly '
4='Daily/almost daily ';

patfreq(Pats on the back)
empmood(Employee Mood)

Frequency ‚Happy ‚Sad ‚ Total
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Never ‚ 5 ‚ 91 ‚ 96
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Monthly + ‚ 9 ‚ 32 ‚ 41
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Less than ‚ 15 ‚ 11 ‚ 26
monthly ‚ ‚ ‚
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Weekly ‚ 23 ‚ 3 ‚ 26
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Daily/almost ‚ 57 ‚ 2 ‚ 59
daily ‚ ‚ ‚
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Total 109 139 248

Figure 3. “Advanced” Crosstab in PROC FREQ

While the frequency in Figure 1 would have nicely
defaulted to the ODS RTF output in Figure 2 with no
modification of the format being needed, the new formats
in Figure 3 would produce undesirable results in the
default for ODS RTF output as shown in Figure 4. To
further complicate matters, Figure 4 would have looked
identical to Figure 2 had ODS HTML output been created.
Therefore, it is very important for a programmer to fully
understand the consequences of each programming
decision. What works for one task may not work for
another. The advanced programmer must be aware of
these idiosyncrasies when pooling together SAS tools.

Figure 4. Default ODS RTF – With Format Mods

Table of patfreq by empmood

patfreq(Pats on the
back)

empmood(Employee
Mood)

Frequency Happy Sad Total

Never 5 91 96

Monthly + 9 32 41

Less than monthly 15 11 26

Weekly 23 3 26

Daily/almost daily 57 2 59

Total 109 139 248

Table of patfreq by empmood

patfreq(Pats on the
back)

empmood(Employee
Mood)

Frequency Happy Sad Total

Never 5 91 96

Monthly + 9 32 41

Less than monthly 15 11 26

Weekly 23 3 26

Daily/almost daily 57 2 59

Total 109 139 248

SUGI 28 Advanced Tutorials

4

ADVANCING A PROCESS

Fast and Easy Tip #7: Employ programmers who
can type lots of code VERY fast!

Process improvement is key to an advanced
programmer. While many problems can be addressed by
any programmer using the most basic tools, larger
requests may sometimes be problematic for the
beginning programmer. For such work, it is essential for
the programmer to improve on the time and efficiency in
which a program is run unless of course one chooses to
type many times more code than is actually needed. The
final deliverable (the output) must be carefully considered
as well. Regardless of how good a programmer’s code is
considered to be, there is always most likely some aspect
of it that can be taken a step farther. Whether this extra
step or two is obvious or not most often depends on the
skill level of the programmer. A beginning programmer
may consider the day’s work completed, while an
advanced programmer will continue to push, pull, kick,
thrust, or do whatever is necessary to get the code to
process in the needed manner. Let us review a
progression in code starting at a level at which we might
expect a beginner to pursue.

• Task 1: Provide a crosstab using PROC FREQ of

daysoff vs. empmood with chi-square statistics

This task (#1) is quite simple and even the most beginner
programmer should be able to easily generate the code to
complete the task. All of the necessary information was
provided in the request and the resulting code would
merely be what is shown in Figure 5.

proc freq data=sugidata;

tables daysoff*empmood / chisq;

run;

Figure 5. Beginner Approach

A programmer who wanted to get a little more advanced
might anticipate that further requests may be coming
down the road and additional variable comparisons may
be needed. Therefore, the programmer could build a
simple macro to accommodate such requests where the
macro would drive what variables would be compared as
shown in Figure 6. If the programmer knew that a variety

%macro freqruns (var1=, var2=);

proc freq data=sugidata;

tables &var1 * &var2 / chisq;

run;

%mend freqruns;

%freqruns(var1=daysoff, var2=empmood)

Figure 6. Beginning to Prepare

of crosstabs may be requested in the future, then this
mechanism would allow for each input of 2 variables for
each run. While this may not seem like a huge savings in
code, consider the requestor who ends up asking for
several hundred frequencies, all of which need to have
some standard look.

• Task 2: Provide a cross tabulation using PROC
FREQ of daysoff and paydecreases vs. empmood
and provide chi square statistics as well as trend
tests.

After receiving Task 2, the programmer may begin to
realize that even though he or she had anticipated that
additional variables may be requested, the programmer
had assumed that only chi-square statistics would be run
and this rule does not hold true. Now the requestor has
also asked for trend tests, and the task will need to be
further enhanced. Nonetheless, the programmer is able
to very simply advance the code to perform this task by
further automating the task with macros. By continuing
to build on this macro, the programmer offers an
increased number of choices where a wider variety of
runs may be performed by simply specifying the
appropriate variables and statistical tests as shown in
Figure 7.

%macro freqruns(var1=, var2=, freqtest=);

proc freq data=sugidata;

tables &var1 * &var2 / &freqtest;

run;

%mend freqruns;

%freqruns(var1=daysoff, var2=empmood,

freqtest=chisq trend)

%freqruns(var1=paydecreases, var2=empmood,

freqtest=chisq trend)

Figure 7. Preparing to Advance

These programming statements are presented in a simple
manner, but one can perhaps imagine the potential
applications for such an approach with more complex
algorithms. A project that would require such
programming flexibility because of the number of ever
changing requests or more importantly, the massive
number of requests, would certainly benefit from such an
approach. This paper will not delve further into the
detailed possibilities for enhancing such an approach, but
one can imagine the potential uses for work dealing with
the generation of many runs (e.g. logistic), model
building, and routinely changing variables and options.
While these previous examples have shown more
advanced programming than was originally noted in Task
1, the intended audience of this paper is the advanced
SAS programmer, so we will therefore use these
examples as a foundation for advancing our code even
farther.

• Task 3: Provide a mechanism for a non-programmer

to run multiple SAS procedures on multiple variables
using multiple tests.

With the increasingly high number of tools provided by
SAS, programmers are now able to go beyond the basics,
beyond automation of just simple macros, into an entirely
different world. It is this new world that allows
programmers to meet Task 3 by setting up simple menus
for co-workers or even clients to perform various runs at
their own convenience without needing to generate official
programming requests for run after run. It is this issue
that we will pursue as one may ask, what could one do to

SUGI 28 Advanced Tutorials

5

be even MORE advanced with one’s code? So, back to
the purpose of this paper – identify all of the tools that are
available and incorporate them into a process that is easy
to use and to understand. The example shown in Figure
8 does exactly this. One is able to go beyond the

Figure 8. Advancing on the Advanced

traditional nifty macros and actually allow the end users
to do some individual frequency or crosstab runs of their
own. In this PROC FREQ menu, one is able to select up
to two variables as well as a single PROC FREQ option
within the TABLE statement. Imagine the look on the
requestors’ faces when they are presented with a simple,
menu-driven set of HTML screens that allow them to do
some exploratory work on their own without bothering
with all of those official request forms for programming!

While this is a very basic example, one might envision
the endless possibilities for code advancement here as
this simple example could be greatly expanded.
SAS/IntrNet was used for this example, but one could
have also taken advantage of SAS Enterprise Guide or
SAS Analyst depending on the needs of the project.
SAS/IntrNet allows one to gear a menu driven system
toward a specific project or specific client whose needs
may be much different than another client. One client
may be a statistician with some programming experience
while another client, or even coworker, may have
absolutely no background in this area and would need
more specific guidance. Of course, with such a case, one
would want to be very cautious regarding just what
information could be extracted so as to not have one of
those “clueless” employees misinterpret the data. By
utilizing SAS/IntrNet, one would have the following
advantages:

• The user does not need to have SAS software. So,

one could set up a menu on a network for internal
use by coworkers, or put on a server to be utilized via
a web page by anyone in the world..

• Time and expense could be significantly cut back if
one were able to do ad-hoc queries or much of the
preliminary work oneself.

Some of the basic code used to generate the example in
Figure 8, is shown below in Figure 9. Note that these
HTML statements are quite basic and that there is
considerable room for elaboration.

<h2>Fast and Easy Ways to Run Your Own Report</h2>
<h3>PROC FREQ Menu - Frequency Distributions and Crosstabs</h3>

Select Variable 1

<select name=report2 size=4>
<option value="*patfreq" selected>Pats on the back (PATFREQ)
<option value="*daysoff">Days off from work (DAYSOFF)
<option value="*paydecreases">Number of pay decreases

(PAYDECREASES)
<option value="*empmood">Employee mood (EMPMOOD)
</select>

Select Variable 2

<select name=report3 size=5>
<option value="*patfreq">Pats on the back (PATFREQ)
<option value="*daysoff">Days off from work (DAYSOFF)
<option value="*paydecreases">Number of pay decreases

(PAYDECREASES)
<option value="*empmood">Employee mood (EMPMOOD)
<option value=" " selected>None
</select>

Select Option

<select name=report4 size=4>
<option value=" " selected>None
<option value="trend">All Possible Options (ALL)
<option value="chisq">Chi-Square (CHISQ)
<option value="or">Cochran-Mantel-Haenszel (CMH)
</select>

<input type="HIDDEN" name="_PROGRAM"
value="myfile.sugi.sas">

<input type="HIDDEN" name="_SERVICE" value="ab">
<input type=submit value="Run Report">
<input type=reset value="Reset""></p>

Figure 9. HTML Code For PROC FREQ Menu

In Figure 10 below, code is shown for the SAS program
where various macros are called based on the
information generated by the user from the menu system.

ods html body=_webout(dynamic title='Reports')

path=&_tmpcat (url=&_replay) rs=none;

proc freq data=all;

tables &report2&report3 / &report4;

title1 "Job Satisfaction Study";

run;

ods html close;

Figure 10. HTML Code For Creation of Menu

This process ultimately results in output generated for the
user with a few simple clicks of the mouse. The user can
immediately save the output, or quickly go back to the
menu and perform additional queries. In summary, the
advancement of a process is really a project filled with
endless possibilities. The advanced programmer is the
one who can visualize all of these steps and determine
which one may best fit a given project. For some
projects, a basic PROC FREQ statement may do the trick
and any further work would be overkill. But for others,
there are few limits to one’s ability to advance work not
only for the programmer, but for the client as well.

SUGI 28 Advanced Tutorials

6

ADVANCING ODS OUTPUT/GRAPHICS

Fast and Easy Tip #8: Sell your SAS code to junior
coworkers in need of quick solutions!

ODS was a huge breakthrough for SAS. The introduction
of this powerful tool allowed programmers to more easily
retrieve important output information with much less
programming. It does, however, still take some clever
thinking to get exactly what one wants. One problem
faced by many programmers is that getting a grasp of
ODS output files can be difficult. Documentation by SAS
may be insufficient for some programmers, and they may
frequently need to rely on other users (e.g. SUGI, books
by users, and coworkers) to work through difficult ODS
issues.

Making Sense of the ODS Output Datasets

To provide more insight into such difficulties, let us take
an example where data are generated and filtered through
PROC GENMOD. To first understand the various ODS
output files that are available, one must issue an ODS
TRACE ON statement where the result is a listing of
information within the SAS LOG of all of the available
files. An example of one file is shown below in Figure 11,

Output Added:

Name: ModelInfo

Label: Model Information

Template: Stat.Genmod.ModelInfo

Path: Genmod.ModelInfo

Figure 11. Example of ODS Output Description

although there are actually six such files offered by PROC
GENMOD. Note that the file information can be difficult
to remember for just a single procedure not to mention all
of the SAS procedures, especially if a user does not
utilize these tools very often. The difficulty even grows as
one looks at all of the Template descriptions that are
provided by PROC GENMOD and realizes that detail is
essential. In Figure 12, one will see that not only must
one remember these extremely long output file names,
but SAS has not yet perfected consistency among the
names. These names seem to vary frequently between
upper and lower case as shown in the listing of template
names (e.g. “Stat.Genmod” vs. “stat.genmod”). If a
programmer were to call on these names in some
automated process, then this issue could affect its ability
to run successfully.

Stat.Genmod.ModelInfo

Stat.Genmod.Classlevels

stat.genmod.ModelFit

Stat.Genmod.ConvergenceStatus

stat.genmod.parameterestimates

Stat.Genmod.Obstats

Figure 12. ODS Templates For PROC GENMOD

It is this difficulty that leads us to our next “advanced”
topic. How can one avoid the hassle of having to figure
out what the output name is called, and then rerunning

the procedure to collect the desired information into the
appropriate ODS output file(s)? The solution is a macro
called OdsInfo that contains 3 distinct modules. The first
module is shown in Figure 13 where ODS TRACE is
turned on with a LISTING, and an ASCII file is created to
capture everything generated in the SAS Log.

%macro OdsInfo (module=, masterds=, procname=);

%if &module=capture %then %do;

proc printto print='c:\testout.txt' new;

ods trace on/listing;

%end;

Figure 13. Module 1 Code - Capture SAS Log

This first module is implemented by calling the macro
with the module variable set to “capture.” The system
would then be ready for a user to run any SAS procedure
such as PROC GENMOD as is run in Figure 14.

%OdsInfo(module=capture)

proc genmod data=examp;

class patfreq daysoff;

model empmood = patfreq daysoff /

dist=poisson link=log obstats;

Figure 14. Module 1 Call – Capture SAS Log

The second module is shown in Figure 15 where the
ASCII capture file is closed and a dataset is created that
contains ODS output information on whatever SAS
procedures have been run. Note that this dataset is able
to automatically identify the procedure that was run, and
that only new ODS file names are added to the master
file of ODS file information.

%else %if &module=collect %then %do;

proc printto; run;

data newinfo(drop=oread1 oread2);

retain oname olabel otemp opath;

infile 'c:\testout.txt' truncover;

input oread1 $ 1-5 oread2 $ 13-50;

if oread1='Name:' then oname=oread2;

else if oread1='Label' then olabel=oread2;

else if oread1='Templ' then otemp=oread2;

else if oread1='Path:' then do;

opath=oread2;

do i=1 to 20;

if substr(opath,i,1)='.' then i=20;

else if i=1 then procname =

substr(opath,i,1);

else procname=left(trim(procname))

|| (substr(opath,i,1));

end;

output;

end;

proc sort data=&masterds; by opath; run;

proc sort data=newinfo; by opath; run;

data &masterds;

merge &masterds(in=a) newinfo(in=b);

by opath; run;

%end;

Figure 15. Module 2 Code – Collect SAS Log

SUGI 28 Advanced Tutorials

7

This second module is implemented by calling the macro
with the module variable set to “collect” and identifying
the name of the master ODS collection file as shown in
Figure 16.

%OdsInfo(module=collect, masterds=mylib.odsinfo)

Figure 16. Module 2 Call – Collect SAS Log

Note that the program will compare a new file of ODS
names to the master file of names used so far by the
program. While the ODS names only need to be
captured and collected the first time that the procedure is
used, the program will continue to flow in the same
manner regardless of the number of times that it is run.
The program will only add new file names to the master
file. One caveat to this process would be that depending
on the statements and options that are used at the time of
the first run, it is possible that all output files will not
necessarily be generated. For example, running PROC
FREQ with a CHISQ option would generate 2 ODS output
files (CHISQ and CROSSTABFREQS) while the use of
the ALL option would produce 4 files (CHISQ,
CROSSTABFREQS, CMH, and MEASURES).

The third and final module, set to “open” (see Figure 17)
will read the master ODS collection file that contains ODS
file names for a given procedure and generate the
necessary ODS OUTPUT statements (see Figure 18).

%else %if &module=open %then %do;

data _null_;

set &masterds;

where procname="&procname";

call execute("ods output " || trim(oname)

|| "=" || trim(oname) || ";");

run;

%end;

%mend OdsInfo;

%OdsInfo(module=open, masterds=mylib.odsinfo,

procname=Genmod)
Figure 17. Module 3 Code/Call – Open ODS Files

NOTE: There were 6 observations read from the

data set WORK.ODSFILES.

MPRINT(ODSINFO): ods output ModelInfo=ModelInfo;

.

.

.

MPRINT(ODSINFO): ods output ObStats=ObStats ;

Figure 18. Automatic Call For ODS Output Files

With all of this automated processing now behind us, one
may now run a SAS procedure whose ODS information
has been captured, collected, and opened and the
corresponding SAS datasets will automatically be created
(see Figure 19). Note that another caveat with this
process is that if one wanted to call PROC GENMOD
several times, then the ODS output files could potentially
overwrite each other. This limitation could surely be
overcome with a little additional code by the adventurous
programmer.

proc genmod data=examp;

class patfreq daysoff;

model empmood = patfreq daysoff /

dist=poisson link=log obstats;

run;

NOTE: Algorithm converged.

NOTE: The scale parameter was held fixed.

NOTE: The data set WORK.OBSTATS has 6

observations and 17 variables.

NOTE: The data set WORK.PARAMETERESTIMATES has 7

observations and 9 variables.

NOTE: The data set WORK.CONVERGENCESTATUS has 1

observations and 2 variables.

NOTE: The data set WORK.MODELFIT has 5

observations and 4 variables.

NOTE: The data set WORK.CLASSLEVELS has 2

observations and 3 variables.

NOTE: The data set WORK.MODELINFO has 6

observations and 3 variables.
Figure 19. Automatic Creation of ODS Output Files

One may not actually need some or any of these output
datasets. Generating unneeded datasets may seem to be
a waste to some, but in reality, the datasets are quite
small. In this day and age, electronic data storage is
cheap, and their quick availability may save time in the
long run as one can avoid having to figure out how to
access a given ODS output file. By not accepting ODS
as it is sometimes awkwardly provided, one is able to
advance on coworkers unwilling to twist SAS a bit here
and there to force it to work for you.

Going Beyond the Basic ODS Graphics

Fast and Easy Tip #9: Delete SAS’s template
directory from the network and store it on your
personal hard drive!

Coming out in SAS Version 9.0 Production, SAS boasts
additional graphics that are automatically included with
ODS output for several of the SAS/STAT and SAS/ETS
procedures. This STAT/GRAPH feature is a warm
welcome to those programmers wanting to give
statisticians and analysts a nice, quick look at the results
without having to put forth any effort. These graphics are
produced automatically within an ODS output destination
(RTF, PDF, HTML, etc.) when including:

ODS GRAPHICS ON;

While on the surface this may seem quite wonderful, one
must be cautious of those requestors who always seem
to ask for a little bit more. In SAS Version 9.0, this is one
big con of using STAT/GRAPH as one is not able to
modify a graph that is produced and no code is provided.
So, while these ODS graphics may be intended for a
general look at the results, one might expect a more
advanced programmer to head back to the ever so
powerful tool, SAS/GRAPH to accomplish the same task.

Let us review an example of an autocorrelation graph
produced with PROC ARIMA as shown in the SAS

SUGI 28 Advanced Tutorials

8

documentation, “Statistical Graphics Using ODS in
Version 9 (Experimental).” Note that PROC ARIMA is a
procedure within SAS/ETS that “predicts a value in a
response time series as a linear combination of its own
past values, past errors (also called shocks or
innovations), and current and past values of other time
series.” The SAS statements in Figure 20 are taken
directly from the documentation as well as the graphic
that is automatically generated in ODS (see Figure 21).

proc arima data=airline;

identify var=logair(1,12) nlag=15;

run;

Figure 20. Example Code From SAS Documentation

Figure 21. ODS With Stat/Graph

Perhaps this may be as much as one hopes to
accomplish, but why not provide users with PROC
GPLOT code within SAS/GRAPH? This would not only
produce this exact same graph, but would also give the
programmer much greater flexibility and control over the
look of the output. For example, if one wanted to change
an axis scale, use different lines or values, or even
provide special annotations or notes, the STAT/GRAPH
output would not currently allow this in SAS 9.0. Luckily,
it sounds as if SAS has plans for future releases to
include the mechanism of providing code, templates, and
adding graphics to many other procedures.
Unfortunately, these plans will not benefit the
programmer who has work that is due by the close of
business today!

So, one asks what an advanced programmer might do
when taking a task a step farther, this offers a good
example of such a case. As mentioned, this same graph
could have been produced by first accessing PROC
ARIMA’s output data and utilizing the covariance output
datasets as shown in Figure 22. Note that this is as
simple as including a few words and then taking the extra
step of setting up the confidence intervals of the mean
(plus or minus 1.96 times the standard error).

proc arima data=airline;

identify var=logair(1,12) nlag=15

outcov=outcov;

run;

data outcov;

set outcov;

limit=1.96*stderr; /* upper limit */

output;

limit=-1*limit; /* lower limit */

output;

run;

Figure 22. Creating a File For SAS/GRAPH

Note that the data that make up the graph are very
straightforward as shown in the ODS autocorrelations
table below in Figure 23 where the correlations and
standard error values are used for plotting.

Autocorrelations

Lag Covariance Correlation Std Error

0 0.0020860 1.00000 0

1 -0.0007116 -.34112 0.087370

2 0.00021913 0.10505 0.097006

3 -0.0004217 -.20214 0.097870

4 0.00004456 0.02136 0.101007

5 0.00011610 0.05565 0.101042

6 0.00006426 0.03080 0.101275

7 -0.0001159 -.05558 0.101347

8 -1.5867E-6 -.00076 0.101579

9 0.00036791 0.17637 0.101579

10 -0.0001593 -.07636 0.103891

11 0.00013431 0.06438 0.104318

12 -0.0008065 -.38661 0.104621

13 0.00031624 0.15160 0.115011

14 -0.0001202 -.05761 0.116526

15 0.00031200 0.14957 0.116744

Figure 23. Example Output From PROC ARIMA

While the additional code to PROC ARIMA was
miniscule, the author must admit that the additional code
that would be needed to produce the same graph with
PROC GPLOT would take some extra time. For the
advanced programmer, this time may be small as the
annotation dataset and plotting statements are very basic
for the typical SAS/GRAPH user. Note that the code
shown in Figure 24 is not necessarily complicated, but it
is the advanced programmer that would know how to
quickly and efficiently put such a process together. This
code will provide a graph that looks very similar to the
graph that was automatically produced with ODS. It is

SUGI 28 Advanced Tutorials

9

with this minimal code that a programmer may continue
to enhance.

data anno;

length function style color $ 8 text $ 25;

function='label'; x=20.5; y=42;

text='Nobs = 131'; style='swissb'; size=1.0;

position='6'; output;

proc gplot data=outcov anno=anno;

plot corr*lag limit*lag /

overlay frame vaxis=axis1 haxis=axis2

nolegend;

axis1 label=(angle=90 rotate=0 font=swissb

'Correlation')

order=(-0.25 to 1.00 by 0.25)

value=(font=swissb)

minor=none offset=(7.6,2);

axis2 label=(font=swissb 'Lag')

order=(0 to 15 by 5)

value=(font=swissb)

minor=none offset=(1,1);

title1 font=swissb h=5.0 'ACF Plot';

symbol1 v= font=swissb h=1.0 interpol=needle

line=1 w=2.0 mode=include;

symbol2 v= font=swissb h=1.0 interpol=join

line=33 w=2.0 mode=include;

Figure 24. PROC GPLOT Code

By utilizing this process, the advanced programmer may
now have total control over the look and feel of the graph,
as will future programmers that may inherit the code. It is
not the ODS that has given this new look to SAS, but it is
the advanced programmer who once again has taken
SAS beyond the limits.

ADVANCING SAS/GRAPH

Fast and Easy Tip #10: Bury a line in your
program that will shut everything down after you quit
your job such as,

if substr("&sysdate",6,2) > '03' then stop;

SAS/GRAPH can be difficult to learn, and it can be
intimidating to beginning programmers. This may also
hold true for advanced programmers who use
SAS/GRAPH on only rare occasions. There are two
primary reasons for this difficultly: (1) if one does not use
the software routinely, frequent reference to
documentation is most often needed, and (2)
documentation provided by SAS may not always meet
the needs of all programmers. However, despite the
obstacles that one faces when trying to grasp these
graphical programming skills, a mastery of SAS/GRAPH
for even the most advanced SAS programmer will give
one the edge over other advanced programmers. This
edge comes in one being able to apply SAS/GRAPH to a
process such that the challenge is not just in creating a
graph, but in pooling multiple SAS resources together to
solve a problem and present it to a wider audience. Let
us take an example of a graphical presentation of odds

ratios (Mitchell, 2000) as shown in Figure 25 (for detailed
SAS statements that are used to generate this graph, see
“Forcing SAS/GRAPH Software To Meet My Statistical
Needs: A Graphical Presentation of Odds Ratios” in the
SUGI 25 Proceedings).

Figure 25. Graphical Presentation of Odds Ratios

This graph itself is not necessarily an advanced concept
as it is actually very common throughout statistical
journals where odds ratios are compared amongst
multiple studies. Unfortunately for the beginning
programmer, there is no magical PROC ODDSRATIO in
SAS/GRAPH so the effort to create the graph was fairly
challenging. What is so important about this graph is
that it went far beyond what SAS offers the general user.
This graph combined a variety of SAS tools and
incorporated them into multiple processes to generate
graphs for varying projects, studies, populations, and
notes. The programmer ignored the limitations of
SAS/GRAPH and presented information including the
following:

• Automatic generation of SYMBOL statements
based on the number of participating studies

• Automatic generation of shape sizes within
SYMBOL statements to show population sizes

• Automatic connecting of multiple lines to form
confidence intervals in a horizontal format
(SAS/GRAPH provides only vertical)

• Automatic generation of value symbols for
confidence intervals with special intervals (less
than the lowest or highest axis value)

• Automatic generation of footnotes for special
study exceptions

This graph can handle most datasets for any type of
study. Its components utilize the DATA STEP, macros,
PROC LOGISTIC in SAS/STAT, and PROC GPLOT in
SAS/GRAPH. Each of these components by themselves
are actually quite basic, but the combination of these
components together in an automated manner is what
makes the graph so unique. The effort that went into
creating the graph has been far surpassed by its use.
The graph has not only been utilized across multiple
projects within the author’s workplace, but it has also
been distributed and utilized by other programmers
throughout the world!

SUGI 28 Advanced Tutorials

10

ADVANCING SECRETS

Fast and Easy Tip #11: Create your own secret
directories, programs, and libraries!

Not all ways of advancing on your SAS coworkers are
technical in nature. Regardless of one’s technical know-
how, efficiency in programming, and nifty macro
processing skills, an advanced programmer must often
earn the trust and respect of coworkers in order to be
successful. Let us consider 4 important rules that may
also help a programmer advance:

• Spread the wealth
• Show me yours, and I’ll show you mine
• Take responsibility
• Don’t forget where you came from

By incorporating these rules into a programmer’s
everyday life, one may become a more complete
advanced programmer.

Spread the Wealth

Fast and Easy Tip #12: Take credit when others
aren’t there to accept it!

With multiple programmers often collaborating on a
project together, it is not so uncommon for one to be
overlooked when praise is given. The insecure
programmer may merely say “thanks” and ignore any
contributions from coworkers. The acknowledgement of
other team members who helped make something
happen is imperative, regardless of the success or failure
of a project. Spreading the wealth does not threaten the
truly advanced programmer as coworkers’ successes
(perhaps even more than your own) should be embraced.

Show Me Yours, and I’ll Show You Mine

Fast and Easy Tip #13: Never share a new tip or
technique that you’ve learned!

On a project with multiple programmers, sharing
programs and techniques can be very beneficial. One
may sometimes be wary of showing one’s program to
others for two reasons: (1) programmers may be
insecure about their work and worry that others will find
mistakes or criticize their approach, or (2) programmers
may worry that others will pick up on their nifty
programming tricks. It can be reassuring to have a fresh
set of eyes look something over that may have become a
blur to you some 1,000 lines of code ago! Additionally,
by being open with one’s coworkers, one may further gain
their trust and others may be more likely to come to you
with neat new techniques that could save you lots of time
and frustration in the future.

Take Responsibility

To gain long-term credibility, it is essential that one take
full responsibility for the work that one produces.

Honesty and openness will go a long way in getting
others to trust your work, as well as being able to keep
more junior SAS programmers under you in a motivated
environment. If you make a mistake, admit it! Taking
responsibility will not only make you feel good, but it will
also ensure the integrity of your work with the client.

Don’t Forget Where You Came From

All advanced programmers were beginners at some point
in their lives. By keeping this in mind, an advanced
programmer may better help beginning programmers by
giving them much needed guidance and support (with
patience!). The advanced programmer can be of
valuable assistance to the beginning programmer who
also hopes to quickly grow as a SAS programmer.

CONCLUSION

Regardless of the number of years of SAS programming
experience that one may have under his or her belt, there
is ALWAYS room for improvement. Even advanced
programmers should be able to find some way to improve
a process for either their own benefit, a team benefit, or
their client’s benefit. While a programmer may utilize
advanced techniques within a given component of SAS, it
is the advanced programmer who can successfully pool
techniques across multiple components to advance code
even farther than most can imagine.

REFERENCES

• Mitchell, R.M. (2000). Forcing SAS/GRAPH Software

to Meet My Statistical Needs: A Graphical
Presentation of Odds Ratios (Paper 167-25).
Proceedings of the 25th Annual SAS Users Group
International (SUGI) Conference.

• SAS Institute (2002). Statistical Graphics Using ODS
in Version 9 (Experimental). ODS Documentation.

ACKNOWLEDGEMENTS

SAS, SAS/GRAPH, SAS/IML, SAS/INTRNET, SAS/STAT,
and SAS/ETS are registered trademarks of SAS Institute
Inc. in the USA and other countries.  indicates USA
registration. Other brand and product names are
registered trademarks or trademarks of their respective
companies.

DISCLAIMER: The contents of this paper are the work of
the author and do not necessarily represent the opinions,
recommendations, or practices of Westat.

CONTACT INFORMATION

Rick M. Mitchell
Westat
1650 Research Boulevard, WB 496
Rockville, MD 20850
(301) 251-4386 (voice)
(301) 738-8379 (fax)
RickMitchell@Westat.com

SUGI 28 Advanced Tutorials

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

