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Reducing the CPU Time of Your SAS® Jobs by More than 80%: Dream or Reality? 
Nancy Croonen, SOLID Partners, Belgium 

ir. Henri Theuwissen, SOLID Partners, Belgium 
 

 

INTRODUCTION 
 
How often did you get a time ABEND in your SAS® job? How 
often did you get an “Out of Memory” error during your SAS job? 
How often did you get the error “Insufficient Space to store data 
set”? Analyzing vast quantities of data can not only be a chore 
but it can also be a resource hog. 
 
This paper focuses on processing large amounts of data and 
explores the ways in which you can save CPU time, disk space 
and memory in your SAS jobs. Topics include: 
 
• Basic efficiency techniques: things you know, but never use. 
• Advanced utilization of formats. 
• Save CPU time by avoiding sorting your data. 
• Space leaks. 
• The power of indexes. 
• The danger of compression. 
• Combining data. 
 
All topics are based on real life experiences, discovered during 
consulting activities, mainly in an MVS environment. Most items 
are also applicable to other platforms. 
 
Benchmarking results are summarized with tables whenever 
practical. Attendees should have a solid experience with Base 
SAS®. 
 
 

BASIC EFFICIENCY TECHNIQUES 
 
Although most of you are familiar with the following basic 
efficiency techniques, you often do not use them in your SAS 
programs. Hopefully, the following facts and figures will convince 
you that they serve a useful purpose. 
 
 

SELECTING OBSERVATIONS 
 
When you want to test for different values of a variable using the 
subsetting IF statement, you can choose between the IN operator 
or the OR operator. Intuitively you do not expect any difference in 
CPU time selecting either one of these methods. The examples 
below show that the IN operator requires more CPU time. The 
difference becomes even more important when testing on more 
values. 
 
 

PROGRAM 1-A 
 
DATA PRODUCTSALES; 
   SET SUGI28.SALES; 
   IF PRODUCT_ID IN ('111', '142', '152', 
                     '165', '166'); 
RUN; 

 
 
 

PROGRAM 1-B 
 
DATA PRODUCTSALES; 
   SET SUGI28.SALES; 
   IF PRODUCT_ID = '111' OR 
      PRODUCT_ID = '142' OR 
      PRODUCT_ID = '152' OR 
      PRODUCT_ID = '165' OR 
      PRODUCT_ID = '166'; 
RUN; 

 
 

PROGRAM 1-C 
 
DATA PRODUCTSALES; 
   SET SUGI28.SALES; 
   IF PRODUCT_ID IN ('111', '142', '152', 
                     '165', '166', '411', 
                     '412', '417', '421', 
                     '423', '519', '525', 
                     '526', '733', '736'); 
RUN; 

 
 

PROGRAM 1-D 
 
DATA PRODUCTSALES; 
   SET SUGI28.SALES; 
   IF PRODUCT_ID = '111' OR 
      PRODUCT_ID = '142' OR 
      PRODUCT_ID = '152' OR 
      PRODUCT_ID = '165' OR 
      PRODUCT_ID = '166' OR 
      PRODUCT_ID = '411' OR 
      PRODUCT_ID = '412' OR 
      PRODUCT_ID = '417' OR 
      PRODUCT_ID = '421' OR 
      PRODUCT_ID = '423' OR 
      PRODUCT_ID = '519' OR 
      PRODUCT_ID = '525' OR 
      PRODUCT_ID = '526' OR 
      PRODUCT_ID = '733' OR 
      PRODUCT_ID = '736'; 
RUN; 

 
 

PROGRAM 
NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

1-A 5 VALUES - IN 1.94 
1-B 5 VALUES - OR 0.80 

1-C 15 VALUES - IN 3.92 

1-D 15 VALUES - OR 0.90 

 
 
Subsetting data in a DATA step is possible through the IF 
statement or the WHERE statement. Usually the WHERE 
statement is more efficient than the IF statement, because the IF 
statement is executed on the data, being in the Program Data 
Vector, whereas the WHERE statement is executed before 
bringing the data in the Program Data Vector. The following 
examples show this behavior. 
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PROGRAM 2-A 
 
DATA CLIENT; 
   SET SUGI28.CLIENT; 
   IF LAST_NAME = 'VAN BRUSSEL'; 
RUN; 

 
 

PROGRAM 2-B 
 
DATA CLIENT; 
   SET SUGI28.CLIENT; 
   WHERE LAST_NAME = 'VAN BRUSSEL'; 
RUN; 

 
 
You need to be careful though when using functions in WHERE 
statements. The following examples show that using the 
SUBSTR function in a WHERE statement increases the CPU 
time incredibly compared to the corresponding IF statement. 
When using a typical WHERE operand (LIKE), the same subset 
is created, but CPU time decreases and gives a better 
performance again compared to the subsetting IF statement. 
 
 

PROGRAM 2-C 
 
DATA CLIENT; 
   SET SUGI28.CLIENT; 
   IF SUBSTR (LAST_NAME, 1, 3) = 'VAN'; 
RUN; 

 
 

PROGRAM 2-D 
 
DATA CLIENT; 
   SET SUGI28.CLIENT; 
   WHERE SUBSTR (LAST_NAME, 1, 3) = 'VAN'; 
RUN; 

 
 

PROGRAM 2-E 
 
DATA CLIENT; 
   SET SUGI28.CLIENT; 
   WHERE LAST_NAME LIKE 'VAN%'; 
RUN; 

 
 

PROGRAM 
NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

2-A IF 0.09 
2-B WHERE 0.07 

2-C IF - SUBSTR 0.11 

2-D WHERE - SUBSTR 0.22 

2-E WHERE - LIKE 0.09 

 
 

RENAMING VARIABLES 
 
Combining tables using a MERGE statement in a DATA step 
requires a variable with the same name in both tables, to be used 
in the BY statement. When you need to combine two tables, and 
the common key field has a different name, many users write an 
additional DATA step, just to create a variable with the same 
name. It takes only a few seconds programmer time to write the 
DATA step, but this DATA step might require a lot of CPU time. 
Replacing this DATA step by the RENAME = option will save this 
CPU time. 
 

 
PROGRAM 1-A 
 
DATA SALES (DROP = CUSTOMER_ID); 
   SET SUGI28.SALES; 
   CLIENT_ID = CUSTOMER_ID; 
RUN; 
 
DATA SUGI28.CLIENTSALES; 
   MERGE SUGI28.CLIENT SALES (IN = IN_SALES); 
   BY CLIENT_ID; 
   IF IN_SALES; 
RUN; 

 
 

PROGRAM 1-B 
 
DATA SUGI28.CLIENTSALES; 
   MERGE SUGI28.CLIENT 
         SUGI28.SALES 
         (RENAME = (CUSTOMER_ID = CLIENT_ID) 
          IN = IN_SALES); 
   BY CLIENT_ID; 
   IF IN_SALES; 
RUN; 

 
 

PROGRAM 
NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

1-A NEW VARIABLE 5.66 
1-B RENAME 4.03 

 
 

REDUCING OBSERVATION LENGTH 
 
SAS® provides an entire library of powerful functions for data 
manipulation. Several of these functions have ‘space leaks’: If 
you do not specify a LENGTH statement to identify the resulting 
variable, you might waste a lot of disk space. Two examples 
illustrate this behavior. 
 
Within the first example the variable INITIALS contains the values 
that you expect, but the length of this variable equals the sum of 
the contributing variables. As a result, every observation in the 
output table contains 38 redundant blanks. Taking the client table 
with 100.000 observations you waste 3.8 MB. 
 
 

PROGRAM 1-A 
 
DATA CLIENT; 
   SET SUGI28.CLIENT; 
   INITIALS = SUBSTR (FIRST_NAME, 1, 1) !! 
              SUBSTR (LAST_NAME, 1, 1); 
RUN; 

 
 

PROGRAM 1-B 
 
DATA CLIENT; 
   SET SUGI28.CLIENT; 
   LENGTH INITIALS $ 2; 
   INITIALS = SUBSTR (FIRST_NAME, 1, 1) !! 
              SUBSTR (LAST_NAME, 1, 1); 
RUN; 
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Some functions – like the SCAN function – create a result with a 
default length of 200, being the maximum length of a character 
variable in release 6.12 of SAS and in all earlier releases. 
Fortunately in release 8, this value remains 200, and is not 
increased to the maximum length of a character variable (32 K). 
 
 

PROGRAM 2-A 
 
DATA CLIENT; 
   SET SUGI28.CLIENT; 
   CARD_COUNTRY = SCAN (CLIENT_ID, 1, '-'); 
   CARD_CITY    = SCAN (CLIENT_ID, 2, '-'); 
   CARD_NUMBER  = SCAN (CLIENT_ID, 3, '-'); 
RUN; 

 
 

PROGRAM 2-B 
 
DATA CLIENT; 
   SET SUGI28.CLIENT; 
   LENGTH CARD_COUNTRY CARD_CITY $ 2 
          CARD_NUMBER $ 8; 
   CARD_COUNTRY = SCAN (CLIENT_ID, 1, '-'); 
   CARD_CITY    = SCAN (CLIENT_ID, 2, '-'); 
   CARD_NUMBER  = SCAN (CLIENT_ID, 3, '-'); 
RUN; 

 
 

PROGRAM 
NUMBER 

DESCRIPTION ADDITIONAL 
LENGTH 

1-A SUBSTR 20 + 20   =  40 
1-B SUBSTR - LENGTH               2 

2-A SCAN 3 x 200   = 600 
2-B SCAN - LENGTH 2 + 2 + 8 =  12 

 
 

FORMATTING 
 
Formats are often used to group items together, without creating 
an additional variable. Did you ever consider working on the 
length of a formatted value to add an additional level of 
aggregation? 
 
 

PROGRAM 1-A 
 
DATA SALES; 
   SET SUGI28.SALES; 
   LENGTH PRODUCT_GROUP $ 1; 
   PRODUCT_GROUP = SUBSTR (PRODUCT_ID, 1, 1); 
RUN; 
 
PROC TABULATE DATA = SALES 
              FORMAT = COMMA12. NOSEPS; 
   CLASS PRODUCT_GROUP; 
   VAR SALES_AMOUNT; 
   TABLE PRODUCT_GROUP = ' ' ALL = 'TOTAL', 
         SALES_AMOUNT * SUM = ' '  
         / RTS = 15 BOX = 'PRODUCT GROUP'; 
RUN; 

 
 

 
 
 
 
 
 

PROGRAM 1-B 
 
PROC TABULATE DATA = SUGI28.SALES 
              FORMAT = COMMA12. NOSEPS; 
   CLASS PRODUCT_ID; 
   FORMAT PRODUCT_ID $1.; 
   VAR SALES_AMOUNT; 
   TABLE PRODUCT_ID = ' ' ALL = 'TOTAL', 
         SALES_AMOUNT * SUM = ' '  
         / RTS = 15 BOX = 'PRODUCT GROUP'; 
RUN; 

 
 

PROGRAM 2-A 
 
DATA SALES; 
   SET SUGI28.SALES; 
   SALES_YEAR = YEAR (SALES_DATE); 
RUN; 
 
PROC TABULATE DATA = SALES 
              FORMAT = COMMA12. NOSEPS; 
   CLASS SALES_YEAR; 
   VAR SALES_AMOUNT; 
   TABLE SALES_YEAR = ' ' ALL = 'TOTAL', 
         SALES_AMOUNT * SUM = ' '  
         / RTS = 12 BOX = 'SALES YEAR'; 
RUN; 

 
 

PROGRAM 2-B 
 
PROC TABULATE DATA = SUGI28.SALES 
              FORMAT = COMMA12. NOSEPS; 
   CLASS SALES_DATE; 
   FORMAT SALES_DATE YEAR4.; 
   VAR SALES_AMOUNT; 
   TABLE SALES_DATE = ' ' ALL = 'TOTAL', 
         SALES_AMOUNT * SUM = ' '  
         / RTS = 12 BOX = 'SALES YEAR'; 
RUN; 

 
 

PROGRAM 
NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

1-A NEW VARIABLE 3.89 
1-B FORMAT WIDTH 2.11 

2-A NEW VARIABLE 4.60 

2-B DATE FORMAT 3.84 

 
 
Within a large SAS program you might have several steps 
containing the same subsetting conditions. Maintenance of these 
programs often generates errors: you forget to modify the 
subsetting condition in one or more steps. To facilitate the 
maintenance process, you might create a user-defined format, 
and apply this format in the subsetting conditions, instead of 
specifying a large list of values. When changes are required, it is 
sufficient to update the user-defined format without having to 
adjust the subsetting condition at several places. 
 
 

PROGRAM 3-A 
 
DATA SALES_BELGIUM; 
   SET SUGI28.SALES; 
   WHERE SHOP_ID = 'B-A' OR 
         SHOP_ID = 'B-B' OR 
         SHOP_ID = 'B-L' OR 
         SHOP_ID = 'B-G'; 
RUN; 

SUGI 28 Advanced Tutorials



 4

PROGRAM 3-B 
 
PROC FORMAT LIB = SUGI28 FMTLIB; 
   VALUE $SHOPFMT 'B-A', 
                  'B-B', 
                  'B-L', 
                  'B-G'  = 'BELGIUM' 
                  'NL-A', 
                  'NL-DH', 
                  'NL-R' = 'THE NETHERLANDS'; 
RUN; 
 
OPTIONS FMTSEARCH = (SUGI28); 
 
DATA SALES_BELGIUM; 
   SET SUGI28.SALES; 
   WHERE PUT (SHOP_ID, $SHOPFMT.) 
         = 'BELGIUM'; 
RUN; 

 
 

PROGRAM 
NUMBER 

ADDITIONAL 
MAINTENANCE 

3-A FOR EACH USAGE (WHERE) 
3-B ONCE (FORMAT) 

 
 

SORTING 
 
Very often data is required in a specific order. It only takes a few 
seconds programmer time to type a PROC SORT step, and you 
often find too many PROC SORT steps in SAS programs. 
 
Through the SORT flag, stored in the descriptor portion of a SAS 
data set, a lot of redundant sorts are avoided. The SORT flag is 
copied to another table if a sorted table is treated by a procedure 
like for example the COPY procedure. A DATA step though will 
not copy the SORT flag, since within a DATA step you might add 
observations, change the value of the variable defined in the 
SORT flag, etc. 
 
Several users are not familiar with the SORTEDBY = option that 
was introduced in SAS Release 6. 
 
 

PROGRAM 1-A 
 
PROC SORT DATA = SUGI28.CLIENT; 
   BY CLIENT_ID; 
RUN; 
 
PROC CONTENTS DATA = SUGI28.CLIENT; 
RUN; 

 
 
 
 -----Sort Information----- 
 
 Sortedby:      Client_ID 
 Validated:     YES 
 Character Set: ANSI 
 

 
 
 
 
 
 
 
 

PROC SORT DATA = SUGI28.CLIENT; 
   BY CLIENT_ID; 
RUN; 

 
 
 
 NOTE: Input data set is already sorted, 
       no sorting done. 
 

 
 

PROC SORT DATA = SUGI28.CLIENT 
          OUT = CLIENT_SORT1; 
   BY CLIENT_ID; 
RUN; 

 
 
 
 NOTE: Input data set is already sorted; 
       it has been copied to the output 
       data set. 
 

 
 

DATA CLIENT_SORT2; 
   SET SUGI28.CLIENT; 
RUN; 
 
PROC CONTENTS DATA = CLIENT_SORT2; 
RUN; 

 
 
 
 Sorted:               NO 
 

 
 

DATA CLIENT_SORT3 (SORTEDBY = CLIENT_ID); 
   SET SUGI28.CLIENT; 
RUN; 

 
PROC CONTENTS DATA = CLIENT_SORT3; 
RUN; 

 
 
 
 -----Sort Information----- 
 
 Sortedby:      Client_ID 
 Validated:     NO 
 Character Set: ANSI 
 

 
 

PROC SORT DATA = CLIENT_SORT3; 
   BY CLIENT_ID; 
RUN; 

 
 
 
 NOTE: Input data set is already sorted, 
       no sorting done. 
 

 
 
Several consolidating procedures like TABULATE, FREQ, 
MEANS, SUMMARY return the result in sorted order. Still many 
users precede these procedures by a PROC SORT, sorting on 
the variables specified in the CLASS statement. According to 
these users, the execution of the subsequent procedure will be 
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faster. They forget to examine that they require more CPU time to 
sort the data than the gain in the subsequent procedure. 
 
The only reason to have a SORT procedure preceding for 
example the MEANS procedure is that you need BY processing. 
 
 

PROGRAM 2-A 
 
PROC SORT DATA = SUGI28.SALES OUT = SALES; 
   BY SHOP_ID CUSTOMER_ID; 
RUN; 
 
PROC SUMMARY DATA = SALES NWAY; 
   CLASS SHOP_ID CUSTOMER_ID; 
   VAR SALES_AMOUNT; 
   OUTPUT OUT = SUMSALES SUM =; 
RUN; 

 
 

PROGRAM 2-B 
 
PROC SUMMARY DATA = SUGI28.SALES NWAY; 
   CLASS SHOP_ID CUSTOMER_ID; 
   VAR SALES_AMOUNT; 
   OUTPUT OUT = SUMSALES SUM =; 
RUN; 

 
 

PROGRAM 
NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

2-A SORT - SUMMARY 10.50 
2-B SUMMARY  4.80 

 
 

INDEXING 
 
Although an index is considered for use in a WHERE statement 
and not in a subsetting IF statement, you still find several 
programs using an IF statement to subset a table with an index. 
The gain in CPU time becomes more important if the subset 
returned by the index is smaller. In the following examples, a 
simple index exists on the variables SHOP_ID and 
CUSTOMER_ID. The variable SHOP_ID has only 7 distinct 
values, whereas the variable CUSTOMER_ID contains 
approximately 80.000 different values. 
 
Accessing the data through the index on SHOP_ID returns +/- 15 
% of the data, resulting in only a small difference between the 
WHERE statement (using the index) and the IF statement 
(performing a sequential search). 
 
 

PROGRAM 1-A 
 
DATA SALES_B_B; 
   SET SUGI28.SALES_INDEXED; 
   IF SHOP_ID = 'B-B'; 
RUN; 

 
 

PROGRAM 1-B 
 
DATA SALES_B_B; 
   SET SUGI28.SALES_INDEXED; 
   WHERE SHOP_ID = 'B-B'; 
RUN; 

 
 
 

Accessing the data through the index on CUSTOMER_ID returns 
less than 0.01% of the data and is extremely fast compared to 
the subsetting IF statement. 
 
 

PROGRAM 2-A 
 
DATA SALES_NL_A_31678197; 
   SET SUGI28.SALES_INDEXED; 
   IF CUSTOMER_ID = 'NL-A-31678197'; 
RUN; 

 
 

PROGRAM 2-B 
 
DATA SALES_NL_A_31678197; 
   SET SUGI28.SALES_INDEXED; 
   WHERE CUSTOMER_ID = 'NL-A-31678197'; 
RUN; 

 
 
PROGRAM 
NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

1-A 7 SHOPS - IF 1.31 
1-B 7 SHOPS - WHERE 1.02 

2-A 100.000 CLIENTS - IF 0.76 

2-B 100.000 CLIENTS - WHERE 0.01 

 
 

COMPRESSING 
 
Compression can be useful if disk space is a problem. 
Compression must be added in a sensible way: Both 
compressing the data and decompressing the data requires CPU 
time. 
 
Never specify the COMPRESS = YES option in the global 
OPTIONS statement. 
 
The following examples illustrate the CPU cost of compression: 
an input SAS data set is sorted into an output SAS data set. All 
combinations of compressed - not compressed are examined. 
 
 

PROGRAM 1-A 
 
PROC SORT DATA = SUGI28.CLIENT 
          OUT = CLIENT; 
   BY HOME_CITY; 
RUN; 

 
 

PROGRAM 1-B 
 
PROC SORT DATA = SUGI28.CLIENT 
          OUT = CLIENT_COMPRRESSED 
                (COMPRESS = YES); 
   BY HOME_CITY; 
RUN; 

 
 

PROGRAM 1-C 
 
PROC SORT DATA = SUGI28.CLIENT_COMPRESSED 
          OUT = CLIENT; 
   BY HOME_CITY; 
RUN; 
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PROGRAM 1-D 
 
PROC SORT DATA = SUGI28.CLIENT_COMPRESSED 
          OUT = CLIENT_COMPRESSED 
                (COMPRESS = YES); 
   BY HOME_CITY; 
RUN; 

 
 

PROGRAM 
NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

1-A INPUT NOT COMPRESSED 
OUTPUT NOT COMPRESSED 

0.51 

1-B INPUT NOT COMPRESSED 
OUTPUT COMPRESSED 

0.78 

1-C INPUT COMPRESSED 
OUTPUT NOT COMPRESSED 

0.48 

1-D INPUT COMPRESSED 
OUTPUT COMPRESSED 

0.80 

 
 

SUBSETTING EXTERNAL FILES 
 
The INPUT statement, structuring the input buffer’s content into 
variables in the Program Data Vector will consume quite some 
CPU time. If you only need to process a subset of the external 
file, only examine part of the input buffer, and if this part meets 
your subsetting condition, examine the rest of the input buffer. 
The trailing @ in the INPUT statement allows holding contents 
the input buffer. 
 
 

PROGRAM 1-A 
 
DATA CLIENT; 
   INFILE CLIENT; 
   INPUT CLIENT_ID    $  1 - 14 
         LAST_NAME    $ 16 - 35 
         FIRST_NAME   $ 37 - 56 
         HOME_CITY    $ 58 - 77 
         HOME_COUNTRY $ 79 - 93 
         …; 
RUN; 
 
DATA CLIENT_LEUVEN; 
   SET CLIENT; 
   IF HOME_CITY = 'LEUVEN'; 
RUN; 

 
 

PROGRAM 1-B 
 
DATA CLIENT_LEUVEN; 
   INFILE CLIENT; 
   INPUT CLIENT_ID    $  1 - 14 
         LAST_NAME    $ 16 - 35 
         FIRST_NAME   $ 37 - 56 
         HOME_CITY    $ 58 - 77 
         HOME_COUNTRY $ 79 - 93 
         …; 
   IF HOME_CITY = 'LEUVEN'; 
RUN; 

 
 

 
 
 
 
 
 

PROGRAM 1-C 
 
DATA CLIENT_LEUVEN; 
   INFILE CLIENT; 
   INPUT  HOME_CITY   $ 58 - 77 @; 
   IF HOME_CITY = 'LEUVEN'; 
   INPUT CLIENT_ID    $  1 - 14 
         LAST_NAME    $ 16 - 35 
         FIRST_NAME   $ 37 - 56 
         HOME_COUNTRY $ 79 - 93 
         …; 
RUN; 

 
 
PROGRAM 
NUMBER 

DESCRIPTION CPU TIME 
(MINUTES) 

1-A DATA (INPUT) - DATA (IF) 4:22.80 
1-B DATA (INPUT - IF) 2:25.98 

1-C DATA (INPUT @ - IF - INPUT) 0:15.91 

 
 
The CPU gain will be more important when processing more 
input lines and when the input record creates more variables. 
 
 

EFFICIENTLY SUMMARIZING DATA 
 

CREATING SUMMARIZED SAS DATA SETS 
 
Sometimes one column uniquely identifies other columns in a 
table. In other words, there is a 1-to-1 relation between this 
unique identifier and several other columns in the table. For 
example a client ID uniquely identifies 1 client name, who lives in 
1 city, etc. 
 
Suppose you need to consolidate data, and the consolidated 
result should contain the unique identifier as well as some other 
descriptive information. In that case, you should consider using 
an ID statement instead of specifying all columns in the CLASS 
statement. There is an important gain in memory usage and CPU 
time. 
 
 

PROGRAM 1-A 
 
PROC SUMMARY DATA = SUGI28.CLIENTSALES; 
   CLASS CLIENT_ID 
         LAST_NAME 
         FIRST_NAME 
         HOME_CITY 
         HOME_COUNTRY; 
   VAR SALES_AMOUNT; 
   OUTPUT OUT = SUMSALES SUM =; 
RUN; 

 
 

PROGRAM 1-B 
 
PROC SUMMARY DATA = SUGI28.CLIENTSALES; 
   CLASS CLIENT_ID; 
   ID LAST_NAME 
      FIRST_NAME 
      HOME_CITY 
      HOME_COUNTRY; 
   VAR SALES_AMOUNT; 
   OUTPUT OUT = SUMSALES SUM =; 
RUN; 
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The SUMMARY procedure by default creates an output SAS data 
set  with all the different _TYPE_ values. If you are interested in 
only a few of them, there are several possibilities to create this 
subset, as shown in the following examples: 
 
• Very often users execute the SUMMARY procedure, 

followed by an additional DATA step to remove the 
redundant _TYPE_ observations. Most users never code a 
WHERE = option for an output SAS data set. This will 
remove the need of the extra DATA step, and even your 
SUMMARY procedure will be faster, since less records have 
to be written to the output SAS data set. 

• With release 8 SAS introduced new statements to request 
only specific combinations of CLASS variables. The TYPES 
statement identifies which of the possible combinations of 
CLASS variables to generate. The WAYS statement 
specifies the number of ways to make unique combinations 
of CLASS variables. These statements will reduce the 
memory requirements, but consume more CPU time. 

• Finally an attempt is made to execute the consolidation in 2 
phases: First a SUMMARY procedure is executed, creating 
the NWAY result. Afterwards a second SUMMARY 
procedure is executed on this (small) NWAY table. 

 
 

PROGRAM 2-A 
 
PROC SUMMARY DATA = SUGI28.CLIENTSALES; 
   CLASS SHOP_ID 
         PRODUCT_ID 
         HOME_CITY 
         LANGUAGE; 
   VAR SALES_AMOUNT; 
   OUTPUT OUT = SUMSALES SUM =; 
RUN; 
 
DATA SUMSALES; 
   SET SUMSALES; 
   IF _TYPE_ IN (3, 5, 6, 9, 10, 12); 
RUN; 

 
 

PROGRAM 2-B 
 
PROC SUMMARY DATA = SUGI28.CLIENTSALES; 
   CLASS SHOP_ID 
         PRODUCT_ID 
         HOME_CITY 
         LANGUAGE; 
   VAR SALES_AMOUNT; 
   OUTPUT OUT = SUMSALES 
   (WHERE = (_TYPE_ IN (3, 5, 6, 9, 10, 12))) 
          SUM =; 
RUN; 

 
 

PROGRAM 2-C 
 
PROC SUMMARY DATA = SUGI28.CLIENTSALES; 
   CLASS SHOP_ID 
         PRODUCT_ID 
         HOME_CITY 
         LANGUAGE; 
   VAR SALES_AMOUNT; 
   WAYS 2; 
   OUTPUT OUT = SUMSALES SUM =; 
RUN; 

 
 

 
 

PROGRAM 2-D 
 
PROC SUMMARY DATA = SUGI28.CLIENTSALES; 
   CLASS SHOP_ID 
         PRODUCT_ID 
         HOME_CITY 
         LANGUAGE; 
   VAR SALES_AMOUNT; 
   TYPES SHOP_ID * PRODUCT_ID 
         SHOP_ID * HOME_CITY  
         SHOP_ID * LANGUAGE 
         PRODUCT_ID * HOME_CITY 
         PRODUCT_ID * LANGUAGE 
         HOME_CITY * LANGUAGE; 
   OUTPUT OUT = SUMSALES SUM =; 
RUN; 

 
 

PROGRAM 2-E 
 
PROC SUMMARY DATA = SUGI28.CLIENTSALES NWAY; 
   CLASS SHOP_ID 
         PRODUCT_ID 
         HOME_CITY 
         LANGUAGE; 
   VAR SALES_AMOUNT; 
   OUTPUT OUT = SUMSALES_NWAY SUM =; 
RUN; 
 
PROC SUMMARY DATA = SUMSALES_NWAY; 
   CLASS SHOP_ID 
         PRODUCT_ID 
         HOME_CITY 
         LANGUAGE; 
   VAR SALES_AMOUNT; 
   OUTPUT OUT = SUMSALES 
   (WHERE = (_TYPE_ IN (3, 5, 6, 9, 10, 12))) 
          SUM =; 
RUN; 

 
 

PROGRA
M 

NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

1-A SUMMARY (CLASS) 16.01 
1-B SUMMARY (CLASS - ID)  6.60 

2-A SUMMARY -  
DATA (IF) 

 7.93 

2-B SUMMARY (WHERE)  7.67 

2-C SUMMARY (WAYS) 10.32 

2-D SUMMARY (TYPES) 10.52 

2-E SUMMARY (NWAY) - 
SUMMARY (WHERE) 

 8.07 

 
 

PROGRA
M 

NUMBER 

DESCRIPTION MEMORY 
(K) 

1-A SUMMARY (CLASS) 111.974 
1-B SUMMARY (CLASS - ID) 19.270 

2-A SUMMARY -  
DATA (IF) 

10.353
132 

2-B SUMMARY (WHERE) 10.363 

2-C SUMMARY (WAYS) 689 

2-D SUMMARY (TYPES) 689 

2-E SUMMARY (NWAY) - 
SUMMARY (WHERE) 

5.233
10.362 
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CREATING SUMMARY REPORTS 
 
The ID statement, discussed with the SUMMARY procedure is 
not available in the TABULATE procedure. Specifying a lot of 
variables in the CLASS statement and as a crossing in the 
TABLE statement will result in ‘Out of Memory’ errors and high 
CPU values. 
 
To create the result without memory problems, using less CPU 
time, precede the TABULATE procedure with a DATA step or 
DATA step VIEW that creates 1 variable, concatenating the other 
variables, and use this new variable in the TABLE statement in 
the TABULATE procedure. 
 
 

PROGRAM 1-A 
 
PROC TABULATE DATA = SUGI28.CLIENTSALES 
              FORMAT = COMMA12. NOSEPS; 
   CLASS CLIENT_ID LAST_NAME FIRST_NAME; 
   VAR SALES_AMOUNT; 
   TABLE CLIENT_ID * LAST_NAME * FIRST_NAME, 
         SALES_AMOUNT / RTS = 60; 
RUN; 

 
 

PROGRAM 1-B 
 
DATA CLIENTSALES (DROP = CLIENT_ID 
                         LAST_NAME 
                         FIRST_NAME); 
   SET SUGI28.CLIENTSALES; 
   CLIENT = CLIENT_ID !! 
            LAST_NAME !! 
            FIRST_NAME; 
RUN; 
 
PROC TABULATE DATA = CLIENTSALES 
              FORMAT = COMMA12. NOSEPS; 
   CLASS CLIENT; 
   VAR SALES_AMOUNT; 
   TABLE CLIENT, SALES_AMOUNT / RTS = 60; 
RUN; 

 
 

EFFICIENTLY COMBINING DATA 
 

CONCATENATING SAS DATA SETS 
 
Many users are familiar with the APPEND procedure for adding a 
new table immediately to a master table, without reading / writing 
the master table. Still, they rarely code the APPEND procedure, 
because they are used to typing the DATA step, which is coded 
very fast. 
 
In the next example the traditional DATA step concatenation 
capabilities are compared with using the OUTER UNION CORR 
operator in the SQL procedure. The result can also be created 
using the SQL INSERT statement to add all observations of the 
second table to the end of the master table. 
 
 

PROGRAM 1-A 
 
DATA SALES; 
   SET SALES SUGI28.SALES2003; 
RUN; 

 
 

PROGRAM 1-B 
 
PROC APPEND BASE = SALES 
            DATA = SUGI28.SALES2003; 
RUN; 

 
 

PROGRAM 1-C 
 
PROC SQL; 
   INSERT INTO SALES  
      SELECT * FROM SUGI28.SALES2003; 
QUIT; 

 
 

PROGRAM 1-D 
 
PROC SQL; 
   CREATE TABLE SALES AS 
      SELECT * 
         FROM SALES 
      OUTER UNION CORR 
      SELECT * 
         FROM SUGI28.SALES2003; 
QUIT; 

 
 

PROGRAM 
NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

1-A DATA (SET) 1.65 
1-B APPEND 0.11 

1-C SQL (INSERT INTO) 0.59 

1-D SQL (OUTER UNION CORR) 3.98 

 
 

INTERLEAVING SAS DATA SETS 
 
You can concatenate two sorted input SAS data sets into a 
sorted result in several ways. The following example compares 
the traditional DATA step followed by a SORT procedure with a 
BY statement immediately specified in the DATA step and with 
the OUTER UNION CORR operator with an ORDER BY clause in 
the SQL procedure. As expected the SQL procedure requires 
more CPU time than the DATA step. 
 
 

PROGRAM 1-A 
 
DATA SALES; 
   SET SUGI28.SALES_B SUGI28.SALES_NL; 
RUN; 
 
PROC SORT DATA = SALES; 
   BY SALES_DATE; 
RUN; 

 
 

PROGRAM 1-B 
 
DATA SALES; 
   SET SUGI28.SALES_B SUGI28.SALES_NL; 
   BY SALES_DATE; 
RUN; 
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PROGRAM 1-C 
 
PROC SQL; 
   CREATE TABLE SALES AS 
      SELECT *  
         FROM SUGI28.SALES_B 
      OUTER UNION CORR 
      SELECT *  
         FROM SUGI28.SALES_NL 
         ORDER BY SALES_DATE; 
QUIT; 

 
 

PROGRAM 
NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

1-A DATA (SET) - SORT  6.15 
1-B DATA (SET - BY)  2.10 

1-C SQL (OUTER UNION CORR - 
     ORDER BY) 

11.32 

 
 

MATCH-MERGING SAS DATA SETS 
 
When a table is the result of combining and consolidating three 
different input tables without a common key field, coding an SQL 
procedure is probably the most easy solution. It requires though 
more CPU time than a combination of several PROC SORT 
steps and DATA steps. The following examples illustrate the 
difference between SQL and traditional DATA step processing. A 
comparison between using the DISTINCT keyword or multiple 
variables in the GROUP BY clause in the SQL procedure is also 
examined. 
 
 

PROGRAM 1-A 
 
PROC SORT DATA = SUGI28.PURCHASE 
                 (KEEP = CUSTOMER_ID 
                         PRODUCT_ID 
                         QUANTITY) 
          OUT = PURCHASE; 
   BY PRODUCT_ID; 
RUN; 
 
DATA PRODUCTSALES (KEEP = CUSTOMER_ID 
                          PRODUCTSALES); 
   MERGE PURCHASE (IN = IN_PURCHASE) 
         SUGI28.PRODUCT (KEEP = PRODUCT_ID 
                                UNIT_PRICE); 
   BY PRODUCT_ID; 
   IF IN_PURCHASE; 
   PRODUCTSALES = QUANTITY * UNIT_PRICE; 
RUN; 
 
PROC SORT DATA = PRODUCTSALES 
   (RENAME = (CUSTOMER_ID = CLIENT_ID)); 
   BY CLIENT_ID; 
RUN; 
 
DATA CLIENTSALES; 
   MERGE PRODUCTSALES (IN = IN_PRODUCTSALES)  
         SUGI28.CLIENT (KEEP = CLIENT_ID 
                               LAST_NAME 
                               FIRST_NAME); 
   BY CLIENT_ID; 
   IF IN_PRODUCTSALES; 
   IF FIRST.CLIENT_ID THEN CLIENTSALES = 0; 
   CLIENTSALES + PRODUCTSALES; 
   IF LAST.CLIENT_ID; 
RUN; 

 

 
PROGRAM 1-B 
 
PROC SQL; 
   CREATE TABLE CLIENTSALES AS 
      SELECT DISTINCT CLIENT_ID, 
                      LAST_NAME, 
                      FIRST_NAME, 
             SUM (QUANTITY * UNIT_PRICE) 
             AS CLIENTSALES 
         FROM SUGI28.CLIENT C, 
              SUGI28.PRODUCT PR, 
              SUGI28.PURCHASE PU 
         WHERE C.CLIENT_ID = PU.CUSTOMER_ID 
               AND 
               PR.PRODUCT_ID = PU.PRODUCT_ID 
         GROUP BY CLIENT_ID 
         ORDER BY CLIENTSALES DESC; 
QUIT; 

 
 

PROGRAM 1-C 
 
PROC SQL; 
   CREATE TABLE CLIENTSALES AS 
      SELECT CLIENT_ID, 
             LAST_NAME, 
             FIRST_NAME, 
             SUM (QUANTITY * UNIT_PRICE) 
             AS CLIENTSALES 
         FROM SUGI28.CLIENT C, 
              SUGI28.PRODUCT PR, 
              SUGI28.PURCHASE PU 
         WHERE C.CLIENT_ID = PU.CUSTOMER_ID 
               AND 
               PR.PRODUCT_ID = PU.PRODUCT_ID 
         GROUP BY CLIENT_ID, 
                  LAST_NAME, 
                  FIRST_NAME 
         ORDER BY CLIENTSALES DESC; 
QUIT; 

 
 

PROGRAM 
NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

1-A SORT - DATA (MERGE) -  
SORT - DATA (MERGE) 

13.17 

1-B SQL (DISTINCT) 27.33 

1-C SQL 31.04 

 
 

CONDITIONALLY MERGING SAS DATA SETS 
 
When you need to check every observation of a table with every 
other observation of the same table using tests like CONTAINS 
or BETWEEN, an easy solution is provided by using the SQL 
procedure. The execution of such a SQL step will usually require 
a lot of CPU time. 
 
Consider coding a complex DATA step to reduce the CPU time. 
Using multiple SET statements in the DATA step allows 
processing a table sequentially and combining each record with 
one or several records from the same or from another table. 
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PROGRAM 1-A 
 
PROC SQL; 
   CREATE TABLE POT_DUP (COMPRESS = YES) AS 
      SELECT A.CLIENTID, 
             B.CLIENTID AS _CLIENTID, 
             A.LNAME, 
             B.LNAME AS _LNAME, 
             A.FNAME, 
             B.FNAME AS _FNAME, 
             A.BIRTH, 
             B.BIRTH AS _BIRTH, 
             A.POSTCODE, 
             B.POSTCODE AS _POSTCODE, 
             A.STREET, 
             B.STREET AS _STREET, 
             A.NUMBER, 
             B.NUMBER AS _NUMBER, 
             A.SEX, 
             B.SEX AS _SEX 
         FROM CLIENTS A, 
              CLIENTS B 
         WHERE A.POSTCODE = B.POSTCODE AND 
               A.STREETKEY = B.STREETKEY AND 
               A.CLIENTID > B.CLIENTID AND 
               B.FNMKEY ? TRIM (A.FNMKEY) AND 
               (B.NMEKEY ? TRIM (A.NMEKEY) OR 
                A.NMEKEY ? TRIM (B.NMEKEY)); 
QUIT; 

 
 

PROGRAM 1-B 

 
DATA POT_DUP (DROP = START); 
   SET CLIENTS; 
   BY POSTCODE STREETKEY; 
   RETAIN START 0; 
   IF FIRST.STREETKEY THEN START = _N_; 
   OBSNR = START; 
   DO WHILE (OBSNR LT _N_); 
      SET CLIENTS (RENAME = ( 
                       CLIENTID = _CLIENTID 
                       LNAME = _LNAME 
                       FNAME = _FNAME 
                       BIRTH = _BIRTH 
                       POSTCODE = _POSTCODE 
                       STREET = _STREET 
                       NUMBER = _NUMBER 
                       SEX = _SEX 
                       STREETKEY = _STREETKEY 
                       NMEKEY = _NMEKEY 
                       FNMKEY = _FNMKEY)) 
              POINT = OBSNR; 
      IF INDEX (_FNMKEY, TRIM (FNMKEY)) > 0 
         AND 
         (INDEX (_NMEKEY, TRIM (NMEKEY)) > 0 
          OR 
          INDEX (NMEKEY, TRIM (_NMEKEY)) > 0) 
      THEN OUTPUT; 
      OBSNR = OBSNR + 1; 
   END; 
RUN; 

 
 

PROGRA
M 

NUMBER 

DESCRIPTION CPU TIME 
(SECONDS) 

1-A SQL 5711.03 
1-B DATA 1912.00 

 

CONCLUSION 
 
Many users write SAS programs to provide a quick solution for ad 
hoc questions. Since they assume that the programs will be 
executed only once no effort is spent on the efficiency of these 
jobs. 
 
However, often these programs become part of production jobs 
without verifying their efficiency due to strict deadlines. As a 
result a lot of CPU time and disk space is wasted, sometimes 
even requiring an earlier upgrade of the hardware with an 
important financial impact. 
 
In this paper we demonstrated that several techniques are 
available to reduce the resources (CPU time, disk space, 
memory usage) needed by your SAS jobs. It might just require a 
little more programmer time. 
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