
Paper 2-28

 1

Reducing the CPU Time of Your SAS® Jobs by More than 80%: Dream or Reality?
Nancy Croonen, SOLID Partners, Belgium

ir. Henri Theuwissen, SOLID Partners, Belgium

INTRODUCTION

How often did you get a time ABEND in your SAS® job? How
often did you get an “Out of Memory” error during your SAS job?
How often did you get the error “Insufficient Space to store data
set”? Analyzing vast quantities of data can not only be a chore
but it can also be a resource hog.

This paper focuses on processing large amounts of data and
explores the ways in which you can save CPU time, disk space
and memory in your SAS jobs. Topics include:

• Basic efficiency techniques: things you know, but never use.
• Advanced utilization of formats.
• Save CPU time by avoiding sorting your data.
• Space leaks.
• The power of indexes.
• The danger of compression.
• Combining data.

All topics are based on real life experiences, discovered during
consulting activities, mainly in an MVS environment. Most items
are also applicable to other platforms.

Benchmarking results are summarized with tables whenever
practical. Attendees should have a solid experience with Base
SAS®.

BASIC EFFICIENCY TECHNIQUES

Although most of you are familiar with the following basic
efficiency techniques, you often do not use them in your SAS
programs. Hopefully, the following facts and figures will convince
you that they serve a useful purpose.

SELECTING OBSERVATIONS

When you want to test for different values of a variable using the
subsetting IF statement, you can choose between the IN operator
or the OR operator. Intuitively you do not expect any difference in
CPU time selecting either one of these methods. The examples
below show that the IN operator requires more CPU time. The
difference becomes even more important when testing on more
values.

PROGRAM 1-A

DATA PRODUCTSALES;
 SET SUGI28.SALES;
 IF PRODUCT_ID IN ('111', '142', '152',
 '165', '166');
RUN;

PROGRAM 1-B

DATA PRODUCTSALES;
 SET SUGI28.SALES;
 IF PRODUCT_ID = '111' OR
 PRODUCT_ID = '142' OR
 PRODUCT_ID = '152' OR
 PRODUCT_ID = '165' OR
 PRODUCT_ID = '166';
RUN;

PROGRAM 1-C

DATA PRODUCTSALES;
 SET SUGI28.SALES;
 IF PRODUCT_ID IN ('111', '142', '152',
 '165', '166', '411',
 '412', '417', '421',
 '423', '519', '525',
 '526', '733', '736');
RUN;

PROGRAM 1-D

DATA PRODUCTSALES;
 SET SUGI28.SALES;
 IF PRODUCT_ID = '111' OR
 PRODUCT_ID = '142' OR
 PRODUCT_ID = '152' OR
 PRODUCT_ID = '165' OR
 PRODUCT_ID = '166' OR
 PRODUCT_ID = '411' OR
 PRODUCT_ID = '412' OR
 PRODUCT_ID = '417' OR
 PRODUCT_ID = '421' OR
 PRODUCT_ID = '423' OR
 PRODUCT_ID = '519' OR
 PRODUCT_ID = '525' OR
 PRODUCT_ID = '526' OR
 PRODUCT_ID = '733' OR
 PRODUCT_ID = '736';
RUN;

PROGRAM
NUMBER

DESCRIPTION CPU TIME
(SECONDS)

1-A 5 VALUES - IN 1.94
1-B 5 VALUES - OR 0.80

1-C 15 VALUES - IN 3.92

1-D 15 VALUES - OR 0.90

Subsetting data in a DATA step is possible through the IF
statement or the WHERE statement. Usually the WHERE
statement is more efficient than the IF statement, because the IF
statement is executed on the data, being in the Program Data
Vector, whereas the WHERE statement is executed before
bringing the data in the Program Data Vector. The following
examples show this behavior.

SUGI 28 Advanced Tutorials

 2

PROGRAM 2-A

DATA CLIENT;
 SET SUGI28.CLIENT;
 IF LAST_NAME = 'VAN BRUSSEL';
RUN;

PROGRAM 2-B

DATA CLIENT;
 SET SUGI28.CLIENT;
 WHERE LAST_NAME = 'VAN BRUSSEL';
RUN;

You need to be careful though when using functions in WHERE
statements. The following examples show that using the
SUBSTR function in a WHERE statement increases the CPU
time incredibly compared to the corresponding IF statement.
When using a typical WHERE operand (LIKE), the same subset
is created, but CPU time decreases and gives a better
performance again compared to the subsetting IF statement.

PROGRAM 2-C

DATA CLIENT;
 SET SUGI28.CLIENT;
 IF SUBSTR (LAST_NAME, 1, 3) = 'VAN';
RUN;

PROGRAM 2-D

DATA CLIENT;
 SET SUGI28.CLIENT;
 WHERE SUBSTR (LAST_NAME, 1, 3) = 'VAN';
RUN;

PROGRAM 2-E

DATA CLIENT;
 SET SUGI28.CLIENT;
 WHERE LAST_NAME LIKE 'VAN%';
RUN;

PROGRAM
NUMBER

DESCRIPTION CPU TIME
(SECONDS)

2-A IF 0.09
2-B WHERE 0.07

2-C IF - SUBSTR 0.11

2-D WHERE - SUBSTR 0.22

2-E WHERE - LIKE 0.09

RENAMING VARIABLES

Combining tables using a MERGE statement in a DATA step
requires a variable with the same name in both tables, to be used
in the BY statement. When you need to combine two tables, and
the common key field has a different name, many users write an
additional DATA step, just to create a variable with the same
name. It takes only a few seconds programmer time to write the
DATA step, but this DATA step might require a lot of CPU time.
Replacing this DATA step by the RENAME = option will save this
CPU time.

PROGRAM 1-A

DATA SALES (DROP = CUSTOMER_ID);
 SET SUGI28.SALES;
 CLIENT_ID = CUSTOMER_ID;
RUN;

DATA SUGI28.CLIENTSALES;
 MERGE SUGI28.CLIENT SALES (IN = IN_SALES);
 BY CLIENT_ID;
 IF IN_SALES;
RUN;

PROGRAM 1-B

DATA SUGI28.CLIENTSALES;
 MERGE SUGI28.CLIENT
 SUGI28.SALES
 (RENAME = (CUSTOMER_ID = CLIENT_ID)
 IN = IN_SALES);
 BY CLIENT_ID;
 IF IN_SALES;
RUN;

PROGRAM
NUMBER

DESCRIPTION CPU TIME
(SECONDS)

1-A NEW VARIABLE 5.66
1-B RENAME 4.03

REDUCING OBSERVATION LENGTH

SAS® provides an entire library of powerful functions for data
manipulation. Several of these functions have ‘space leaks’: If
you do not specify a LENGTH statement to identify the resulting
variable, you might waste a lot of disk space. Two examples
illustrate this behavior.

Within the first example the variable INITIALS contains the values
that you expect, but the length of this variable equals the sum of
the contributing variables. As a result, every observation in the
output table contains 38 redundant blanks. Taking the client table
with 100.000 observations you waste 3.8 MB.

PROGRAM 1-A

DATA CLIENT;
 SET SUGI28.CLIENT;
 INITIALS = SUBSTR (FIRST_NAME, 1, 1) !!
 SUBSTR (LAST_NAME, 1, 1);
RUN;

PROGRAM 1-B

DATA CLIENT;
 SET SUGI28.CLIENT;
 LENGTH INITIALS $ 2;
 INITIALS = SUBSTR (FIRST_NAME, 1, 1) !!
 SUBSTR (LAST_NAME, 1, 1);
RUN;

SUGI 28 Advanced Tutorials

 3

Some functions – like the SCAN function – create a result with a
default length of 200, being the maximum length of a character
variable in release 6.12 of SAS and in all earlier releases.
Fortunately in release 8, this value remains 200, and is not
increased to the maximum length of a character variable (32 K).

PROGRAM 2-A

DATA CLIENT;
 SET SUGI28.CLIENT;
 CARD_COUNTRY = SCAN (CLIENT_ID, 1, '-');
 CARD_CITY = SCAN (CLIENT_ID, 2, '-');
 CARD_NUMBER = SCAN (CLIENT_ID, 3, '-');
RUN;

PROGRAM 2-B

DATA CLIENT;
 SET SUGI28.CLIENT;
 LENGTH CARD_COUNTRY CARD_CITY $ 2
 CARD_NUMBER $ 8;
 CARD_COUNTRY = SCAN (CLIENT_ID, 1, '-');
 CARD_CITY = SCAN (CLIENT_ID, 2, '-');
 CARD_NUMBER = SCAN (CLIENT_ID, 3, '-');
RUN;

PROGRAM
NUMBER

DESCRIPTION ADDITIONAL
LENGTH

1-A SUBSTR 20 + 20 = 40
1-B SUBSTR - LENGTH 2

2-A SCAN 3 x 200 = 600
2-B SCAN - LENGTH 2 + 2 + 8 = 12

FORMATTING

Formats are often used to group items together, without creating
an additional variable. Did you ever consider working on the
length of a formatted value to add an additional level of
aggregation?

PROGRAM 1-A

DATA SALES;
 SET SUGI28.SALES;
 LENGTH PRODUCT_GROUP $ 1;
 PRODUCT_GROUP = SUBSTR (PRODUCT_ID, 1, 1);
RUN;

PROC TABULATE DATA = SALES
 FORMAT = COMMA12. NOSEPS;
 CLASS PRODUCT_GROUP;
 VAR SALES_AMOUNT;
 TABLE PRODUCT_GROUP = ' ' ALL = 'TOTAL',
 SALES_AMOUNT * SUM = ' '
 / RTS = 15 BOX = 'PRODUCT GROUP';
RUN;

PROGRAM 1-B

PROC TABULATE DATA = SUGI28.SALES
 FORMAT = COMMA12. NOSEPS;
 CLASS PRODUCT_ID;
 FORMAT PRODUCT_ID $1.;
 VAR SALES_AMOUNT;
 TABLE PRODUCT_ID = ' ' ALL = 'TOTAL',
 SALES_AMOUNT * SUM = ' '
 / RTS = 15 BOX = 'PRODUCT GROUP';
RUN;

PROGRAM 2-A

DATA SALES;
 SET SUGI28.SALES;
 SALES_YEAR = YEAR (SALES_DATE);
RUN;

PROC TABULATE DATA = SALES
 FORMAT = COMMA12. NOSEPS;
 CLASS SALES_YEAR;
 VAR SALES_AMOUNT;
 TABLE SALES_YEAR = ' ' ALL = 'TOTAL',
 SALES_AMOUNT * SUM = ' '
 / RTS = 12 BOX = 'SALES YEAR';
RUN;

PROGRAM 2-B

PROC TABULATE DATA = SUGI28.SALES
 FORMAT = COMMA12. NOSEPS;
 CLASS SALES_DATE;
 FORMAT SALES_DATE YEAR4.;
 VAR SALES_AMOUNT;
 TABLE SALES_DATE = ' ' ALL = 'TOTAL',
 SALES_AMOUNT * SUM = ' '
 / RTS = 12 BOX = 'SALES YEAR';
RUN;

PROGRAM
NUMBER

DESCRIPTION CPU TIME
(SECONDS)

1-A NEW VARIABLE 3.89
1-B FORMAT WIDTH 2.11

2-A NEW VARIABLE 4.60

2-B DATE FORMAT 3.84

Within a large SAS program you might have several steps
containing the same subsetting conditions. Maintenance of these
programs often generates errors: you forget to modify the
subsetting condition in one or more steps. To facilitate the
maintenance process, you might create a user-defined format,
and apply this format in the subsetting conditions, instead of
specifying a large list of values. When changes are required, it is
sufficient to update the user-defined format without having to
adjust the subsetting condition at several places.

PROGRAM 3-A

DATA SALES_BELGIUM;
 SET SUGI28.SALES;
 WHERE SHOP_ID = 'B-A' OR
 SHOP_ID = 'B-B' OR
 SHOP_ID = 'B-L' OR
 SHOP_ID = 'B-G';
RUN;

SUGI 28 Advanced Tutorials

 4

PROGRAM 3-B

PROC FORMAT LIB = SUGI28 FMTLIB;
 VALUE $SHOPFMT 'B-A',
 'B-B',
 'B-L',
 'B-G' = 'BELGIUM'
 'NL-A',
 'NL-DH',
 'NL-R' = 'THE NETHERLANDS';
RUN;

OPTIONS FMTSEARCH = (SUGI28);

DATA SALES_BELGIUM;
 SET SUGI28.SALES;
 WHERE PUT (SHOP_ID, $SHOPFMT.)
 = 'BELGIUM';
RUN;

PROGRAM
NUMBER

ADDITIONAL
MAINTENANCE

3-A FOR EACH USAGE (WHERE)
3-B ONCE (FORMAT)

SORTING

Very often data is required in a specific order. It only takes a few
seconds programmer time to type a PROC SORT step, and you
often find too many PROC SORT steps in SAS programs.

Through the SORT flag, stored in the descriptor portion of a SAS
data set, a lot of redundant sorts are avoided. The SORT flag is
copied to another table if a sorted table is treated by a procedure
like for example the COPY procedure. A DATA step though will
not copy the SORT flag, since within a DATA step you might add
observations, change the value of the variable defined in the
SORT flag, etc.

Several users are not familiar with the SORTEDBY = option that
was introduced in SAS Release 6.

PROGRAM 1-A

PROC SORT DATA = SUGI28.CLIENT;
 BY CLIENT_ID;
RUN;

PROC CONTENTS DATA = SUGI28.CLIENT;
RUN;

 -----Sort Information-----

 Sortedby: Client_ID
 Validated: YES
 Character Set: ANSI

PROC SORT DATA = SUGI28.CLIENT;
 BY CLIENT_ID;
RUN;

 NOTE: Input data set is already sorted,
 no sorting done.

PROC SORT DATA = SUGI28.CLIENT
 OUT = CLIENT_SORT1;
 BY CLIENT_ID;
RUN;

 NOTE: Input data set is already sorted;
 it has been copied to the output
 data set.

DATA CLIENT_SORT2;
 SET SUGI28.CLIENT;
RUN;

PROC CONTENTS DATA = CLIENT_SORT2;
RUN;

 Sorted: NO

DATA CLIENT_SORT3 (SORTEDBY = CLIENT_ID);
 SET SUGI28.CLIENT;
RUN;

PROC CONTENTS DATA = CLIENT_SORT3;
RUN;

 -----Sort Information-----

 Sortedby: Client_ID
 Validated: NO
 Character Set: ANSI

PROC SORT DATA = CLIENT_SORT3;
 BY CLIENT_ID;
RUN;

 NOTE: Input data set is already sorted,
 no sorting done.

Several consolidating procedures like TABULATE, FREQ,
MEANS, SUMMARY return the result in sorted order. Still many
users precede these procedures by a PROC SORT, sorting on
the variables specified in the CLASS statement. According to
these users, the execution of the subsequent procedure will be

SUGI 28 Advanced Tutorials

 5

faster. They forget to examine that they require more CPU time to
sort the data than the gain in the subsequent procedure.

The only reason to have a SORT procedure preceding for
example the MEANS procedure is that you need BY processing.

PROGRAM 2-A

PROC SORT DATA = SUGI28.SALES OUT = SALES;
 BY SHOP_ID CUSTOMER_ID;
RUN;

PROC SUMMARY DATA = SALES NWAY;
 CLASS SHOP_ID CUSTOMER_ID;
 VAR SALES_AMOUNT;
 OUTPUT OUT = SUMSALES SUM =;
RUN;

PROGRAM 2-B

PROC SUMMARY DATA = SUGI28.SALES NWAY;
 CLASS SHOP_ID CUSTOMER_ID;
 VAR SALES_AMOUNT;
 OUTPUT OUT = SUMSALES SUM =;
RUN;

PROGRAM
NUMBER

DESCRIPTION CPU TIME
(SECONDS)

2-A SORT - SUMMARY 10.50
2-B SUMMARY 4.80

INDEXING

Although an index is considered for use in a WHERE statement
and not in a subsetting IF statement, you still find several
programs using an IF statement to subset a table with an index.
The gain in CPU time becomes more important if the subset
returned by the index is smaller. In the following examples, a
simple index exists on the variables SHOP_ID and
CUSTOMER_ID. The variable SHOP_ID has only 7 distinct
values, whereas the variable CUSTOMER_ID contains
approximately 80.000 different values.

Accessing the data through the index on SHOP_ID returns +/- 15
% of the data, resulting in only a small difference between the
WHERE statement (using the index) and the IF statement
(performing a sequential search).

PROGRAM 1-A

DATA SALES_B_B;
 SET SUGI28.SALES_INDEXED;
 IF SHOP_ID = 'B-B';
RUN;

PROGRAM 1-B

DATA SALES_B_B;
 SET SUGI28.SALES_INDEXED;
 WHERE SHOP_ID = 'B-B';
RUN;

Accessing the data through the index on CUSTOMER_ID returns
less than 0.01% of the data and is extremely fast compared to
the subsetting IF statement.

PROGRAM 2-A

DATA SALES_NL_A_31678197;
 SET SUGI28.SALES_INDEXED;
 IF CUSTOMER_ID = 'NL-A-31678197';
RUN;

PROGRAM 2-B

DATA SALES_NL_A_31678197;
 SET SUGI28.SALES_INDEXED;
 WHERE CUSTOMER_ID = 'NL-A-31678197';
RUN;

PROGRAM
NUMBER

DESCRIPTION CPU TIME
(SECONDS)

1-A 7 SHOPS - IF 1.31
1-B 7 SHOPS - WHERE 1.02

2-A 100.000 CLIENTS - IF 0.76

2-B 100.000 CLIENTS - WHERE 0.01

COMPRESSING

Compression can be useful if disk space is a problem.
Compression must be added in a sensible way: Both
compressing the data and decompressing the data requires CPU
time.

Never specify the COMPRESS = YES option in the global
OPTIONS statement.

The following examples illustrate the CPU cost of compression:
an input SAS data set is sorted into an output SAS data set. All
combinations of compressed - not compressed are examined.

PROGRAM 1-A

PROC SORT DATA = SUGI28.CLIENT
 OUT = CLIENT;
 BY HOME_CITY;
RUN;

PROGRAM 1-B

PROC SORT DATA = SUGI28.CLIENT
 OUT = CLIENT_COMPRRESSED
 (COMPRESS = YES);
 BY HOME_CITY;
RUN;

PROGRAM 1-C

PROC SORT DATA = SUGI28.CLIENT_COMPRESSED
 OUT = CLIENT;
 BY HOME_CITY;
RUN;

SUGI 28 Advanced Tutorials

 6

PROGRAM 1-D

PROC SORT DATA = SUGI28.CLIENT_COMPRESSED
 OUT = CLIENT_COMPRESSED
 (COMPRESS = YES);
 BY HOME_CITY;
RUN;

PROGRAM
NUMBER

DESCRIPTION CPU TIME
(SECONDS)

1-A INPUT NOT COMPRESSED
OUTPUT NOT COMPRESSED

0.51

1-B INPUT NOT COMPRESSED
OUTPUT COMPRESSED

0.78

1-C INPUT COMPRESSED
OUTPUT NOT COMPRESSED

0.48

1-D INPUT COMPRESSED
OUTPUT COMPRESSED

0.80

SUBSETTING EXTERNAL FILES

The INPUT statement, structuring the input buffer’s content into
variables in the Program Data Vector will consume quite some
CPU time. If you only need to process a subset of the external
file, only examine part of the input buffer, and if this part meets
your subsetting condition, examine the rest of the input buffer.
The trailing @ in the INPUT statement allows holding contents
the input buffer.

PROGRAM 1-A

DATA CLIENT;
 INFILE CLIENT;
 INPUT CLIENT_ID $ 1 - 14
 LAST_NAME $ 16 - 35
 FIRST_NAME $ 37 - 56
 HOME_CITY $ 58 - 77
 HOME_COUNTRY $ 79 - 93
 …;
RUN;

DATA CLIENT_LEUVEN;
 SET CLIENT;
 IF HOME_CITY = 'LEUVEN';
RUN;

PROGRAM 1-B

DATA CLIENT_LEUVEN;
 INFILE CLIENT;
 INPUT CLIENT_ID $ 1 - 14
 LAST_NAME $ 16 - 35
 FIRST_NAME $ 37 - 56
 HOME_CITY $ 58 - 77
 HOME_COUNTRY $ 79 - 93
 …;
 IF HOME_CITY = 'LEUVEN';
RUN;

PROGRAM 1-C

DATA CLIENT_LEUVEN;
 INFILE CLIENT;
 INPUT HOME_CITY $ 58 - 77 @;
 IF HOME_CITY = 'LEUVEN';
 INPUT CLIENT_ID $ 1 - 14
 LAST_NAME $ 16 - 35
 FIRST_NAME $ 37 - 56
 HOME_COUNTRY $ 79 - 93
 …;
RUN;

PROGRAM
NUMBER

DESCRIPTION CPU TIME
(MINUTES)

1-A DATA (INPUT) - DATA (IF) 4:22.80
1-B DATA (INPUT - IF) 2:25.98

1-C DATA (INPUT @ - IF - INPUT) 0:15.91

The CPU gain will be more important when processing more
input lines and when the input record creates more variables.

EFFICIENTLY SUMMARIZING DATA

CREATING SUMMARIZED SAS DATA SETS

Sometimes one column uniquely identifies other columns in a
table. In other words, there is a 1-to-1 relation between this
unique identifier and several other columns in the table. For
example a client ID uniquely identifies 1 client name, who lives in
1 city, etc.

Suppose you need to consolidate data, and the consolidated
result should contain the unique identifier as well as some other
descriptive information. In that case, you should consider using
an ID statement instead of specifying all columns in the CLASS
statement. There is an important gain in memory usage and CPU
time.

PROGRAM 1-A

PROC SUMMARY DATA = SUGI28.CLIENTSALES;
 CLASS CLIENT_ID
 LAST_NAME
 FIRST_NAME
 HOME_CITY
 HOME_COUNTRY;
 VAR SALES_AMOUNT;
 OUTPUT OUT = SUMSALES SUM =;
RUN;

PROGRAM 1-B

PROC SUMMARY DATA = SUGI28.CLIENTSALES;
 CLASS CLIENT_ID;
 ID LAST_NAME
 FIRST_NAME
 HOME_CITY
 HOME_COUNTRY;
 VAR SALES_AMOUNT;
 OUTPUT OUT = SUMSALES SUM =;
RUN;

SUGI 28 Advanced Tutorials

 7

The SUMMARY procedure by default creates an output SAS data
set with all the different _TYPE_ values. If you are interested in
only a few of them, there are several possibilities to create this
subset, as shown in the following examples:

• Very often users execute the SUMMARY procedure,

followed by an additional DATA step to remove the
redundant _TYPE_ observations. Most users never code a
WHERE = option for an output SAS data set. This will
remove the need of the extra DATA step, and even your
SUMMARY procedure will be faster, since less records have
to be written to the output SAS data set.

• With release 8 SAS introduced new statements to request
only specific combinations of CLASS variables. The TYPES
statement identifies which of the possible combinations of
CLASS variables to generate. The WAYS statement
specifies the number of ways to make unique combinations
of CLASS variables. These statements will reduce the
memory requirements, but consume more CPU time.

• Finally an attempt is made to execute the consolidation in 2
phases: First a SUMMARY procedure is executed, creating
the NWAY result. Afterwards a second SUMMARY
procedure is executed on this (small) NWAY table.

PROGRAM 2-A

PROC SUMMARY DATA = SUGI28.CLIENTSALES;
 CLASS SHOP_ID
 PRODUCT_ID
 HOME_CITY
 LANGUAGE;
 VAR SALES_AMOUNT;
 OUTPUT OUT = SUMSALES SUM =;
RUN;

DATA SUMSALES;
 SET SUMSALES;
 IF _TYPE_ IN (3, 5, 6, 9, 10, 12);
RUN;

PROGRAM 2-B

PROC SUMMARY DATA = SUGI28.CLIENTSALES;
 CLASS SHOP_ID
 PRODUCT_ID
 HOME_CITY
 LANGUAGE;
 VAR SALES_AMOUNT;
 OUTPUT OUT = SUMSALES
 (WHERE = (_TYPE_ IN (3, 5, 6, 9, 10, 12)))
 SUM =;
RUN;

PROGRAM 2-C

PROC SUMMARY DATA = SUGI28.CLIENTSALES;
 CLASS SHOP_ID
 PRODUCT_ID
 HOME_CITY
 LANGUAGE;
 VAR SALES_AMOUNT;
 WAYS 2;
 OUTPUT OUT = SUMSALES SUM =;
RUN;

PROGRAM 2-D

PROC SUMMARY DATA = SUGI28.CLIENTSALES;
 CLASS SHOP_ID
 PRODUCT_ID
 HOME_CITY
 LANGUAGE;
 VAR SALES_AMOUNT;
 TYPES SHOP_ID * PRODUCT_ID
 SHOP_ID * HOME_CITY
 SHOP_ID * LANGUAGE
 PRODUCT_ID * HOME_CITY
 PRODUCT_ID * LANGUAGE
 HOME_CITY * LANGUAGE;
 OUTPUT OUT = SUMSALES SUM =;
RUN;

PROGRAM 2-E

PROC SUMMARY DATA = SUGI28.CLIENTSALES NWAY;
 CLASS SHOP_ID
 PRODUCT_ID
 HOME_CITY
 LANGUAGE;
 VAR SALES_AMOUNT;
 OUTPUT OUT = SUMSALES_NWAY SUM =;
RUN;

PROC SUMMARY DATA = SUMSALES_NWAY;
 CLASS SHOP_ID
 PRODUCT_ID
 HOME_CITY
 LANGUAGE;
 VAR SALES_AMOUNT;
 OUTPUT OUT = SUMSALES
 (WHERE = (_TYPE_ IN (3, 5, 6, 9, 10, 12)))
 SUM =;
RUN;

PROGRA
M

NUMBER

DESCRIPTION CPU TIME
(SECONDS)

1-A SUMMARY (CLASS) 16.01
1-B SUMMARY (CLASS - ID) 6.60

2-A SUMMARY -
DATA (IF)

 7.93

2-B SUMMARY (WHERE) 7.67

2-C SUMMARY (WAYS) 10.32

2-D SUMMARY (TYPES) 10.52

2-E SUMMARY (NWAY) -
SUMMARY (WHERE)

 8.07

PROGRA
M

NUMBER

DESCRIPTION MEMORY
(K)

1-A SUMMARY (CLASS) 111.974
1-B SUMMARY (CLASS - ID) 19.270

2-A SUMMARY -
DATA (IF)

10.353
132

2-B SUMMARY (WHERE) 10.363

2-C SUMMARY (WAYS) 689

2-D SUMMARY (TYPES) 689

2-E SUMMARY (NWAY) -
SUMMARY (WHERE)

5.233
10.362

SUGI 28 Advanced Tutorials

 8

CREATING SUMMARY REPORTS

The ID statement, discussed with the SUMMARY procedure is
not available in the TABULATE procedure. Specifying a lot of
variables in the CLASS statement and as a crossing in the
TABLE statement will result in ‘Out of Memory’ errors and high
CPU values.

To create the result without memory problems, using less CPU
time, precede the TABULATE procedure with a DATA step or
DATA step VIEW that creates 1 variable, concatenating the other
variables, and use this new variable in the TABLE statement in
the TABULATE procedure.

PROGRAM 1-A

PROC TABULATE DATA = SUGI28.CLIENTSALES
 FORMAT = COMMA12. NOSEPS;
 CLASS CLIENT_ID LAST_NAME FIRST_NAME;
 VAR SALES_AMOUNT;
 TABLE CLIENT_ID * LAST_NAME * FIRST_NAME,
 SALES_AMOUNT / RTS = 60;
RUN;

PROGRAM 1-B

DATA CLIENTSALES (DROP = CLIENT_ID
 LAST_NAME
 FIRST_NAME);
 SET SUGI28.CLIENTSALES;
 CLIENT = CLIENT_ID !!
 LAST_NAME !!
 FIRST_NAME;
RUN;

PROC TABULATE DATA = CLIENTSALES
 FORMAT = COMMA12. NOSEPS;
 CLASS CLIENT;
 VAR SALES_AMOUNT;
 TABLE CLIENT, SALES_AMOUNT / RTS = 60;
RUN;

EFFICIENTLY COMBINING DATA

CONCATENATING SAS DATA SETS

Many users are familiar with the APPEND procedure for adding a
new table immediately to a master table, without reading / writing
the master table. Still, they rarely code the APPEND procedure,
because they are used to typing the DATA step, which is coded
very fast.

In the next example the traditional DATA step concatenation
capabilities are compared with using the OUTER UNION CORR
operator in the SQL procedure. The result can also be created
using the SQL INSERT statement to add all observations of the
second table to the end of the master table.

PROGRAM 1-A

DATA SALES;
 SET SALES SUGI28.SALES2003;
RUN;

PROGRAM 1-B

PROC APPEND BASE = SALES
 DATA = SUGI28.SALES2003;
RUN;

PROGRAM 1-C

PROC SQL;
 INSERT INTO SALES
 SELECT * FROM SUGI28.SALES2003;
QUIT;

PROGRAM 1-D

PROC SQL;
 CREATE TABLE SALES AS
 SELECT *
 FROM SALES
 OUTER UNION CORR
 SELECT *
 FROM SUGI28.SALES2003;
QUIT;

PROGRAM
NUMBER

DESCRIPTION CPU TIME
(SECONDS)

1-A DATA (SET) 1.65
1-B APPEND 0.11

1-C SQL (INSERT INTO) 0.59

1-D SQL (OUTER UNION CORR) 3.98

INTERLEAVING SAS DATA SETS

You can concatenate two sorted input SAS data sets into a
sorted result in several ways. The following example compares
the traditional DATA step followed by a SORT procedure with a
BY statement immediately specified in the DATA step and with
the OUTER UNION CORR operator with an ORDER BY clause in
the SQL procedure. As expected the SQL procedure requires
more CPU time than the DATA step.

PROGRAM 1-A

DATA SALES;
 SET SUGI28.SALES_B SUGI28.SALES_NL;
RUN;

PROC SORT DATA = SALES;
 BY SALES_DATE;
RUN;

PROGRAM 1-B

DATA SALES;
 SET SUGI28.SALES_B SUGI28.SALES_NL;
 BY SALES_DATE;
RUN;

SUGI 28 Advanced Tutorials

 9

PROGRAM 1-C

PROC SQL;
 CREATE TABLE SALES AS
 SELECT *
 FROM SUGI28.SALES_B
 OUTER UNION CORR
 SELECT *
 FROM SUGI28.SALES_NL
 ORDER BY SALES_DATE;
QUIT;

PROGRAM
NUMBER

DESCRIPTION CPU TIME
(SECONDS)

1-A DATA (SET) - SORT 6.15
1-B DATA (SET - BY) 2.10

1-C SQL (OUTER UNION CORR -
 ORDER BY)

11.32

MATCH-MERGING SAS DATA SETS

When a table is the result of combining and consolidating three
different input tables without a common key field, coding an SQL
procedure is probably the most easy solution. It requires though
more CPU time than a combination of several PROC SORT
steps and DATA steps. The following examples illustrate the
difference between SQL and traditional DATA step processing. A
comparison between using the DISTINCT keyword or multiple
variables in the GROUP BY clause in the SQL procedure is also
examined.

PROGRAM 1-A

PROC SORT DATA = SUGI28.PURCHASE
 (KEEP = CUSTOMER_ID
 PRODUCT_ID
 QUANTITY)
 OUT = PURCHASE;
 BY PRODUCT_ID;
RUN;

DATA PRODUCTSALES (KEEP = CUSTOMER_ID
 PRODUCTSALES);
 MERGE PURCHASE (IN = IN_PURCHASE)
 SUGI28.PRODUCT (KEEP = PRODUCT_ID
 UNIT_PRICE);
 BY PRODUCT_ID;
 IF IN_PURCHASE;
 PRODUCTSALES = QUANTITY * UNIT_PRICE;
RUN;

PROC SORT DATA = PRODUCTSALES
 (RENAME = (CUSTOMER_ID = CLIENT_ID));
 BY CLIENT_ID;
RUN;

DATA CLIENTSALES;
 MERGE PRODUCTSALES (IN = IN_PRODUCTSALES)
 SUGI28.CLIENT (KEEP = CLIENT_ID
 LAST_NAME
 FIRST_NAME);
 BY CLIENT_ID;
 IF IN_PRODUCTSALES;
 IF FIRST.CLIENT_ID THEN CLIENTSALES = 0;
 CLIENTSALES + PRODUCTSALES;
 IF LAST.CLIENT_ID;
RUN;

PROGRAM 1-B

PROC SQL;
 CREATE TABLE CLIENTSALES AS
 SELECT DISTINCT CLIENT_ID,
 LAST_NAME,
 FIRST_NAME,
 SUM (QUANTITY * UNIT_PRICE)
 AS CLIENTSALES
 FROM SUGI28.CLIENT C,
 SUGI28.PRODUCT PR,
 SUGI28.PURCHASE PU
 WHERE C.CLIENT_ID = PU.CUSTOMER_ID
 AND
 PR.PRODUCT_ID = PU.PRODUCT_ID
 GROUP BY CLIENT_ID
 ORDER BY CLIENTSALES DESC;
QUIT;

PROGRAM 1-C

PROC SQL;
 CREATE TABLE CLIENTSALES AS
 SELECT CLIENT_ID,
 LAST_NAME,
 FIRST_NAME,
 SUM (QUANTITY * UNIT_PRICE)
 AS CLIENTSALES
 FROM SUGI28.CLIENT C,
 SUGI28.PRODUCT PR,
 SUGI28.PURCHASE PU
 WHERE C.CLIENT_ID = PU.CUSTOMER_ID
 AND
 PR.PRODUCT_ID = PU.PRODUCT_ID
 GROUP BY CLIENT_ID,
 LAST_NAME,
 FIRST_NAME
 ORDER BY CLIENTSALES DESC;
QUIT;

PROGRAM
NUMBER

DESCRIPTION CPU TIME
(SECONDS)

1-A SORT - DATA (MERGE) -
SORT - DATA (MERGE)

13.17

1-B SQL (DISTINCT) 27.33

1-C SQL 31.04

CONDITIONALLY MERGING SAS DATA SETS

When you need to check every observation of a table with every
other observation of the same table using tests like CONTAINS
or BETWEEN, an easy solution is provided by using the SQL
procedure. The execution of such a SQL step will usually require
a lot of CPU time.

Consider coding a complex DATA step to reduce the CPU time.
Using multiple SET statements in the DATA step allows
processing a table sequentially and combining each record with
one or several records from the same or from another table.

SUGI 28 Advanced Tutorials

 10

PROGRAM 1-A

PROC SQL;
 CREATE TABLE POT_DUP (COMPRESS = YES) AS
 SELECT A.CLIENTID,
 B.CLIENTID AS _CLIENTID,
 A.LNAME,
 B.LNAME AS _LNAME,
 A.FNAME,
 B.FNAME AS _FNAME,
 A.BIRTH,
 B.BIRTH AS _BIRTH,
 A.POSTCODE,
 B.POSTCODE AS _POSTCODE,
 A.STREET,
 B.STREET AS _STREET,
 A.NUMBER,
 B.NUMBER AS _NUMBER,
 A.SEX,
 B.SEX AS _SEX
 FROM CLIENTS A,
 CLIENTS B
 WHERE A.POSTCODE = B.POSTCODE AND
 A.STREETKEY = B.STREETKEY AND
 A.CLIENTID > B.CLIENTID AND
 B.FNMKEY ? TRIM (A.FNMKEY) AND
 (B.NMEKEY ? TRIM (A.NMEKEY) OR
 A.NMEKEY ? TRIM (B.NMEKEY));
QUIT;

PROGRAM 1-B

DATA POT_DUP (DROP = START);
 SET CLIENTS;
 BY POSTCODE STREETKEY;
 RETAIN START 0;
 IF FIRST.STREETKEY THEN START = _N_;
 OBSNR = START;
 DO WHILE (OBSNR LT _N_);
 SET CLIENTS (RENAME = (
 CLIENTID = _CLIENTID
 LNAME = _LNAME
 FNAME = _FNAME
 BIRTH = _BIRTH
 POSTCODE = _POSTCODE
 STREET = _STREET
 NUMBER = _NUMBER
 SEX = _SEX
 STREETKEY = _STREETKEY
 NMEKEY = _NMEKEY
 FNMKEY = _FNMKEY))
 POINT = OBSNR;
 IF INDEX (_FNMKEY, TRIM (FNMKEY)) > 0
 AND
 (INDEX (_NMEKEY, TRIM (NMEKEY)) > 0
 OR
 INDEX (NMEKEY, TRIM (_NMEKEY)) > 0)
 THEN OUTPUT;
 OBSNR = OBSNR + 1;
 END;
RUN;

PROGRA
M

NUMBER

DESCRIPTION CPU TIME
(SECONDS)

1-A SQL 5711.03
1-B DATA 1912.00

CONCLUSION

Many users write SAS programs to provide a quick solution for ad
hoc questions. Since they assume that the programs will be
executed only once no effort is spent on the efficiency of these
jobs.

However, often these programs become part of production jobs
without verifying their efficiency due to strict deadlines. As a
result a lot of CPU time and disk space is wasted, sometimes
even requiring an earlier upgrade of the hardware with an
important financial impact.

In this paper we demonstrated that several techniques are
available to reduce the resources (CPU time, disk space,
memory usage) needed by your SAS jobs. It might just require a
little more programmer time.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Please feel free to contact the authors at:

 Nancy CROONEN
 SOLID Partners NV
 Minervastraat 14 bis
 B-1930 ZAVENTEM
 BELGIUM
 Work Phone: +32 496 28 45 28
 Fax: +32 2 706 03 09
 Email: nancy.croonen@solidpartners.be
 Web: www.solidpartners.be

 Henri THEUWISSEN
 SOLID Partners NV
 Minervastraat 14 bis
 B-1930 ZAVENTEM
 BELGIUM
 Work Phone: +32 495 54 52 53
 Fax: +32 2 706 03 09
 Email: henri.theuwissen@solidpartners.be
 Web: www.solidpartners.be

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

SUGI 28 Advanced Tutorials

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

