

1

Paper 251-27

A Randomization-test Wrapper for SAS® PROCs
David L. Cassell, CSC

ABSTRACT

SAS/STAT® procedures are often used in settings where
the underlying model assumptions are not really met.
Permutation tests can permit one to assess correct p-
values in many of these cases, but too often the total
number of permutations is unmanageable. Instead, a
randomization test using a random subset of all
permutations can be used. This paper demonstrates a
flexible, extensible pair of 'wrapper' macros which allow
the user to use almost any SAS® PROC and get a
randomization p-value for the desired test at the back end.
The wrapper is a front macro to create the data set of
replicates with a randomized dependent variable, and a
back macro to process the results of the SAS® PROC and
compute the p-value according to a randomization test.
These bracket the already-written SAS® procedure or
process, which requires minimal alteration. We
demonstrate the wrapper on several SAS® procedures,
using standard output data sets as well as tables pulled
out using ODS.

THE PROBLEM

While SAS/STAT® procedures provide a wide range of
facilities for data analysis, only too often the data refuse to
cooperate. We wish to perform an analysis of variance,
but the errors are not normal, or do not have variances
equal across the treatment categories. Standard data
transforms are often applied. Welch's variance-weighted
ANOVA is sometimes used for one-way ANOVA
problems. Nonparametric procedures are often applied,
such as the Kruskal-Wallis test available in PROC
NPAR1WAY. But none of these are applicable all the
time, and most become problematic when more complex
analyses are desired.

Consider a dataset of biodiversity measures taken from a
probability sample of sites. Unfortunately, some sites
have no biota in the taxa of interest, yielding a large
number of zeroes in the resulting dataset. The poorer
habitats are more likely to have zeroes for diversity
measures, so these zeroes have to be preserved in the
data. The data are therefore clearly non-normal, and may
even have serious issues with heterogeneity of variance.

An alternative is the standard permutation test. This test
uses all possible distinct permutations of the dependent
variable, holding the independent vairables fixed.
Performing the original statistical analysis on all such
permutations allows one to evaluate how the actual
structure of the data compares to random re-
arrangements of the data.

Unfortunately, a typical full permutation test is too time-
consuming. Consider the above example with a small
dataset. Assume there are 34 observations in three
habitats, with 12 observations in the first two habitat types

and 10 in the third habitat. The number of distinct
permutations is thus 34!/(12!12!10!) which is unfortunately
a whopping 355 trillion distinct permutations to assess.
For a medium-sized dataset, the number of permutations
becomes utterly unmanageable. An alternative to the full
permutation test is what is often called a randomization
test. It uses a Monte Carlo approach to select a random
subset of the total number of permutations, so that the
computations can be done in a reasonable amount of
time.

THE APPROACH

The macro code presented here functions as a simple
wrapper around the desired SAS® code. Suppose that
the code we wish to run looks like:

proc glm data=outrand outstat=outstat1;
 class habitat;
 model FishS = habitat;
 means habitat / tukey hovtest ;
 run;

And suppose that we see a p-value of 0.00031 . Is this
actually significant, given the strong non-normality of the
data? One can run a randomization test to assess the
legitimacy of this result.

In order to execute the randomization test, we add three
lines to the above code:

%rand_gen(indata=yb98fish,outdata=outrand,
 depvar=FishS,numreps=10000,seed=12345678)

proc glm data=outrand noprint outstat=outstat1;
 by replicate;
 class habitat;
 model FishS = habitat;
 means habitat / tukey hovtest ;
 run;

%rand_anl(randdata=outstat1,
 where=_source_='Habitat' and _type_='SS3',
 testprob=prob,testlabel=Model F test)

And the resulting randomization test is printed in the SAS
log. The entire randomization test is subsumed in the two
macros %rand_gen and %rand_anl . Let's see how this
works.

THE CODE

The %rand_gen macro works by first copying the original
dataset &INDATA over the required number of times
[which is also specifiable as a macro parameter]. Each
record of each copy of the dataset has a random number
rand_dep, so that the records can be randomly ordered

SUGI 27 Statistics and Data Analysis

2

within each replicate. Then finally the replicates are
appended to the original dataset. While the original
dataset is read, the values of the independent variable are
inserted into a temporary array in the original order of the
dataset. While the replicate dataset is read in, each
record receives a new value of the independent variable
from the array. This provides an ordered dependent
variable associated with a randomized set of records,
which is mathematically equivalent to randomly ordering
the dependent variables while leaving the records
untouched.

%macro rand_gen(
 indata=_last_,
 outdata=outrand,
 depvar=y,
 numreps=1000,
 seed=0);

 /* Get size of input dataset into macro
 variable &NUMRECS */

 proc sql noprint;
 select count(*) into :numrecs from
&INDATA;
 quit;

 /* Generate &NUMREPS random numbers for each
 record, so records can be randomly
 sorted within each replicate */

 data __temp_1;
 retain seed &SEED ; drop seed;
 set &INDATA;
 do replicate = 1 to &NUMREPS;
 call ranuni(seed,rand_dep);
 output;
 end;
 run;

 proc sort data=__temp_1;
 by replicate rand_dep;
 run;

 /* Now append the new re-orderings to the
 original dataset. Label the original
 as Replicate=0, so the %RAND_ANL macro
 will be able to pick out the correct
 p-value. Then use the ordering of
 __counter within each replicate to
 write the original values of &DEPVAR ,
 thus creating a randomization of the
 dependent variable in every replicate. */

 data &OUTDATA ;
 array deplist{ &NUMRECS } _temporary_ ;
 set &INDATA(in=in_orig)
 __temp_1(drop=rand_dep);
 if in_orig then do;
 replicate=0;
 deplist{_n_} = &DEPVAR ;
 end;
 else &DEPVAR =
 deplist{ 1+ mod(_n_,&NUMRECS) };
 run;

%mend rand_gen;

At this point the output dataset &OUTRAND is ready for
use. The variable REPLICATE is used as a by-variable
for the analysis, and the NOPRINT option is added to
suppress the many copies of the analysis, but otherwise
no changes are made in the original SAS® code. This
means that the time required to run a randomization test

will not be significantly greater than the time needed
without the macro wrapper.

The output dataset OUTSTAT1 then becomes the input for
the %rand_anl macro:

%macro rand_anl(
 randdata=outrand,
 where=,
 testprob=probf,
 testlabel=F test,);

 data _null_;
 retain pvalue numsig numtot 0;
 set &RANDDATA end=endofile;
 %if "&WHERE" ne ""
 %then where &WHERE %str(;) ;
 if Replicate=0 then pvalue = &TESTPROB ;
 else do;
 numtot+1;
 numsig + (&TESTPROB < pvalue);
 end;
 if endofile then do;
 ratio = numsig/numtot;
 put "Randomization test for &TESTLABEL "
 %if "&WHERE" ne "" %then "where &WHERE";
 " has significance level of "
 ratio 6.4 ;
 end;
 run;

%mend rand_anl;

The macro %rand_anl has to be able to select only the
relevant records in the dataset OUTSTAT1 above. The
format of the OUTSTAT table includes for each value of
the by-variable, a record with the error sum of squares, a
record with the Type I sum of squares for the independent
variable HABITAT, and a record with the Type III sum of
squares for the independent variable HABITAT. Since this
is only a one-way ANOVA, the Type I and Type III sums of
squares will be the same. But for a more involved
analysis, one would need to be able to select precisely the
desired test of significance. The &WHERE parameter
allows one to pull out only the relevant records, here
selecting the records where we have _source_='Habitat'
and _type_='SS3'. The null data step then calculates the
proportion of records for which a randomized replicate has
an even more significant p-value than the original dataset
did. This is, in essence, the p-value for the randomization
test.

The null data step could have been built to compare the
values of the original F-test and all the replicated F-tests.
In this case, such a comparison would yield exactly the
same result. However, some tests may be one-sided, like
a t-test with a one-sided alternative hypothesis, and may
be comparing to see if the test statistic for the replicates is
lower than the the t-statistic for the original data. The p-
value would still be compared correctly, but the test
statistic might not. Thus it makes sense to compare the p-
values instead of the test statistics.

Finally the macro provides the results of the randomization
test in the SAS log file:

Randomization test for Model F test where
source='Habitat' and _type_='SS3' has
significance level of 0.0006

So, in this case, the randomization test supports the result

SUGI 27 Statistics and Data Analysis

3

found in the analysis of variance, and yields a p-value
which can withstand some peer review despite the clear
non-normality of the data.

As an aside, the original PROC GLM on the small [n=34]
data set took 0.33 seconds to run, while the entire macro
wrapper took 2.11 seconds to run, and the interior PROC
GLM took 0.98 seconds to run all 1001 levels of the by-
variable. While this will not extend linearly with the size of
the analysis data set, the wrapper is still much faster than
a thousand separate iterations of the PROC could be.

EXTENDING THE EXAMPLE

Now suppose that one wished instead to examine whether
the variances were equal across the habitats. PROC GLM
provides a number of tests of heterogeneity-of-variance.
Let's use Bartlett's as an example, even though this is
known to be less robust than some other alternatives. If
we perform the original analysis and find a p-value of, say,
0.0325, is this really significant given the non-normality of
the data? We run the randomization test on the
HOVFTest table available from ODS:

%rand_gen(indata=yb98fish,outdata=outrand,
depvar=FishS,numreps=1000,seed=12345678)

ods listing close;
ods output HOVFTest=hov;

proc glm data=outrand /* noprint */
 outstat=outstat1;
 by replicate;
 class habitat;
 model FishS = habitat;
 means habitat / tukey hovtest ;
 run;

ods output close;
ods listing;

%rand_anl(randdata=outstat1,
where=_source_='Habitat' and _type_='SS3',
testprob=prob,testlabel=Model F test)

%rand_anl(randdata=hov,
where=Source='Habitat',
testprob=probf,testlabel=Bartletts test)

Note that the NOPRINT option is not used here. In order
to access ODS tables, this option cannot be in force.
Instead, one can use the ODS statement
 ods listing close;
to end the generation of lines to the Output window until
the
 ods listing;
statement turns output back on.

The same %rand_anl line as before is present, but now
there is a new line added. The wrapper macros do not
have a limit on the number of subsequent tests to be run
on the generated tables. And this time, the resulting
randomization test yields:

Randomization test for Bartlett's test where
Source='Habitat' has significance level of
0.0840

So now we have reason to doubt whether the errors are
really heteroskedastic.

A FURTHER EXTENSION

If one had a more complex model to analyze, then this
wrapper could be used to examine different randomization
tests on multiple effects. As an example, let's repeat the
previous example, but with two main effects and an
interaction term. This can be done using the classic
OUTSTAT= option which has been available for a long
time. We will also pull out a test for the overall ANOVA,
using ODS. Note that we do not attempt to perform
Bartlett's test here, since that is not an option for anything
except one-way ANOVAs.

%rand_gen(indata=yb98fish,outdata=outrand,
 depvar=FishS,numreps=1000,seed=3743586)

ods output OverallANOVA=overall;
/* Have to remove NOPRINT to make this work */

proc glm data=outrand /* noprint */
 outstat=outstat1;
 by replicate;
 class habitat month;
 model FishS = habitat month habitat*month;
 run;

ods output close;

%rand_anl(randdata=outstat1,
 where=_source_='Habitat' and _type_='SS3',
 testprob=prob,testlabel=main effect test)

%rand_anl(randdata=outstat1,
 where=_source_='month' and _type_='SS3',
 testprob=prob,testlabel=main effect test)

%rand_anl(randdata=outstat1,
 where=_source_='Habitat*month'
 and_type_='SS3',
 testprob=prob,
 testlabel=interaction effect test)

/* The dataset OVERALL has variables Source,
 ProbF, etc. We want the lines where Source
 is equal to 'Model' to get the p-values out.
 The p-values are missing elsewhere. */

%rand_anl(randdata=overall,
 where=Source='Model',
 testprob=ProbF,
 testlabel=Overall ANOVA test)

And in the log will appear the randomization test output for
each of the four separate tests. [Note that the real log will
have other text interspersed with the messages from the
%rand_anl macro.]

Randomization test for main effect test
where _source_='Habitat' and _type_='SS3'
has significance level of 0.0220

Randomization test for main effect test
where _source_='month' and _type_='SS3' has
significance level of 0.8140

Randomization test for interaction effect
test where _source_='Habitat*month' and
type='SS3' has significance level of
0.8780

Randomization test for Overall ANOVA test
where _source_='Model' has significance
level of 0.0080

SUGI 27 Statistics and Data Analysis

4

Furthermore, this example can be extended to show how
flexible the macro wrapper is. Consider the case where
one wishes to obtain a different analysis, using another
SAS® PROC, say for a test which would normally not be
available in PROC GLM. If one wanted to perform a
randomization test on differences between means of
specific values of the habitat variable, one would need a
PROC which could output multiple comparisons and
associated p-values.

PROC MIXED can do this. The ODS table Diffs provides
variables which name the two levels of the variable, a p-
value, and an adjusted p-value. For the variable Habitat,
the variable names in the Diffs table will be Habitat and
_Habitat . The comparisons are done in sorted order, so
the three levels of Habitat [N, U, and Z] yield three
comparisons:
 Habitat='N' and _Habitat='U'
 Habitat='N' and _Habitat='Z'
 Habitat='U' and _Habitat='Z'
For a single comparison of habitats U and Z, we do not
need to use an adjusted p-value to take into account the
multiple comparisons being performed. So we will use the
value Probt in this example. This is just as well, since the
limitation of this approach to randomization testing is that
all the tests are in essence single-comparison evaluations
which do not take the number of comparisons into
account.

%rand_gen(indata=yb98fish,outdata=outrand,
 depvar=FishS,numreps=1000,seed=3743586)

ods output Diffs=diffs;
ods listing close;
 /* turn off output for PROC MIXED */

proc mixed data=outrand;
 by replicate;
 class habitat;
 model FishS = habitat;
 lsmeans habitat / pdiff ;
 run;

ods output close;
ods listing;

%rand_anl(randdata=diffs,
 where=(Habitat='U' & _Habitat='Z'),
 testprob=Probt,testlabel=Habitats U vs. Z)

This causes the following text to appear in the log:

Randomization test for Habitats U vs. Z
where (Habitat='U' & _Habitat='Z') has
significance level of 0.0210

CONCLUSIONS

The macros %rand_gen and %rand_anl provide a simple,
flexible way to provide randomization tests in place of the
standard SAS® analyses, yielding tests which are more
appropriate when the usual model assumptions will not be
met. The wrapper is fast and efficient, and encapsulates
the underlying analyses so that the programmer needs to
make few changes in the original code.

ACKNOWLEDGEMENTS

SAS® and SAS/STAT® are registered trademarks of SAS
Institute, Inc. in the USA and other countries.

CONTACT INFORMATION

The author may be contacted by mail at

 David L. Cassell
 CSC, c/o U.S. EPA
 200 SW 35th St.
 Corvallis, OR 97339

or by e-mail at

 Cassell.David@epa.gov

SUGI 27 Statistics and Data Analysis

	SUGI 27 Title Page

