
Paper 222-27

How to access VSAM FILE with SAS/ AF® and SAS BASE
Claude Rhéaume, Desjardins Financial Security, Québec, Canada

Gilles Turgeon, Telus Business Solutions, Québec, Canada

ABSTRACT

The purpose of this paper is to illustrate some techniques to process
VSAM files with SAS.

Topics covered are :
�� Reading records with sequential and keyed direct access by

exact key, approximate key or generic key.
�� Effective use of INFILE statement options and related

automatic variables.
�� Adding, updating and erasing records.
�� Using Data set views to access VSAM files in an interactive

SAS/AF application.

INTRODUCTION

In this paper, we will present the different techniques that can be
used to work with VSAM files. We will present an overview of the
main topics covered by the SAS VSAM book

We will demonstrate, using a real life example, how to use the
different options available in the INFILE and FILE statements.

A major point of interest is : a method of working with these kinds of
files with SAS/AF, since SCL doesn’t have specific functions to
access a VSAM file with a key. You can use a SUBMIT CONTINUE
to access this file but it’s also possible to use SAS views with a
FETCH statement in SAS/AF to work with these files as a SAS
dataset, meaning that you can update, erase and add record through
a SAS VIEW.

SETTING UP THE VSAM MASTER FILE

You can find all necessary information including the VSAM cluster
definition, the sample data and the SAS program to load the file used
in this paper in your SAS help screen version 8.2 under MVS.

SAS/BASE BATCH PROCESSING

The objective of this section are :

• To present the different techniques used to maintain VSAM
files with SAS/BASE

• To understand the use of return code of each type of I/O
operation as read, update, erase and add records in VSAM
files.

• To illustrate some typical situations, a coding example is
provided.

SETTING UP THE TRANSACTION FILE

We will begin with the creation of a transaction data set : this file
contains an ID which is the primary key for the VSAM master file
and a transaction type.

data keys (keep=id trtype) ;

array ids {3} $9 ('194304428', '378462917',
'888888888') ;

array trs {3} $3 ('UPD','DEL','ADD') ;
do i = 1 to 3 ;

id = ids{i} ;
trtype= trs{i} ;
output ;

end ;

run ;

READING WITH SEQUENTIAL ACCESS

Objective : To demonstrate that it is no different to read a
VSAM file or other flat file.

Comment : You can use any INFILE statement OPTION as
usual like END= option.

Result: We retrieve all records from the VSAM file.

Data SEQKSDS ;

Infile KSDSFILE End=Endfile ;
Input @1 id $9.

@10 lname $10.
@20 fname $10
@30 address $25.
@55 city $15.
@70 state $2.
@72 zip $5.
@77 balc $5.
@82 gpa $4.
@86 class $2.
@88 hrs $2
@90 finaid $1. ;

Run ;

SUGI 27 Posters

2

DIRECT ACCESS WITH EXACT KEY

Objective : To demonstrate how to access a VSAM file with
direct access.

Comment : Note the importance of verifying the return code
which the feedback is assigned to. Also you must
initialize the variable for the return code AND the
automatic variable _ERROR_ to zero. Don’t forget
that the return code is assigned after the INPUT
statement is executed.

Result : In our example we have one record that is not
found. (Noticed by a return code 16) Two other
records were found.

Data DIRECT ;

Set KEYS ;

Infile KSDSFILE Key=id Fdbk=retcode ;
Input @ ;

If retcode Ne 0 Then
Do ;

Put 'Record not found ' id= retcode= ;
retcode = 0 ;
Error = 0 ;

End ;
Else Output ;

Run ;

SKIP SEQUENTIAL ACCESS WIITH GENERIC KEY

Objective : To demonstrate how to retrieve records with direct
access given a partial key. We will use the first
digit of the variable ID to retrieve all records whose
ID begin with that digit.

Comment : Note again the importance of verifying the return
code which the feedback option is assigned to.

You must initialize the variable for the return code
AND the automatic variable _ERROR_ to zero.

Don’t forget that the return code is assigned after
the INPUT statement is executed.

You need a loop statement to obtain all records for a
given generic key

We use a Do Until (0); meaning an infinite loop.
When the key change or the return code is different
of zero, we LEAVE the loop.

We also have the INPUT statement’s SKIP option
which is required in the loop’s logic in order to move
the file pointer to the next record.

Result : In our example we retrieve eleven records.

Data genkey ;

Set KEYS ;
Length genid $1 ;
genid= id ;

Do Until (0) ;

Infile KSDSFILE Key=genid Genkey Skip
Fdbk=retcode ;

Input @01 idfile $1. @ ;

If retcode Ne 0 Or idfile Ne genid Then
Leave ;

Input @1 id $9.
name $20.

... ;
Output ;

End ;
retcode = 0 ;
Error = 0 ;

Run ;

SIMPLE MASSIVE UPDATE EXAMPLE

Objective : To demonstrate how to modify a entire VSAM file.

Comment : The file is updated in place (we use the same
FileRef for Infile and File statements)

Result : This data step program will initialize at zero the
variable hours (columns 88-89)

Data _null_ ;

Infile KSDSFILE ;
Input ;

File KSDSFILE ;
Put @1 _infile_

@88 '00' ;

Run ;

KEYED UPDATE EXAMPLE

Objective : We will apply many operations type in same step
like updating, erasing and appending records.

Comment : The transaction file contains an ID and a
transaction code. Depending on the transaction type
we will use a new INFILE statement OPTION,
ERASE=. This option, if set to 1, indicates that the
record retrieved is deleted. At the next PUT
statement

For the append operation, you must specify each
field to initialize the record in the PUT statement.

For the UPDATE operation, you specify the position
and the value of each field you want to replace in
the next PUT statement.

SUGI 27 Posters

3

You must then initialize the variable for the return
code AND the automatic variable _ERROR_ to
zero.

Result : In our example we modifed one record, we deleted
another one and finally we appended a new record.

Data DIRECUPD ;

Set KEYS ;

genid= id ;
varerase = 0 ;
Infile KSDSFILE Key=genid Erase=varerase

Feedback=retcode ;
Input ;

If trtype In('DEL','UPD') And retcode Ne 0
Then

Do ;
Put 'You cannot update this record ' id '

record not found' ;
retcode= 0 ;
Error = 0 ;
Return ;

End ;
Else

If trtype = 'ADD' Then
Do ;

Error = 0 ;
retcode = 0 ;

End ;

File KSDSFILE ;

Select (trtype) ;
When ('UPD') Put @01 _Infile_

@10 'Sugi27 Update
Vsam' ;

When ('DEL') Do ;
varerase = 1 ;
Put _Infile_ ;

End ;
When ('ADD') Put @01 Id 9.

@10 'Sugi'
@20 '27'
@30 'South'
@55 'Orlando'
@70 'Fl'
@72 '12345'
@77 '00050'
@82 '02,99'
@86 'WW'
@88 '24'
@90 'X' ;

Otherwise ;
End ;

Run ;

GENERIC KEY UPDATE EXAMPLE

Objective : To demonstrate how to update records with direct
access, given a partial key. We will use the first
digit of the Data Set variable ID to update all records
whose ID begins with that digit.

Comment : Note again the importance of verifying the return
code which the feedback option is assigned to.

You must initialize the variable for the return code
AND the automatic variable _ERROR_ to zero.

Don’t forget that the return code is assigned after
the INPUT statement is executed.

You need a loop statement to obtain all records for
given generic key

We will use a Do Until (0); meaning an infinite loop.
When the key change or the return code is different
of zero, we LEAVE the loop

We also use the INPUT statement’s SKIP option
which is required in the loop’s logic to move the file
pointer to the next record.

When we are in the same record key and the status
is zero, you can modify the record retrieved with a
combination of FILE and PUT statements.

Result : In our example we update eleven records.

Data UPDGEN ;

Set KEYS ;
Length genid $1 ;
genid= id ;

Do Until (0) ;

Infile KSDSFILE Key=genid Genkey Skip
Fdbk=retcode ;

Input @01 idfile $1. @ ;

File KSDSFILE ;
If retcode Ne 0 Or idfile Ne genid Then

Leave ;
Else

If trtype = 'UPD' Then
Put @1 _infile_

@88 '00' ;

Input ;

End ;
retcode = 0 ;
Error = 0 ;

Run ;

SUGI 27 Posters

4

SAS/AF ONLINE PROCESSING

The objective of this section are :
• First of all, we have to built a data step view to access a VSAM

file. That view id designed to perform four actions: read,
update, delete or add a record.

• Then, we present the screen design
• Finally we complete the application with the .PROGRAM SCL

code.

THE KERNEL OF OUR SCL VSAM MANAGEMENT PROGRAM

• This view is use to communicate between the VSAM file and
the screen variable through macro variables:

o Action to perform
o Key to retrieve
o Information to update
o Rc (return code)

• We use the INFILE statement’s Options Key= to get the record
with that exact key, Feedback= for the return code and finally
Erase= to perform a delete action on the record

• After the INPUT, we analyze the return code versus the
required action .

• Except for a simple read, the FILE and PUT statements are
executed : the record is added, updated or deleted depending
on the required action

• Finally the OUTPUT statement completes the view

Data KSDSVIEW /View=KSDSVIEW ;

Length key $9 inf_new $90 ;

key = Symget('key') ;
action = Input(Symget('action'),1.) ;

Infile KSDSFILE Vsam Key=key Feedback=rc
Erase=vardel ;

Input @1 id $9.
@10 lname $10.
@20 fname $10.
@30 address $25.
@55 city $15.
@70 state $2.
@72 zip $5.
@77 balc $5.
@82 gpa $4.
@86 class $2.
@88 hrs $2.
@90 finaid $1. ;

/* action : 0 ===> Read Record
1 ===> Add Record
2 ===> Delete
3 ===> Update

*/
rej = 0 ;
Select (action) ;
When (1) If rc = 0 Then rej = 1 ;
Otherwise If rc Ne 0 Then rej = 1 ;
End ;

Call Symput('rc', Put(rej,4.)) ;
rc= 0 ; _Error_ = 0 ;

If Not rej And action ne 0 Then
Do ;
inf_new = Symget('info') ;

File KSDSFILE ;

If action = 2 Then vardel = 1 ;

Put @01 inf_new ;
End ;

Output ;
Stop ;

Run ;

VSAM FILE USER INTERFACE

• This is the screen design for the SCL program
o Key section
o Data Information section
o Push button section

• First, the user fill the key field (the only unprotected field) and
press Enter

• The program returns the data information or a message ; the
key field is protected and data fields are unprotected.

• Then, the user can modify any data field and perform the
required action through a push button.

Sugi 27 KSDSFILE Interface

Key
ID : _________

Data Information
Last name : __________
First name : __________
Address : ____________________
City : ______________
State : __
Zip : _____
Balance : _____
GPA : ____
Class : __
Hrs : __
Finaid : _

(ADD) (DELETE) (UPDATE)

SUGI 27 Posters

5

SCL CODE BEHIND THE VSAM FILE MANAGEMENT SCREEN

init :

Control Label Enter ;

/*===

• Assign file and open it

• Initialize variable

• Protect Information data except the key
field

== */
rc=Filename('KSDSFILE','XXX.KSDSFILE.TEST,

KSDS,'disp=old') ;

If rc Then
_Msg = "Problem to assign file " ;

action = 0 ;
Call symput('action',Put(action,1.)) ;

Link Protect ;

Return ;

/*===
Validation of the key field

• Open the view and fetch a record (in fact,
keyed INFILE and INPUT statements are
executed on the VSAM file thought the
view),

• Process the return code,

• Unprotect all data information fields
== */

Valikey :

temp_id = id ;
call symput('key',ID) ;

action = 0 ;
Call symput('action',Put(action,1.)) ;

KSDSVIEW = open('WORK.KSDSVIEW') ;
If Not KSDSVIEW Then

_Msg = "Problem to open file" ;
call set(KSDSVIEW) ;
rc = fetch(KSDSVIEW) ;

rc = Symgetn('rc') ;
If Not Modified(ADD) Then

If rc Then
_Msg = ‘Record not found’ ;

Else
If rc = 0 Then

_Msg = 'Duplicate Key' ;

Id = temp_id ;

KSDSVIEW= Close(KSDSVIEW) ;

Link Unprot ;

Return ;

/*===
Main section

• If any field is modified, fill the info

macro variable to pass it to the view .

• Issue a fetch on the data step view to
perform the required action. Remember than
the view will perform a FILE and PUT
statement when an update type action is
required .

== */

Main :

_Msg = _Msg_ ;

If Modified(id) Then
Link valikey ;

Field_Modified = 0 ;
If Modified(lname) Or Modified(fname) Or

Modified(address) Or Modified(city) Or
Modified(state) Or Modified(zip) Or
Modified(balc) Or Modified(gpa) Or
Modified(class) Or Modified(hrs) Or
Modified(finaid) Then
Field_Modified = 1 ;

If Field_modified = 0 And
(Modified(ADD) Or Modified(UPDATE))

Then
_Msg = 'No modified field' ;

If Modified(DELETE) Or (Field_modified = 1
And (Modified(ADD) Or
Modified(UPDATE))) Then

Do ;
KSDSVIEW = open('WORK.KSDSVIEW') ;
info = Put(id,$Char9.) ||

Put(lname,$Char10.) ||
Put(fname,$Char10.) ||
Put(address,$Char22.) ||
Put(city,$Char13.) ||
Put(state,$Char2.) ||
Put(zip,$Char5.) ||
Put(balc,$Char5.) ||
Put(gpa,$Char4.) ||
Put(class,$Char2.) ||
Put(hrs,$Char2.) ||
finaid ;

Call symput('info',info) ;

action = Modified(ADD) +
2*Modified(DELETE) +
3*Modified(UPDATE) ;

Call symput('action',Put(action,1.))

rc = Fetch(KSDSVIEW, 'Noset') ;
rc = Symgetn('rc') ;
If rc Then

_Msg = 'Problem file error' ;
Else

_Msg = 'Update done' ;

KSDSVIEW= Close(KSDSVIEW) ;
Link Protect ;

End ;
Else

If Not Modified(id) And
_Msg =: 'Problem' Then
Link Protect ;

Else
If Not Modified(id) And Not

Field_modified Then

SUGI 27 Posters

6

Link Unprot ;
Return ;

Protect :

Protect _All_ ;
Unprotect id ;
Cursor id ;

Return ;

Unprot :

Unprotect _All_ ;
Protect id _msg ;
Cursor lname ;

Return ;

Term:

If KSDSVIEW Then
KSDSVIEW= Close(KSDSVIEW) ;

rc= Filename('KSDSFILE', 'Clear');

Return ;

CONCLUSION

Since VSAM files are popular on MVS environment, it ‘s important to
know all options and techniques available to work with those files.

In the first part, we cover some batch processing typical situations
with SAS/BASE examples.

In the second part, we apply the same techniques but this time with
a user interface to maintain any typical actions on the VSAM file
again.

Readers interested in I/O performance should refer to the
publications listed in the next section.

REFERENCES

SAS Institute, Inc.,
SAS Guide to VSAM processing, Version 8,
Cary, NC: SAS Institute Inc., 2000

Michael A. Raithel, WESTAT
Optimizing the Processing of VSAM Data Sets With The SAS
System
SAS Institute, Inc.
Proceedings of the Twenty-Fourth Annual SAS Users Group
International Conference, paper 302
Cary, NC: SAS Institute Inc, 1999

ACKNOWLEDGMENTS

We would like to thank David Turgeon for translation of this paper.
The original text was written in French.

SAS is a registered trademark or trademark of SAS Institute Inc. In
the USA and other countries.® Indicates USA registration.

CONTACT INFORMATION

Please direct any questions or feedback to either of the authors at

Claude Rhéaume
Desjardins Financial Security
Québec
Canada
Email: claude.rheaume@djsfc.com

Gilles Turgeon
Telus Business Solutions
Québec
Canada
Email: gilles.turgeon@telus.com

SUGI 27 Posters

	SUGI 27 Title Page

