
1

Paper 18-27
Advanced Tips and Techniques with PROC MEANS

Andrew H. Karp

Sierra Information Services, Inc.
Sonoma, California USA

PROC MEANS (and is "sister," PROC
SUMMARY) have been base SAS® Software
procedures for a long time. Most SAS Software
users have found their ability to rapidly analyze
and summarize the values of numeric variables to
be essential tools in their programs and
applications. A number of new features have
been added to PROC MEANS in The Nashville
Release (Version 8) of the SAS System which will
are discussed in this paper. Applying these new
features will enable you to simplify the analysis of
your data, make it easier for you to create data
sets containing summaries/analyses of your data,
and take advantage other tools in SAS Version 8,
such as Multilabel Formats (MLFs), which are
created by using PROC FORMAT.

Background

This paper assumes the reader is already familiar
with core PROC MEANS/SUMMARY capabilities.
As a reminder, with the release of Version 6 of the
SAS System in 1991 PROC MEANS and PROC
SUMMARY became identical procedures, with
just some very minor differences that are
documented in the base SAS Software
documentation. For the purposes of this paper we
can treat them as identical procedures. The core
difference is that by default PROC MEANS sends
the results of its "work" to our Output Window and
that PROC SUMMARY, by default, creates a SAS
data set. All of the examples in this paper show
PROC MEANS syntax, which you can easily
switch to PROC SUMMARY if you want.

The core function of these procedures is to
analyze the values of numeric variables in SAS
data sets (or SAS views to data stored in other
RDBMS products). For both PROCs, only numeric
variables can be placed in the VAR statement.
Variables places in the VAR statement are
considered analysis variables. If you put the
names of character variables in the VAR
statement, PROC MEANS/SUMMARY will not
execute and an error will be shown in your
SASLOG.

Variables placed in the CLASS or BY Statement
are considered classification variables, and may
be either character or numeric. Starting in

Version 6, you could use the CLASS statement to
request analyses at the different levels of an
unsorted classification variable by using the
CLASS, instead of the BY Statement. This
feature remains in Version 8, and enhancements
to it are discussed below.

New Statistics Available in Version 8

Prior to Version 8, the only base SAS procedure
that could calculate the values of quantile
statistics such as the median (50th percentile) was
PROC UNIVARIATE. In Version 8, PROCs
MEANS and SUMMARY (as well as PROC
TABULATE) can also analyze and report the
values of quantile statistics.

Consider the following PROC MEANS task, which
analyzes a data set containing electric
consumption data from a public utility.

procprocprocproc MEANS NOPRINT
data=electric.elec_V8;
class rate_schedule;
var total_revenue;
output out=new2 sum=median_REV
mean=total_REV p50=mean_REV;
runrunrunrun;

The OUTPUT Statement directs the placement, in
a temporary SAS data set, of new variables
containing the results of the analylses requested
elsewhere in the PROC MEANS Task. The
Statistics Keyword P50 requests the fiftieth
percentile, or the median, of the analysis variable
be placed in a variable called mean_REV in
output data set new2.

This PROC MEANS task will run without errors.
Mean_REV is a valid SAS variable name, even
though what we are doing is storing the median in
a variable called "mean_REV." If you look at the
OUTPUT Statement again you will see that the
sum will be stored in "Median_REV" and the
mean will be stored in "Total_REV," all valid SAS
variable names in Version 8. (Remember, in V8
we can use up to 32 characters for variables
names,)

SUGI 27 Advanced Tutorials

2

You would probably not notice your mistake until
sometime later in the project when you--or
perhaps your boss--realize that the values
associated with the variable names simply don't
"make sense." A new Version 8 feature,
discussed below, will keep you from ever making
this mistake again. It's called the AUTONAME
option.

The AUTONAME Option

This handy option goes in the OUTPUT
statement. When you use it, PROC MEANS will
automatically give names to the variables in the
output SAS data sets. Here is an example, again
using the electric consumption data set.

procprocprocproc means noprint
data=x.electricity;
class division serial;
var kwh1 rev1;
output out=new4 mean(kwh1) =

 sum(rev1) =/autoname;
runrunrunrun;

Output data set NEW4 contains the classification
variables DIVISION and SERIAL, the
automatically generated variables _TYPE_ and
FREQ (about which more later), and the
variables KWH1_mean and REV1_mean. The
AUTONAME option automatically appended the
statistics keyword to the name of the analysis
variable, with an underscore symbol between the
analysis variable and the statistics keyword.
Using this new option will prevent you from giving
variables in our output data sets the "wrong"
names!

The CHARTYPE Option

This V8 addition to PROC MEANS dramatically
simplifies creation of multiple output SAS data
sets in a single use of PROC MEANS.

Users can code multiple OUTPUT statements in a
single PROC MEANS task and then use a
WHERE clause data set option to limit the output
of observations to each data set. This capability
reduces--and often eliminates--the need to run
PROC MEANS several times to create different
output data sets. You can usually do everything
you need to do in one invocation of the procedure.

Here is an example. A catalog retail firm has a
SAS data set containing order records and an
analyst wants to create several output SAS data
sets, using PROC MEANS, containing analyses at
different combinations of the values of four
classification variables. Consider the following
PROC MEANS task:

proc means noprint
data=order.orderfile2;class mailcode
dept_nbr segment status;var itmprice
itm_qty;output out=new sum=;run;With
four variables in the CLASS statement, the
temporary SAS data set, NEW, created by the
OUTPUT statement, will contain the sum of
analysis variables ITMPRICE and ITM_QTY at all
possible combinations of the classification
variables. There will be sixteen values of the
SAS-generated variable _TYPE_ in output data
set NEW, representing what I like to call a
"complete" analysis of the numeric analysis
variables at all possible combinations of the
classification variables.

Suppose the analyst wanted to create three
separate output SAS data sets, containing the
sum of ITMPRICE and ITM_QTY. The separate
data sets would contain the desired analyses
 By MAILCODE and SEGMENT
 By MAILCODE, SEGMENT and STATUS
 By DEPT_NBR and SEGMENT

One approach would be to run PROC MEANS
three separate times, with different classification
variables in the CLASS Statement. When working
with very large data sets, this approach, while
giving the desired results, wastes computing
resources as the source data set will be read
three separate times.

Another approach would be to create "one big
data set," containing the "complete" analysis, as
shown above, and then use a data step to read
each observation and output some of them to
various subset data sets. Using the previous
example, the observations in temporary data set
NEW would be tested in a data step and those
meeting the condition of interest would be output
to new data sets. While this approach still yields
the desired outcome, what the analyst would have
to do is create a big data set and then test each of
its observations to find the ones she wants to put
in the smaller data sets. Here is an example:

Data A B C:

SUGI 27 Advanced Tutorials

3

 SET NEW;
 IF _TYPE_ = '1001'B then OUTPUT A;
ELSE IF _TYPE_ = '1011'B

then OUTPUT B;
ELSE IF _TYPE_ = '0110'B then
OUTPUT 'C';
RUN;

This data step shows an underutilized feature of
the SAS Programming Language, which is called
the "bit-testing facility." By using it, we don't have
to know the numeric value of _TYPE_, we just
need to know the position of the classification
variables in the CLASS statement. In this context,
a number one means "I want this variable," and a
number zero means "I don't want this variable."
You can check for yourself that 1001 in base 2 is
equal to nine (9) in base 10.

A third approach would be to determine the
numeric values of the desired values of _TYPE_
and put them in the output statement as WHERE
clause conditions.

The new CHARTYPE option makes all of this
unnecessary. This option, placed in the PROC
MEANS statement, converts the (default) numeric
values of _TYPE_ to a character variable
containing zeros and ones. The length of this
variable is equal to the number of variables in the
CLASS (or BY) statement. Keep in mind, that
even though this variable contains zeros and
ones, it is a character variable.

Using the CHARTYPE option makes it much
easier to create multiple output data sets in a
single application of PROC MEANS. Our
marketing analyst could make the three data sets
she wants by submitting the following PROC
MEANS task:

proc means noprint data=order.orderfile2
CHARTYPE;class mailcode dept_nbr segment
status;var itmprice itm_qty;output
out=one(where=(_type_ = '1001'))

sum=;output out=two(where=(_type_ =
'1011'))

sum=;output out=three(where=(_type_ =
'0110'))

sum = ;run;By using the CHARTYPE
option, the analyst easily creates the three desired
data sets in a single use of PROC MEANS. As
with the previously-described bit-testing facility in
the SAS Programming Language, a one (1)
means "I want this variable" and a zero (0)

meams "I don't want this variable." Again this is a
character, not a numeric variable, and in order to
use it effectively you need to know the ordering of
the variables in your CLASS statement.

The DESCENDTYPES Option

By default, observations in data sets created by
PROC MEANS are ordered in ascending values
of the variable _TYPE_. So, _TYPE_ = 0 will be
first, followed by _TYPE_ = 1, and so forth, with
the highest value of _TYPE_ at the bottom.

The new DESCENDTYPES option, which is
placed in the PROC MEANS statement, instructs
the procedure to order observations in the output
data sets it creates in descending value of
TYPE.

This option is very handy if you want the
observation with _TYPE_ = 0 at the bottom of
your data set, rather than at the top.

Combining the CHARTYPE and
DESCENDTYPES Options

The previous example of how to use the
CHARTYPE option and several OUTPUT
statements to create multiple SAS data sets
demonstrates a very useful way to avoid coding
multiple PROC MEANS tasks to generate s series
of output SAS data sets. When you create
several output data sets in a single PROC
MEANS task, the observations with the same
value of _TYPE_ can be output to more than one
data set.

Let's use the previous PROC MEANS task to
provide an example. In that example three output
temporary SAS data sets were created, each
containing the SUMs of the analysis variables at
different combinations of the CLASS statement
variables. Suppose, however, that we needed to
put the grand totals (i.e., the "grand sum') in each
of these data sets. So, we would to include the
observation where _TYPE_ = 0 to in each output
data set. And, we want to put that observation at
the bottom of the output data sets (because,
perhaps, we are going to subsequently export
them to Excel™ spreadsheets we'd like to avoid
PROC SORT steps before exporting the data from
SAS to Excel).

We can accomplish these tasks by: a) specifying
the DESCENDTYPES option in the PROC
MEANS statement; and, 2) using the IN operator
in conjunction with the WHERE clauses used to

SUGI 27 Advanced Tutorials

4

select observations for the three output data sets
created by PROC MEANS.

The following PROC MEANS task implements the
desired results.

proc means noprint data=order.orderfile2
CHARTYPE DESCENDTYPES;class mailcode
dept_nbr segment status;var itmprice
itm_qty;output out=one(where=(_type_
IN('0000','1001'))) sum=;output
out=two(where=(_type_ IN('0000','1011')))
sum=;output out=three(where=(_type_
IN('0000','0110'))) sum = ;run;

The TYPES Statement

This Version 8 enhancement to PROC MEANS
should not be confused with the _TYPE_ variable
discussed previously.

By default, PROC MEANS will analyze the
numeric analysis variables at all possible
combinations of the values of the classification
variables. With the TYPES statement, only the
analyses specified in it are carried out by PROC
MEANS. This new feature can save you both
programming and processing time.

The next example shows how the TYPES
statement is used to restrict the operation of
PROC MEANS to analyzing the values of the
analysis variables to just the combination(s) of
classification variables in the CLASS or BY
Statement. In PROC MEANS task that follows,
the marketing analyst working with the previous-
discussed order history file wants to create a
single output data set containing analyses of
ITMPRICE and ITM_QTY at the following
combinations of the CLASS variables
 Overall (_TYPE_ = 0)
 SEGMENT and STATUS
 MAILCODE and SEGMENT

MAILCODE and DEPT_NBR and
SEGMENT

The TYPES Statement shown below limits the
execution of the PROC MEANS task to just the
combinations of the classification variables
specified in this statement. Because only only
output data set is requested in this task,
temporary data set A will contain all of the
analyses requested by TYPES statement.

proc means noprint
data=order.orderfile2 ;class mailcode

dept_nbr segment status;types ()
segment * status mailcode *
segment mailcode * dept_nbr *
segment;var itmprice itm_qty;output
out=a sum = ;run;More complex
implementations of the TYPES statement are
documented in the PROC MEANS chapter in the
SAS Procedures documentation.

Multiple CLASS Statements

Multiple CLASS Statements are now permitted in
PROC MEANS. In previous releases of SAS
System software the values of classification
variables were either portrayed in the Output
Window, or had their values stored in output data
sets, in "sort order." New options in the CLASS
statement permit user control over how the levels
of the classification variables are portrayed.

When using multiple CLASS statements, how you
order them in the PROC MEANS task is very
important. If you have two CLASS statements, for
example, the values of the classification variables
in the second CLASS statement will be nested
within the values of the variables in the first class
statement.

The next PROC MEANS task shows how two
CLASS statements were used to analyze some
electrical utility data stored in a SAS data set.
The first CLASS statement requests an analysis
by the values of REGION. The DESCENDING
option to the right of the slash in the first CLASS
statement instructs PROC MEANS to analyze the
data in DESCENDING order of the values of
REGION.

The second CLASS statement requests that the
data be analyzed by the values of the
classification variable TRANSFORMER. Since no
options are specified in the second CLASS
statement, the values of TRANSFORMER will be
portrayed in "sort order," within the descending
values of REGION.

proproproprocccc means
data=electric.elec_v8 noprint nway;
class region/descending;
class transformer;
var total_revenue ;
output out=c sum= mean= /autoname;
runrunrunrun;
Additional CLASS Statement Options

SUGI 27 Advanced Tutorials

5

There are several other useful options now
available in the CLASS Statement. A complete
list is found on pages 636-638 of the Version 8
SAS Procedures Guide within Chapter 24 (The
Means Procedure). Of these, we will discuss the
DESCENDING. EXCLUSIVE, GROUPINTERNAL,
MISSING, MLF, ORDER= and PRELOADFMT
options.

• The DESCENDING Option
This option, discussed above, orders the levels of
the CLASS variables in descending order.

• The EXCLUSIVE Option
This option, used in conjunction with the
PRELOADFMT option excludes from analysis all
the combinations of CLASS variables that are not
in the preloaded range of user-defined formats
(see the PRELOADFMT option, below

• The GROUPINTERNAL Option
This option, which saves computing resources
when your numeric classification variables contain
discrete values, tells PROC MEANS to NOT apply
formats to the class variables when it groups the
values to create combinations of CLASS
variables.

• The MISSING Option
This option instructs PROC MEANS to consider
as valued values missing values for variables in
the CLASS statement. If you do not use the
MISSING option, PROC MEANS will exclude
observations with a missing CLASS variable value
from the analysis. A related PROC MEANS
option, COMPLETETYPES, is discussed later on
in this paper.

• The MLF Option
The new MLF option permits PROC MEANS to
use the primary and secondary format labels to
create subgroup combinations when a mulitlabel
format is assigned to variable(s) in the CLASS
statement. For more information on the new
mutilabel formats now available in Version 8,
please consult the PROC FORMAT
documentation.

Some patience and testing is often required when
using Multilabel Formats with PROC MEANS (as
well as when using it with other PROCS that
support its use, such as PROCs REPORT and
TABULATE.) In Version 8, there are differences
in how PROC MEANS orders the rows
(observations) in output where a MLF has been
applied depending on whether the analysis is
reported in the Output Window or stored in an
output SAS data set.

• The ORDER= Option

This option specifies the order PROC MEANS will
group the levels of the classification variables in
the output it generates. (See above for a
discussion of the DESCENDING option in the
CLASS Statement.) The arguments to the
ORDER= option are: DATA, FORMATTED,
FREQ and UNFORMATTED. Notice that
DESCENDING is not an argument to this option,
but is a "standalone" option within the CLASS
statement.

• The PRELOADFMT Option
This option instructs the SAS System to pre-load
formats in memory before executing the
statements in PROC MEANS. In order to use it,
you must also specify either the
COMPLETETYPES, EXCLUSIVE or
ORDER=DATA options. Using PRELOADFMT in
conjunction with, for example, the
COMPLETETYPES option creates and outputs all
combinations of class variables even if the
combination does not occur in the input data set.
By specifying both PRELOADFMT in the CLASS
statement and COMPLETETYPES option in the
PROC MEANS statement, your output will include
all combinations of the classification variables,
including those with no observations.

The COMPLETETYPES and EXCLUSIVE
Options

As discussed above, the COMPLETETYPES
option instructs the procedure to create all
possible combinations of the values of the
classification variables, even if that combination
does not exist in the data set. It is most often
used with CLASS statement options such as
PRELOADFMT. The EXCLUSIVE option is used
in conjunction with the CLASSDATA= option (also
new to Version 8, and discussed below) to include
any observations in the input data set whose
combination of classification variable values are
not in the CLASSDATA= data set.

The CLASSDATA= Option

Starting in Version 8 you can specify the name of
a data set (temporary or permanent) containing
the desired combinations of classification
variables that PROC MEANS is to use to filter or
to supplement in the input data set. This option is
particularly useful if you have many classification
variables, and many values of the classification
variables, and you only want analyses for some of
these combinations. See the PROC MEANS
documentation for additional details on how the
CLASSDATA= option is utilized.

SUGI 27 Advanced Tutorials

6

The WAYS Statement

This new PROC MEANS statement specifies the
number of ways that the procedure is to create
unique combinations of the CLASS statement
variables.

We can see how the WAYS Statement with the
following example. Returning to the customer
order file, suppose the marketing analyst wants to
create an output data set containing all two-day
analyses of the classification variables. (That is,
at each unique combination of the CLASS
statement variables taken two at a time.) The
following PROC MEANS task creates temporary
SAS data set B, which contains the desired
analysis.

proc means noprint
data=order.orderfile2 ;class mailcode
dept_nbr segment; types segment *
status mailcode * segment
mailcode * dept_nbr;var itmprice
itm_qty;output out=b sum = ;run;
The same results would obtain if the analyst used
the WAYS statement rather than the TYPES
statement. The following PROC MEANS task,
utilizing the TYPES statement, requests analyses
of the numeric analysis variables at all two-way
combinations of the CLASS statement variables.

proc means noprint
data=order.orderfile2 ;class mailcode
dept_nbr segment;
WAYS 2;var itmprice itm_qty;output
out=b sum = ;run;
Identifying Extreme Values of Analysis
Variables using the IDGROUP Option

This new OUTPUT statement option combines
and extends the features of the ID statement, the
IDMIN option in the PROC MEANS statement and
the MAXID and MINID options in the Output
statement so that you can create an output data
set containing variables identifying multiple
extreme values of the analysis variables,

Here is an example utilizing the IDGROUP option
on the electrical utility data set shown previously.

procprocprocproc means
data=electric.elec_v8 noprint nway;
class transformer;
var total_revenue ;

output out=c
 idgroup (max(total_revenue)
out[2] (total_revenue)=maxrev)
 idgroup (min(total_revenue)
out[2] (total_revenue)=minrev)
 sum= mean= /autoname;
In this example, output temporary data set C will
contain the SUM and MEAN of analysis variable
TOTAL_REVENUE. Using the AUTONAME
option, discussed above, the names of these
variables in the output data set will be
TOTAL_REVENUE_SUM and
TOTAL_REVENUE_MEAN. The IDGROUP
options instruct PROC MEANS to also determine
the two largest (MAX) and smallest (MIN) values
of analysis variable TOTAL_REVENUE, at each
value of the single classification variable in the
CLASS statement, and output those values in to
variables called MINREV_1, MINREV_2,
MAXREV_1 and MAXREV_2. The OUT[2]
argument within each IDGROUP option specifies
the number of extreme values to output. You can
use select from 1 to 100 extreme values to output.

Before using this new feature, you should
carefully read the PROC MEANS documentation
regarding the MAXID and MINID syntax. If you
are not careful, you can create output variables
with the same name! If that occurs, only the first
variable with the same name will appear in the
output data set. You can avoid this potential
outcome by using the previously discussed
AUTONAME option.

Additional Changes and Enhancements to
PROC MEANS

There are a number of other changes and
enhancements to PROC MEANS. This paper has
shown you what, in my experience, I feel the most
important and useful new features have been
added in Version 8. You can obtain a list of all
enhancements to PROC MEANS from the SAS
Institute web site. The complete URL for this topic
is:

http://www.sas.com/service/library/onlinedoc/v
8/whatsnew/tw5508/z1335349.htm
Acknowledgements

Thanks to Robert Ray of SAS Institute's BASE
Information Technology group for his insights in to
PROC MEANS and many of the enhancements added
to it in Version 8. Also, thanks to the many people who
have attended my "Summarizing and Reporting Data
Using the SAS System" seminar who have made

SUGI 27 Advanced Tutorials

7

comments or asked questions that challenged me to
learn more about PROC MEANS.

Author contact

Andrew H. Karp
President
Sierra Information Services, Inc.
19229 Sonoma Highway PMB 264
Sonoma, California 94115 USA
707 996 7380
SierraInfo@AOL.COM
www.SierraInformation.com

Copyright

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the United States of America and other
countries. ® indicates USA registration. Other brand or
product names are registered trademarks or trademarks
of their respective companies.

SUGI 27 Advanced Tutorials

	SUGI 27 Title Page

