

1

Paper 211-26

Mixing It Up with the SAS® System
 William C. Murphy

 Howard M. Proskin & Associates, Inc., Rochester, NY

ABSTRACT

All of the subjects have been examined. You have acquired a
mountain of data. The data has been read into the SAS system
and the basic demographic tables have been outputted. Now
how do you proceed? You are trying to model an effect, but you
have dozens of variables. The selection of a discrimination
model is both an art and a science. Often, the choice of the
most suitable model involves a consideration of the sensitivity
and specificity of potential model candidates. PROC DISCRIM
provides an easy way to find these quantities for variable
combinations, but you still must come up with those
combinations. What you need to do is run PROC DISCRIM for
hundreds or even thousands of combinations of variables. A
SAS macro program can readily generate these combinations
and execute the procedure by employing the self-calling feature
of version 8 macros. To avoid the massive number of pages
generated, the SAS Output Delivery System (ODS) can be used
to extract the pertinent information. The details of this
programming technique will be described and the limitations of
older versions of the SAS system for performing this algorithm
will be pointed out.

INTRODUCTION

The physical examination of the subjects has been finished. All
of the laboratory reports are in. The data has been entered into
the SAS system and checked for errors and consistency.
Tables describing the basic demographic makeup of the study
population have been made. Simple statistics (means, medians,
standard deviations, etc.) of the test variables have been
created. Now is the time for a more in depth analysis of the
data, but where do you begin? Your objective is to construct a
model or combination of variables that relate to a measured
effect. But what model or combination of variables do you use
when your study data set may have dozens and dozens of
variables?

Our organization, a statistical consulting firm, has been
confronted with this problem, especially for some dental studies
that we have been asked to analyze. Our solution was to
develop a program in the SAS system, which produces a table of
specificity and sensitivity for various models. This program
employs the Output Delivery System (ODS) and the recursive
feature of macros available in version 8 of the SAS system.

PRELIMINARIES

The objective of many dental studies is to determine the
relationship of various variables descriptive of oral health with the
presence or absence of dental caries (decay). To determine the
exact mix of variables that appear in your model can be a
daunting task. In fact with many initial variables, before you

apply a programming solution, clinical insight must be employed
to limit the number of variable under consideration. Even with
this automated program, too many variables in the model could
produce long execution times. Combinations of up to 10
variables or so produced overnight runs on NT computers with
state-of-the-art processors.

To use our automated solution to help in model selection, you
must start the programming by making a list of the selected
variables and reading them into SAS macro variables. As has
been done previously (Murphy et al, 1993), this can be done with
a simple DATA step:

data _null_;

infile cards missover eof=AllOver;
 length tmp $8;
 input tmp;

call symput(compress('Vrbl'||left(_n_)),
trim(tmp)));

 return;
 AllOver: call symput('nVrbl',right(_n_-1));
 return;

cards;
FL
CA
PHOS
LACTO
MUTANS
PLAQUE
;

run;

where we have used a _null_ DATA step to read a list of
variables after a CARDS statement. The variables are then
stored in macro variables (&Vrbl1, &Vrbl2,…) using CALL
SYMPUT. The total number of variables is stored in the macro
variable &nVrbl. We have limited our sample to 6 commonly
measured oral parameters: the fluoride (FL), calcium (CA), and
phosphate (PHOS) concentration in the saliva, the amount of
lactobacilli (LACTO) and mutans (MUTANS) in the mouth, and
the quantity of plaque (PLAQUE) on the teeth.

COMBINATIONS

We now want to make a list of combinations of these variables
and find their sensitivity and specificity. PROC DISCRIM will
provide the information that we are searching for. Therefore, we
imbed this procedure in a looping macro program that generates
a list of the variables (single combinations) for the VAR
statement:

%macro mix;
 %do i1=1 %to &nVrbl;
 %let model=&&Vrbl&i1;
 proc discrim data=master;
 class caries;
 var &model;
 run;
 %end /* i1 loop */;

%mend;

Posters

2

where PROC DISCRIM will analyze a different variable for each
iteration of the %DO loop. The input data set, master, must
contain all of the variables needed the PROC DISCRIM (i.e.
those listed in the VAR and CLASS statements). If we now want
to examine both single and pair combination of the variables, we
imbed a new %DO loop into the previous %DO loop in our
macro:

%macro mix;

%do i1=1 %to &nVrbl;
 %let model=&&Vrbl&i;

 proc discrim;
 class caries;
 var &model;
 run;

 %do i2=%eval(&i1+1) %to &nVrbl;
 %let model=&&Vrbl&i1 &Vrbl&i2;

 proc discrim data=master;
 class caries;
 var &model;
 run;
 %end /* i2 loop */;

 %end /* i1 loop */;

%mend;

where the inner loop index starts at one plus the outer index to
prevent duplicate combinations of variables. Indeed we can
examine higher levels of combinations by imbedding more and
more %DO loops into our macro. However, there is no simple
way to make these %DO loops self-generating in out macro in
versions of the SAS system before version 8. Before the macro
was executed, you would have to choose the level of
combinations that was desired and imbed the appropriate
number of macros. With version 8 of the SAS system, macro
programs can call themselves. Since the inner %DO loops are
of the same form as the outer, a recursive macro would enable
us to specify a parameter to determine the level of combinations
that we wanted. The new macro for our analysis would be

%macro mix(Combo=,,j=1,start=1,xmod=);

%do i&j=&start %to &nVrbl;
 %let model=&xmod &&&&Vrbl&&i&j;

 proc discrim data=master;
 class caries;
 var &model;
 run;

 %if &j<&Combo %then %mix(Combo=&Combo,

 j=%eval(&j+1),
start=%eval(&&i&j+1),

xmod=&model);
 %end;
 %mend;

where we have introduced four macro parameters into our
program: &combo, which contains the desired number of
combinations (i.e., singles, pairs, triplets, etc.); &j, which is the
level of nested macro calls used to index the %DO-loop
parameter; &start, which is the starting value of the %DO loop;
and &xmod which contains the outer loops variable
combinations. This is very similar to our previous macro, except
the imbedded %DO loop is replaced by a conditional call of the
macro itself. This effectively produces as many nested %DO
loops as indicated by the macro parameter &combo. The other
major difference with the previous macro is the %model
definition. It now contains the macro parameter %xmod, which
saves the variable combinations from outer %DO loops. Also,

the variable macro now has four ampersands, due to the indexing
of the %DO-loop parameter: for the outer %DO loop, one pass of
the macro processor resolves &&&&Vrbl&&i&j into &&Vrbl&i1; for
the next %do-loop, &&&&Vrbl&&i&j becomes &&Vrbl&i2; and so
on.

OUTPUT

The %mix macro as it now stands will solve our problem of
generating sensitivity and specificity for an arbitrary combination
of study variables. However, PROC DISCRIM will generate
considerably more information than we need. Indeed a number
of pages of output would be produced for each combination.
Unless we are interested in running a major deforestation project,
we must limit the output of PROC DISCRIM to the desired
information. We could write the procedure section of our macro
as

proc discrim data=master out=TmpData1 noprint;

class caries;
 var &model;
 run;

This method does indeed cut out the printed output but the data
set TmpData1 does not contain the exact information that we
desire. A PROC FREQ on the data set TmpData1 could be
used to produce the tables of sensitivity and specificity. The
output of the PROC FREQ would be further processed in a DATA
step in order to get the variable counts used in the analysis.
However, even though the output data set does not contain the
exact information that we need, the printed output of PROC
DISCRIM does. With version 8 of the SAS system, ODS can be
use to avoid the overhead of this additional processing by
capturing the desired part of the printed output. Using ODS, our
procedure now becomes

ods listing close;
ods output ClassifiedResub=

TmpData1(drop=_0 _1 Ptotal);

proc discrim data=master;

class caries;
var &model;

 run;

ods listing;

The first ODS statement stops the flow of data to the output
window. This is similar to using the NOPRINT option in the
procedure. The second ODS statement sends the
ClassifiedResub component of the PROC DISCRIM output into
the SAS data set TmpData1. The name of this component was
determined by running a sample PROC DISCRIM program
without the ODS statements and examining the Results window
for the appropriate name. The final ODS statement returns
normal flow of data to the output window. The output data set,
TmpData1, contains the variables fromCaries, which identifies
the levels of the CLASS variable caries; the count, total,
predicted by the model for each level; and the desired
percentages associated with the count, p_ and p_2.

FINAL DATA SET

The data set TmpData1 takes a modest amount of processing to
produce our desired results. We merge the specificity and
sensitivity information so that it will be in the same line of the
data set; we rename the variables accordingly; and we introduce

Posters

3

the variable model, to label the data line with the variable
combinations:

data TmpData2;

merge TmpData1(where=(fromcaries='0')
rename=(total=n0 P_=specfcty))

TmpData1(where=(fromcaries='1')
rename=(total=n1 P_2=senstvty));

length model $200;
 model="&model";
 keep model specfcty senstvty n0 n1 ;
 run;

Finally, we accumulate the data from the iterations of the %do-
loops into an output data set:

proc append base=DiscrimOut data=TmpData2;

run;

This output data set will contain a listing of all models examined
along with their specificity and sensitivity. The resulting
information could be further processed by sorting or sub-setting
before printing or on-screen examination.

CONCLUSIONS

Using the recursive macro capabilities and the ODS of version 8
of the SAS system, we were able to develop a macro program
that produces various combinations of variables and then
generates the related specificity and sensitivity. For determining
the best study variable combinations for further analysis, the
researcher can use this list.

APPENDIX

The following is a listing of the complete macro that is presently
in use. This macro can be compiled and stored in a central
library for convenience (Murphy, 1998).

%*
╔════════════════════════════════════╗
 Project: DISCRIMINATE MODELING

 Programmer: WILLIAM C. MURPHY
 Date: JANUARY 21, 2001

 Objectives: CREATE A SAS DATA SET WITH THE SPECFICITY
AND SENSITIVITY OF VARIOUS COMBINATIONS OF VARIABLES

╚════════════════════════════════════╝;
%macro mix(Combo=,j=1,start=1,xmod=);

option nonotes nosource;
 %do i&j=&start %to &nVrbl;
 %let model=&xmod &&&&Vrbl&&i&j;

 %**Write Message to Log***;
 options notes source;
 %put;
 %put NOTE: Processing &model;
 %put;
 options nonotes nosource;

 %**Discriminat analysis***;

ods listing close;
 ods output
 ClassifiedResub=

TmpData1(drop=_0 _1 Ptotal);

 proc discrim data=master;
 class caries;

 var &model;
 run;

 ods listing;

 %**Take only desired information ***;
 data TmpData2;
 merge TmpData1(where=(fromcaries='0')

rename=(total=n0
P_=specfcty))

 TmpData1(where=(fromcaries='1')
 rename=(total=n1

 P_2=senstvty));
 length model $200;
 model="&model";
 keep model specfcty senstvty n0 n1 ;
 run;

 %**Append information to ouput dataset***;

proc append base=DiscrimOut data=TmpData2;
run;

%if &j<&Combo %then

 %mix(Combo=&Combo,j=%eval(&j+1),
start=%eval(&&i&j+1),xmod=&model)

;
 %end;

 %*** Clean Up ***;
 proc datasets nolist library=work;
 delete TmpData1 TmpData2;
 quit;

option notes source;
 %mend;

REFERENCES

Murphy, W. C., Proskin, H. M., and Freeman, G.B. (1993),
“Using the SAS® System for Error Control in Clinical Trials
Databases,” Proceedings of the Eighteenth Annual SAS Users
Group International Conference, 18, 956-958.

Murphy, W. C. (1998), “Creating and Maintaining a Central SAS®

Library for Health Care Management,” Proceedings of the
Twenty-Third Annual SAS Users Group International Conference,
23, 1128-1130.

ACKNOWLEDGEMENTS

SAS and all other SAS Institute Inc. product or service names
are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the author at:

 William C. Murphy
 Howard M. Proskin & Associates, Inc.
 2468 E. Henrietta Rd.
 Rochester, NY 14623
 Phone 716-359-2420
 FAX 716-359-0465
 E-mail wmurphy@hmproskin.com

Posters

	SUGI 26 Title Page

