ABSTRACT
We often find it necessary to combine output values from several procedures into one table or page of a report. When we need a p-value from one procedure, and means and standard errors from another and frequencies from a third procedure, the separate pieces of information must be brought together in one DATA step before using PUT statements to print the table. The problem of how to get the data/output/information ready to print is particularly difficult for inexperienced programmers. We will show examples using several different methods such as PROC FREQ, PROC MEANS, PROC UNIVARIATE and DATA steps. In addition to creating PUT tables these methods can also be used to create delimited ASCII files that can be merged into word processing or spreadsheet packages.

INTRODUCTION
Our goal is to produce a table which describes a continuous variable (Age) and two categorical variables (Gender and Marital Status) by treatment group. As is so often the case in SAS programming, there is more than one way to accomplish the task. We will use SAS procedures and DATA step programming to show some ways to meet the goal. Statistics for the continuous variable will be n, mean, standard deviation and the probability of no difference between treatment groups; for the discrete variables statistics will be n, percent-of-group, and probability of no difference between groups. See the second example for methods of working with probabilities.

Our sample dataset form1 contains five variables:
- **ID**: Subject identifier
- **Treatmnt**: Treatment A or B
- **Age**: Subject's age in years
- **Gender**: 1=male, 2=female
- **MarStat**: 1=never married, 2=married, 3=divorced/widowed

The 51 observations have been sorted by treatment group; none of the data are missing. Assume the formats gender. and marital. exist.

EXAMPLE ONE.

N, MEAN, AND STANDARD DEVIATION USING PROC MEANS
One method of calculating statistics such as means and standard deviations is to use the procedure (PROC) MEANS, which can create an output data set containing the calculated values. The output dataset is named in the OUTPUT statement; the desired statistics are requested and named. When the CLASS statement is used, the dataset contains statistics for each value of the class variable (here, treatmnt) and for the total sample. The data step AGEA changes the value of treatmnt for the total sample from ' ' (missing) to 'C' so that the data can be sorted to put the total last.

SAS Code:
```sas
proc means data=form1;
  class treatmnt;
  var age;
  output out=age
  n=n_age mean=m_age std=s_age;
run;

data agea; set age;
  if treatmnt=' ' then treatmnt='C';
  keep treatmnt n_age m_age s_age;
run;
```

N AND PERCENT USING ARRAYS IN A DATA STEP
We can count the occurrences of each category of a discrete variable and calculate percentages in a DATA step. An array is defined for each categorical variable of interest. The array GEN will be used to sum the occurrences of 1(male) and 2(female) for each treatment group and overall; likewise, MARITAL will hold the marital status counts. For each two-dimensional array the rows are the categories and the columns are the treatment groups. The percentages will be calculated later in the DATA _NULL_ step.

SAS Code:
```sas
data counts(keep=gen1-gen9 mar1-mar12);
  set form1 end=eof;
  columns: Treament A, B, total;
  Rows: Male, Female, Total;
  array gen{3,3}  gen1-gen9;
  Rows: Nvr Married,Married,Divorced,total;
  array marital{4,3}  mar1-mar12;
  if treatmnt='A' then trt=1;
  if treatmnt='B' then trt=2;
  if gender in (1,2) then do;
    gen{gender,trt}+1;
    gen{gender,3}+1; *row total;
    gen{3,trt}+1; *column total;
    gen{3,3}+1; *overall total;
  end;
  if 1 le marstat le 3 then do;
    marital{marstat,trt}+1;
    marital{marstat,3}+1; *row total;
```
DATA _NULL_ AND PUT
We bring the pieces together and "put" out the data in tabular form.

SAS Code:
```
data _null_; set agea(in=ina ) counts(in=inc);
array gen{3,3}  gen1-gen9;
array marital{4,3}  mar1-mar12;
retain col 0;
file print header=h1;

*Age*;
  if ina then do;
    col+17;
    if treatmnt='A' then put
      / @1 'Age (years)' @;
    put @col n_age 2.+2 m_age 4.1
      +2 s_age 4.1 @;
  end;
if inc then do;
*Gender*;
  put /// @20 'N     %'
    @37 'N     %'
    @54 'N     %'
    / @19 '__________'
    @36 '__________'
    @53 '__________'
    / @1 'Gender';
do row=1 to 2;
  put @3 row :gender. @;
  col=2;
do rx=1 to 3;
    col=col+17;
    if gen{3,rx} gt 0 then
      pc=gen{row,rx}/gen{3,rx} * 100;
    else pc=.;
    put @col gen{row,rx} 2. +3 pc 5.1 @;
  end;
end;
  *Marital Status*;
  put / @1 'Marital Status';
do row=1 to 3;
  put @3 row :marital. @;
  col=2;
do rx=1 to 3;
    col=col+17;
    if marital{4,rx} gt 0 then
      pc=marital[row,rx]/marital{4,rx} * 100;
    else pc=.;
    put @col marital{row,rx} 2. +3 pc 5.1 @;
  end;
end;
```

EXAMPLE TWO. ANOTHER WAY TO PRODUCE THE TABLE (and add some probability values)

N, MEAN, AND STANDARD DEVIATION USING PROC UNIVARIATE
The procedure UNIVARIATE produces many of the same statistics as PROC MEANS, and the OUTPUT data set is similar. In addition, UNIVARIATE calculates medians and percentiles, although we will not be using those values here. Note that the data set must be sorted into BY variable order. Note also that the procedure must be executed twice: once for by-group processing, once for overall.

We will also get the treatment p-value in this second example.

SAS Code:
```
proc univariate data=form1 noprint;
  by treatmnt;
  var age;
  output out=age
    n=n_age mean=m_age std=s_age;
run;
proc univariate data=form1 noprint;
  var age;
  output out=tage
    n=n_age mean=m_age std=s_age;
run;
```

T-TEST P-VALUE USING ANOVA PROCEDURE
Since the TTEST procedure does not have an OUTPUT option, we will use the ANOVA procedure, which calculates the equivalent probability value.

SAS Code:
```
proc anova data=form1 outstat=p_age;
  class treatmnt;
  model age=treatmnt;
run;
```

N, PERCENT, AND CHI-SQUARE PROBABILITY USING PROC FREQ
Counts and percentages, as well as chi-square probabilities, for discrete variables can be obtained by use of the procedure FREQ along with the procedure's two types of output statements. Note that PROC FREQ is
performed separately for the one-way tables (totals).

SAS Code:
Proc freq data=form1;
table gender*treatmnt
 /chisq out=gendertreatmnt;
output out=ctreatment(keep=p_pchi) chisq;
run;
proc freq data=form1;
table marstat*treatmnt
 /chisq out=maritaltreatmnt;
output out=ctreatment(keep=p_pchi) chisq;
run;
proc freq data=form1;
table gender / out=tgender;
table marstat / out=tmartial;
run;
data gen; set gender
tgender;
by gender;
if _n_=1 then set cgender;
if treatmnt=' ' then treatmnt='C';
run;
data mar; set marital	martial;
by marstat;
if _n_=1 then set cmarital;
if treatmnt=' ' then treatmnt='C';
run;

DATA _NULL_ AND PUT
Again we bring the pieces together and put out the data table.

SAS Code:
data _null_;
set age(in=in_a)
tage(in=in_t)
p_age(in=inp
 where=(_type_='ANOVA'))
gen(in=in_g)
mar(in=in_m);
retain col 0;
file print header=h1;
if in_g and treatmnt='A' and gender=1 then put // @20 'N %'
 @37 'N %'
 @54 'N %'
 @68 'probability'
 / @19 '____________'
 @36 '____________'
 @53 '____________'
 @69 '____________'
 / @1 'Gender' @;
if in_m and treatmnt='A' and marstat=1 then put // @1 'Marital Status' @;
if treatmnt='A' then do;
 if in_a then put / @1 'Age (years)' @;
 if in_g then put
 / @3 gender gender. @;
 if in_m then put
 end;
if in_a or in_t then do;
 col=col+17;
 put @col n_age 2.
 +2 m_age 4.1
 +2 s_age 4.1 @;
 end;
if in_g or in_m then do;
 if treatmnt='A' then col=2;
 col+17;
 if treatmnt in ('A','B') then put
 @col count 2. +3 pct_col 5.1 @;
 else if treatmnt = 'C' then
 put @col count 2. +3 percent 5.1 @ ;
 end;
if inp then put @71 prob 5.3;
if in_g and treatmnt='C' and gender=1 then put @71 p_pchi 5.3 @;
if in_m and treatmnt='C' and marstat=1 then put @71 p_pchi 5.3 @;
return;
h1:
title 'Demographic Information by'
 'Treatment Group';
put // @33 'Treatment Group'
 // @23 'A' @40 'B' @56 'Total'
 / @01 'Demographic'
 / @01 'Information'
 @17 'N Mean S.D.'
 @34 'N Mean S.D.'
 @51 'N Mean S.D.'
 @68 'probability'
 / @01 '____________'
 @17 '____________'
 @34 '____________'
 @51 '____________'
 @68 '____________';
run;

CONCLUSION
Using DATA step arrays and/or output data sets from SAS procedures will require some extra programming steps. The time is well spent, though, when you compare the programming time to the alternative of hand-transcribing, and checking, and checking again, and verifying that the correct numbers from the appropriate SAS output listings have been put in the correct destination slots.

ACKNOWLEDGMENTS
SAS and all other SAS Institute Inc. products are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

CONTACT INFORMATION
Anne Horney Gail F. Kirk
(410) 642-2411 ext. 5298 (410) 642-2411 ext. 5296
Rebecca.Horney@med.va.gov Gail.Kirk@med.va.gov
Mailing address for both:
CSPCC (151E)
VA Medical Center
P. O. Box 1010
Perry Point, MD 21902
APPENDIX A. Sample Data Set

<table>
<thead>
<tr>
<th>TREATMNT</th>
<th>ID</th>
<th>AGE</th>
<th>GENDER</th>
<th>MARSTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>36</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>45</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>40</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>44</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>32</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>7</td>
<td>25</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>33</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td>34</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>27</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>11</td>
<td>54</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>12</td>
<td>37</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>13</td>
<td>33</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>14</td>
<td>44</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>15</td>
<td>22</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>16</td>
<td>32</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>17</td>
<td>25</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>18</td>
<td>33</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>19</td>
<td>34</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
<td>27</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>21</td>
<td>54</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>22</td>
<td>37</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>23</td>
<td>33</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>24</td>
<td>44</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>25</td>
<td>22</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

APPENDIX B. Example One Output Data Sets

Example One: Data Set "age"

<table>
<thead>
<tr>
<th>OBS</th>
<th>TREATMNT</th>
<th>TYPE</th>
<th>FREQ</th>
<th>N_AGE</th>
<th>M_AGE</th>
<th>S_AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>51</td>
<td>51</td>
<td>34.2941</td>
<td>8.73223</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>25</td>
<td>25</td>
<td>34.7200</td>
<td>9.11738</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>26</td>
<td>26</td>
<td>33.8846</td>
<td>8.50565</td>
<td></td>
</tr>
</tbody>
</table>

Example One: Data Set "agea" after sorting

<table>
<thead>
<tr>
<th>OBS</th>
<th>TREATMNT</th>
<th>N_AGE</th>
<th>M_AGE</th>
<th>S_AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>25</td>
<td>34.7200</td>
<td>9.11738</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>26</td>
<td>33.8846</td>
<td>8.50565</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>51</td>
<td>34.2941</td>
<td>8.73223</td>
</tr>
</tbody>
</table>

Example One: Data Set "counts"

M M M
G G G G G G G G G MM M M M M M M M A A A
O E E E E E E E E E E A A A A A A A R R R
B N N N N N N N N N R R R R R R R R 1 1 1
S 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 0 1 2

1 14 14 28 11 12 23 25 26 51 7 5 12 10 9 19 8 12 20 25 26 51
APPENDIX C. Example Two Output Data Sets

Example Two: Data Set "age"

<table>
<thead>
<tr>
<th>OBS</th>
<th>TREATMNT</th>
<th>N_AGE</th>
<th>M_AGE</th>
<th>S_AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>25</td>
<td>34.7200</td>
<td>9.11738</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>26</td>
<td>33.8846</td>
<td>8.50565</td>
</tr>
</tbody>
</table>

Example Two: Data Set "tage"

<table>
<thead>
<tr>
<th>OBS</th>
<th>N_AGE</th>
<th>M_AGE</th>
<th>S_AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51</td>
<td>34.2941</td>
<td>8.73223</td>
</tr>
</tbody>
</table>

Example Two: Data Set "p_age"

<table>
<thead>
<tr>
<th>OBS</th>
<th>NAME</th>
<th>SOURCE</th>
<th>TYPE</th>
<th>DF</th>
<th>SS</th>
<th>F</th>
<th>PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGE</td>
<td>ERROR</td>
<td>ERROR</td>
<td>49</td>
<td>3803.69</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>AGE</td>
<td>TREATMNT</td>
<td>ANOVA</td>
<td>1</td>
<td>8.89</td>
<td>0.11458</td>
<td>0.73644</td>
</tr>
</tbody>
</table>

Example Two: Data Set "gender"

<table>
<thead>
<tr>
<th>OBS</th>
<th>GENDER</th>
<th>TREATMNT</th>
<th>COUNT</th>
<th>PERCENT</th>
<th>PCT_ROW</th>
<th>PCT_COL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>A</td>
<td>14</td>
<td>27.4510</td>
<td>50.0000</td>
<td>56.0000</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>B</td>
<td>14</td>
<td>27.4510</td>
<td>50.0000</td>
<td>53.8462</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>A</td>
<td>11</td>
<td>21.5686</td>
<td>47.8261</td>
<td>44.0000</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>B</td>
<td>12</td>
<td>23.5294</td>
<td>52.1739</td>
<td>46.1538</td>
</tr>
</tbody>
</table>

Example Two: Data Set "cgender"

<table>
<thead>
<tr>
<th>OBS</th>
<th>P_PCHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.87719</td>
</tr>
</tbody>
</table>

Example Two: Data Set "tgender"

<table>
<thead>
<tr>
<th>OBS</th>
<th>GENDER</th>
<th>COUNT</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>28</td>
<td>54.9020</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>23</td>
<td>45.0980</td>
</tr>
</tbody>
</table>

Example Two: Data Set "marital"

<table>
<thead>
<tr>
<th>OBS</th>
<th>MARSTAT</th>
<th>TREATMNT</th>
<th>COUNT</th>
<th>PERCENT</th>
<th>PCT_ROW</th>
<th>PCT_COL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>A</td>
<td>7</td>
<td>13.7255</td>
<td>58.3333</td>
<td>28.0000</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>B</td>
<td>5</td>
<td>9.8039</td>
<td>41.6667</td>
<td>19.2308</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>A</td>
<td>10</td>
<td>19.6078</td>
<td>52.6316</td>
<td>40.0000</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>B</td>
<td>9</td>
<td>17.6471</td>
<td>47.3684</td>
<td>34.6154</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>A</td>
<td>8</td>
<td>15.6863</td>
<td>40.0000</td>
<td>32.0000</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>B</td>
<td>12</td>
<td>23.5294</td>
<td>60.0000</td>
<td>46.1538</td>
</tr>
</tbody>
</table>

Example Two: Data Set "cmarital"

<table>
<thead>
<tr>
<th>OBS</th>
<th>P_PCHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.55800</td>
</tr>
</tbody>
</table>

Example Two: Data Set "tmarital"

<table>
<thead>
<tr>
<th>OBS</th>
<th>MARSTAT</th>
<th>COUNT</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>12</td>
<td>23.5294</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>19</td>
<td>37.2549</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>20</td>
<td>39.2157</td>
</tr>
</tbody>
</table>
APPENDIX D. GOAL: Tabulated Data (Example Two)

Demographic Information by Treatment Group

<table>
<thead>
<tr>
<th>Demographic Information</th>
<th>Treatment Group</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>25 34.7 9.1</td>
<td>26 33.9 8.5</td>
<td>51 34.3 8.7</td>
<td>0.736</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>14 56.0</td>
<td>14 53.8</td>
<td>28 54.9</td>
<td>0.877</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>11 44.0</td>
<td>12 46.2</td>
<td>23 45.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>7 28.0</td>
<td>5 19.2</td>
<td>12 23.5</td>
<td>0.558</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>10 40.0</td>
<td>9 34.6</td>
<td>19 37.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>8 32.0</td>
<td>12 46.2</td>
<td>20 39.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>