
Paper 143-26

Integrating SAS® with an Open World: Java, JSP, LDAP, and Oracle
Jay L. Stevens, Whitehurst Associates, Inc., Atlanta, GA

Brian Santucci, THINKologies, Inc., Atlanta, GA

ABSTRACT
The world of business technology is no longer the sole domain of
proprietary systems and protocols; it is now a world of open
standards and collaboration. While it has its roots in the “big Iron” of
the mainframe world of yesterday, SAS has more than kept up with
the incredibly rapid rate of technological change accompanying the
Internet revolution. By providing industry-standard interfaces
between its software and open technologies such as Java and
LDAP, SAS have given businesses new ways to deliver
information. THINKologies develops cutting-edge technology-based
solutions to identify, measure and predict the dynamics of business
relationships, helping companies monitor and enhance their
relationships with customers, employees, and business partners.
THINKologies required world-class data warehousing, reporting
and analysis tools that integrated with the latest open technologies
available. This paper will review the architecture and some of the
technical details behind THINKologies’ SAS-based online reporting
system co-developed and designed with Whitehurst Associates.
The system tightly integrates SAS with Java, Java Server Pages,
Weblogic™, LDAP, and Oracle(tm) through the use of Base SAS®,
SAS/Graph®, the IOM object spawner, Integration Technologies,
SAS/Warehouse Administrator® and SAS/Access to Oracle®.

INTRODUCTION
SAS’ capabilities in dealing with large volumes of data in data
warehousing environments in all industries is well documented. As
many SAS professionals know, there is the misperception in the
industry (largely propagated by would-be SAS competitors) that
SAS fits nicely into a box.

“SAS is a mainframe package.”
“SAS is a statistical package.”
“SAS is a mainframe statistical package.”
“We don’t compete with SAS, they’re not big into data
warehousing.”
“SAS is on its way out. No one will be using it in 5 years.”

These are all actual quotes from actual potential SAS customers
(or vendors who were trying to sell them non-SAS solutions). With
the explosion of the internet, SAS has not remained motionless, a
monument to the days when IBM dinosaurs ruled the earth.
Instead, SAS has kept pace (mostly) with the new techologies
sweeping the IT landscape. Words like Java, CORBA, LDAP, JSP,
and others like it that had no meaning just a few years ago, are now
part of the business technology vernacular. This paper will review,
via an implementation case study, how well SAS speaks the Open
language of today’s technology.

CASE / PROJECT BACKGROUND
Early in the year 2000, THINKologies.com began a rigorous vendor
search process to find both software and consulting partners to
provide tools for and to assist its internal staff with the development
of the Online Reporting Module for version 2.0 of their flagship
product, the ePortcardsm online application. Version 1.0 was
developed under NT using an ASP framework accessing SQL
Server database back end. The ePortcardsm 2.0 architecture called
for a Unix-based JSP (Java Server Page) implementation of the
presentation layer (replacing the NT-based ASP architecture).

PROJECT REQUIREMENTS
Brian Santucci, Business Intelligence Systems Manager at
THINKologies and co-author of this paper, presided over the
vendor selection process. The project had the following objectives:

• Build an Online Reporting Datamart - Create a repository
with data structures appropriate for decision support
applications.

• Manage the Warehouse - Develop and manage
extraction, transformation, and loading (ETL) processes
to populate the data warehouse.

• Offline Reports - Purchase analytic tools that will allow for
development of sophisticated statistical models of
ePortcard data.

• Online Reports - Purchase of online analytic tools that
give clients controlled interactivity with collected ePortcard
data.

o Parameter-driven queries
o OLAP (click-able graphs and data that allow

drill-down)
o Static HTML delivery of models developed

offline
• Integration with content and application development to

facilitate proper procedural movement of data and code to
the production environment.

SOFTWARE / CONSULTING PARTNER SELECTION:
THINKOLOGIES’ PERSPECTIVE
As a startup company, we at THINKologies sought two elements to
meet the above outlined objectives. We needed to find a vendor, or
vendors, that offered software that would help us meet the objectives
and we needed help implementing the software to meet those
objectives.

When we approached the marketplace, we found that vendors
typically fit into one of two categories: Warehouse Management tools
and Reporting and Analysis tools. Our primary focus was on
selecting the right reporting and analysis tool for our needs and our
secondary focus was to find a warehouse management tool that
would work well with our reporting and analysis software.

We evaluated a number of vendors for reporting and analysis
including Business Objects®, Cognos®, Hyperion®, Hummingbird®
and SAS. Since our site was converting to a JSP architecture we
quickly narrowed the field to Business Objects and SAS since the
others did not offer tight integration with JSP.

With respect to warehouse management tools, SAS offered their
complementary product Warehouse Administrator while Business
Objects offered tight integration with Informatica's PowerCenter™ /
PowerMart™. We invited parties involved with both of
these solutions to install evaluation software on our servers to assist
us with our decision.

With the software in hand, we quickly discovered what we needed to
know to make our decision. SAS offered a flexible architecture that
opened up the power of SAS to a JSP site through the Integration
Technologies Java API. Business Objects was in the process
of converting an existing product, WebIntelligence, to a Java API. It
was unclear what we would be able to do with the Business Objects

Emerging Technologies

2

API other than replicating the Web Intelligence product. With the
SAS Integration Technologies Java API, the opportunity to develop
customized solutions that met our needs was extensive.

Having made the decision on reporting and analysis software, the
warehouse management tools selection became a simple matter.
SAS offered similar functionality at a much lower price point than
Informatica with a clear integration advantages with other SAS
modules. Also, Informatica's data manipulation tools were primarily
SQL-based. SAS offered that and more, leading us to believe that
our ability to manipulate data in complex ways would be better
facilitated using SAS software.

Once the decision about what software to select was made, we
decided that we needed assistance putting it all together. We
evaluated the alternatives and settled on a contract with Whitehurst
Associates. THINKologies selcection of a consulting partner was
based on the excellent reputation that Whitehurst has established
working with “dot-coms” in the Atlanta area and the local proximity of
their leading technology experts. In addition, they had been involved
with the evaluation process from the beginning, assisting with SAS
software installation and configuration, etc. and were familiar with the
challenges we were facing.

THE SOLUTION
Based on the requirements, Whitehurst recommended the following
products for the THINKologies project:

• Base SAS – the core of the SAS System.
• SAS/Graph – for generation of graphics.
• SAS/Access for Oracle – to access the production

databases.
• SAS/Stat – for analysis.
• SAS/Warehouse Administrator – to manage the

warehouse ETL processes.
• SAS Integration Technologies – to provide integration

with Java.
• SAS Enterprise Guide – to provide point-and-click

desktop analytical reporting access.

SAS INTEGRATION TECHNOLOGIES

“Integration Technologies” is the product name that SAS® has
given to a group of open technologies including: Component
Platforms (support for programmable object interfaces to SAS®
services), Application Messaging Platforms (support for MSMQ,
MQSeries, etc.), Enterprise Directory Platforms (support for
directory services such as LDAP and Active Directory Server). In
building the ePortcard Online Reporting application, Whitehurst and
THINKologies used 2 of these platform areas: Component
Platforms (via IOM) and Enterprise Directory Platforms (via LDAP).

INTEGRATED OBJECT MODEL (IOM)

“SAS Integration Technologies delivers a base service component
hierarchy with an integrated object model (IOM) that provides access
to the SAS software procedural scripting language, data, file system,
results content, and formatting services.” 1

-SAS Integration Technologies Whitepaper

SAS® Integration Technologies provides a standardardized common
middleware platform and object interface to the core modules of the
SAS system. This enables diverse clients (from custom-built C++
or Visual Basic applications to Java Servlets/Applets to SAS®
shrink-wrapped products like Enterprise Guide) to access SAS
services and objects via a common object interface. Figure 1 at the
end of this paper provides and overview of the IOM object hierarchy.

This integrated object model (IOM) is surfaced via the IOM server, a

separate process similar to SAS/CONNECT’s ® spawner or TCP
daemon which facilitates and manages the startup of client to server
TCP/IP conversations. The root object in IOM is the SAS®
Workspace. This is roughly equivalent to a SAS® session. As
shown in the chart below, once a root Workspace object has been
created other classes are available under the workspace including:

• DataService, which offers Libname assignments and
access via JDBC.

• FileService, which allows Filename assignments.

• Utilities, which allows access to HostSystem functions,
SAS System options, access to SAS formats in the Java
context, and access to the ResultPackage service
(including HTML results).

• Language Service, which allows programmers to submit
SAS language statements directly to the workspace or to
run SAS StoredProcesses (specially configured SAS
programs stored in a file) to allow parameters to be
passed to the program via Java.

The same IOM server can handle requests from both COM
(Windows Component) and CORBA (Java) clients. This allows the
data to take on many different “presentation personalities” while
keeping the data and SAS processing components centralized. So,
for example, let us suppose we have a SAS Stored Process (a SAS
program) that analyzes some data and generates summary
statistics. Further, this program needs to be run every time a new
request is made because of the nature of the report. The IOM
server enables multiple and diverse clients to connect to SAS,
utilize SAS services and retrieve the resulting data. So a Microsoft
Excel ® spreadsheet macro could be written that would invoke the
StoredProcess and retrieve the results to a spreadsheet. The same
process could be invoked by a Java thin client application, or a Java
servlet, or a Visual Basic application, or an ASP page. With the
advent of the IOM server, SAS services and SAS data are now
open.

LDAP - LIGHWEIGHT DIRECTORY APPLICATION PROTOCOL
LDAP is a protocol designed (as the name implies) to be lightweight
and speedy. Ostensibly its primary mission is to provide cross-
platform directory services. For example, a company might store its
entire user database (along with each user’s access levels, name,
address information, etc.). Using a standard API, webservers,
fileservers, and applications could all use the centralized LDAP store
to authenticate and validate users. LDAP, however, can be used to
store any kind of hierarchically organized information. The open
interface allows many diverse clients to utilize the services.

THE EPORTCARD APPLICATION

THINKologies ePortcard application allows businesses to collect
feedback from business process stakeholders (i.e. customers,
suppliers, partners, employees) via multiple input sources (Web,
Kiosks, WML, PDA wireless, etc.). These data are loaded to Oracle
directly. ePortcardsm customers can then use online reporting tools
to get information and analysis on the incoming feedback data.

ENTERPRISE JAVA BEANS ARCHITECTURE
There are 3 user bases that interact with the ePortcard application:
administrators, feedback providers, and information consumers.
The architecture for handling administration and feedback provision
utilize a transaction system built using J2EE’s (Java 2 Enterprise
Edition) EJBs (Enterprise Java Beans). Administrators define
elements of the system such as channels (e-mail, URL, kiosk, IVR),
forms (a.k.a. surveys), and launches(specification for form
distribution and data collection) which define the experience of the
feedback provider. The EJB tier handles the creation of these
entities and persistence of the associated data in an Oracle
database. It also handles the form distribution and data collection.

Emerging Technologies

3

The third type of user, the information consumer, interacts with a
portion of the application that is built around SAS Institute’s
Integration Technologies module. This type of user’s first interaction
with the system is likely to involve accessing a report. Access to
management reports is handled via LDAP, specifically the freely
available OpenLDAP implementation. A list of all users and all
available reports is stored in the LDAP database.

LDAP INTEGRATION WITH SAS
This LDAP listing of users is constantly updated via SAS by using
the new CALL routines ldaps_open, ldaps_search, and ldaps_entry.
In addition to updating and loading new data, there are ETL
programs that load all new ePortcard users to LDAP that have been
recently added to the Oracle user tables. This synchonization
between Oracle and LDAP was done completely with SAS.

When a user accesses the reports webpage, the JSP that handles
the request uses a JNDI-based JavaBean (developed by Whitehurst
and THINKologies) to search the LDAP database for group
membership for that individual and creates a group list. The bean
then searches for reports that are available to all groups in the group
list and returns the results to the requesting JSP. The reports
available to the user range from static html or pdf documents created
by THINKologies analysts using SAS Enterprise Guide to real-time
dynamic reports that utilize SAS and a custom JavaBean
architecture to return real-time, dynamic results.

CUSTOM BEAN INFRASTRUCTURE

The heart of ePortcard’s online reporting component is based upon
the Java API offered within SAS/Integration Technologies. With the
introduction of SAS/Integration Technologies, web application
developers were given the ability to integrate the power of SAS with
Java in an open way. To harness this power and flexibility,
Whitehurst Associates created a JavaBean infrastructure, later
extended and enhanced by THINKologies, that is customized to the
needs of the ePortcard application. These JavaBean components
act as custom wrappers to the base SAS® Java classes, extending
and customizing their functionality.

RPTWORKSPACE (SAS WORKSPACE MANAGEMENT)
The workspace bean manages the retrieval and closure of SAS
workspaces over the IOM bridge for Java. The SAS workspace
class allows the programmer to specify the connection properties in
multiple ways: either via a Java Properties object and the
WorkspaceFactory or by reference to an LDAP server where the
connection information is stored. For connections obtained via an
LDAP server, a feature called workspace pooling is available.
Workspace Pooling provides for sharing of Workspace objects
among multiple clients. So rather than incurring the overhead of
starting and stopping a Workspace session for every request,
Workspace Pooling allows a Java application to connect to and
disconnect from an existing Workspace object without incurring the
overhead of startup and shutdown between those requests. The
rptWorkspace bean’s methods are independent of the workspace
access method, meaning that they work for both the workspace
factory and pooling methods.

RPTSESSION (JSP SESSION MANAGEMENT)
With a workspace available to perform SAS services, the ePortcard
application begins the task of gathering information from the user
about what tasks SAS should perform. The user enters information
related to a report request into standard HTML forms. This
information is captured and passed to the session bean. The
session bean stores this information across page clicks until the
point where enough information has been specified to make a
request to the SAS server.

RPTQUERY (JDBC CONNECTIVITY)
The query bean is a wrapper to Integration Technologies’
DataService classes as well as standard Java 2 JDBC classes and
methods for accessing datasets. The query bean is used by the
process bean (below) or can be called independently with a SQL
string as an argument. If a stored process is not necessary for the
job, it is possible to write or generate regular SQL and pass that to
the query bean. This flexibility makes it very easy to get information
from the SAS server.

RPTPROCESS (EXECUTE SAS JOBS)
The process bean is the workhorse of the ePortcard application. By
encapsulating the functionality of several SAS and standard Java
classes, it shelters the JSP developer from the complexities of both
Java and SAS. The process bean is designed with methods to
allow the JSP page to pass arguments to a SAS stored process
(SAS program), execute the SAS program, retrieve the results (both
images and data), and finally to use the results in the JSP page.

Usage of these beans in a JSP page is shown in the example below:

Passing Arguments to and Executing the Stored Process

1 <%
2 try {
3 rptWorkspace.open();
4 string attribute=rptSession.getValue("attr")
5 rptProcess.addParam("ID",ID);
6 rptProcess.addParam("attribute", attribute);
7 rptProcess.execute("testprocess");
8 }
9 %>

In line 3, the call to the open() method of rptWorkspace establishes
the SAS workspace (session) with the server. Line 4 contains a
variable assignment. We are retrieving a value from the JSP
session (set earlier) that will be used as a parameter for the stored
process. In lines 5-6, the addParam() method of rptProcess is
called to set the parameters that will be passed to the SAS program.
In line 7, the execute() method of the process bean is called. This
actually runs the SAS program using the supplied parameters.

The SAS Stored Process
As mentioned previously, a SAS Stored Process is nothing more
than a SAS program with one special addition.

testprocess.sas

1 %let ID=;
2 %let attribute=;
3 %let USERID=;
4
5 *ProcessBody;
6
7 proc sql;
8 create table ds1_&userid
9 as
10 select *
11 from table
12 where id=&id
13 and attribute=&attribute;
14 quit;

All of the parameters that can be passed to the StoredProcess are
specified at the top of the program (lines 1-3). The special comment
“*ProcessBody;” indicates that the SAS program proper is about to
begin. In the ePortcard Application, any datasets or images created
by Stored Processes follow a naming convention. This is to allow

Emerging Technologies

4

the Java beans to retrieve them via JDBC. So if another dataset had
been created in the program above it would have been named
sequentially ds2_&userid. The &userid (the web user’s unique login
id) is passed behind the scenes by the rptProcess bean when it
submits the other parameters (ID and attribute). This interface
allows any number of datasets or images to be created by the stored
process for later access by Java.

Retrieving the Results
Once the stored process has executed, the results are then available
to be used in a JSP page as shown below:

1 <%
2 rptProcess.doQuery(1);
3 while(rptProcess.next()) {
4 string ID=rptProcess.getValue(“id”);
5 string attr=rptProcess.getVAlue(“attribute”);
6 %>
7 <tr><td><%=ID%></td><td><%=attr%></td></tr>
8 <%
9 }
10 %>

The doQuery(1) method of the rptProcess bean on line 2 above
retrieves the dataset from SAS via JDBC and makes it available to
the bean. The argument (1) tells the process bean to retrieve the
dataset named ds1_&userid. In lines 3-9 a loop is set up using the
next() method of the rptProcess bean which returns true as long as
there are rows from the result data to process. The getValue()
method is used to retrieve values from the resultset via column
name.

In addition, the process bean also maintains a HashMap cache
which tracks result sets and images that have already been created
by a particular user. If the user requests another view of the same
data, the process bean is able to recognize this and retrieves the
stored process results that are cached in memory rather than re-
running the program. This output caching mechanism substantially
increases performance over repeated calls to the SAS server.

ETL PROCESSES

SAS plays a pivotal role in a part of the application that the user
never sees: ETL (extraction, transformation, and loading). The
Oracle transaction database that supports the EJB layer is highly
normalized to optimize transaction performance. Recognizing that
this structure would be sub-optimal for reporting and that long-
running aggregation queries would be unwelcome on the transaction
database, THINKologies sought a tool to assist them in the
development of an ETL process that would create a reporting data
mart. SAS Warehouse Administrator was chosen as the tool for the
task.

Warehouse Administrator is responsible for managing the code
base that extracts data from the Oracle Transaction database using
SAS/Access to Oracle libname assignments, performs
transformations using SAS functions and programs, and then
reloads the information into a separate Oracle database using a
schema that is optimized for reporting.

To avoid contention between database updates and user requests,
two copies of the reporting database are maintained. The
application and the ETL both dynamically look up which database on
which to work.

FIGURE 1: SAS INTEGRATED OBJECT MODEL

Emerging Technologies

5

CONCLUSION
With the advent of SAS Integration Technologies, SAS has given
application developers (web-based and otherwise) a powerful new
tool for integrating SAS with custom-built or existing applications.
For the first time, developers now have the option and ability to use
industry-standard programming languages and protocols in
seamless combination with the world class analytic and data
management strengths of the SAS system.

REFERENCES
1 SAS® Integration Technologies Overview -
http://www.sas.com/rnd/itech/papers/oviewSUGI24.html

ACKNOWLEDGMENTS
The authors would like to thank the following individuals who
greatly assisted in our understanding and application of the
technologies discussed in this paper:

Joel Gardi
Don Chapman
Steve Harris
Biff Beers

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the authors at:

Jay L. Stevens
 Whitehurst Associates, Inc.
 341 Eureka Drive
 Atlanta, GA 30305
 678-358-5734
 jay@whitehurst-associates.com
 http://www.whitehurst-associates.com

Brian Santucci
THINKologies, Inc.
1111 Peachtree St.
Atlanta, GA, 00000
404-111-1111
brian@thinkologies.com
http://www.thinkologies.com

Emerging Technologies

	SUGI 26 Title Page

