Paper 47-26

One Engine, Three Apps — Rapid Application Development By Not Writing Code
Amy Swinford, Trilogy Consulting, Lehi, UT

ABSTRACT

The original business need was to develop a customized query
tool for a data warehouse that did not yet exist. The data was
expected to be large — millions of observations with thousands of
variables. Another department was creating the database and
their design for efficient data storage made getting information
cumbersome for the uninitiated. The solution was a data-driven,
custom query tool that did not require a degree in database
engineering to use. Users were able to answer questions that
previously took weeks and a programmer to resolve, as well as
some that couldn’t even be approached. The added benefit
turned out to be an interface that could be easily configured for
other datamarts. The interface works on any Windows based
system, and has been successfully tested on Unix systems as
well. The data it grabs has, at various times, been located on
Windows, Unix, and MVS servers. The same engine has now
been in use for 3 different applications and a fourth is on the way.

THE PROBLEM

With multiple lines of business operating independently, the client
was facing the reality that they needed more intelligence in their
marketing promotions. When marketers needed to choose a
population for a new promotion, they would put in a request for a
count of prospects that would be sent to a programmer. Days,
and even weeks later, they would get the numbers on which to
base their decision. If the results raised new questions, the new
request would go through the same arduous process. Answers
were not being provided in a timely manner, as well as it being
expensive to provide programmers to write the query code for
each request. Data was stored in disparate locations, and
decisions were based on scant information, especially when
considering the rich data available. Something was obviously
required to make promotions more effective with less money. The
answer to this was to create a new data warehouse that would
combine data from many lines of business, providing more
intelligence to each decision process. Moreover, the information
would be almost immediately available; allowing for better
decisions based on current conditions.

Then came the issue of how to actually get to the data. Before
the client had asked for assistance, the decision had already
been made to create the warehouse in Oracle. Initial testing with
various query tools had proved unsatisfactory. Users needed a
deep understanding of databases and query construction in order
to get to the data themselves. Once again a situation was being
constructed that required programmer intervention to answer
simple questions. Enter SAS. By creating a datamart in SAS and
combining it with a custom query tool, we hoped to answer the
majority of these questions without a programmer. The wrinkle to
this was that we needed the query tool the instant that the
datamart became available. The warehouse was estimated to be
available in 2 months time, none of the query tools available for
SAS were suitable to our client, and we needed to work fast.

REQUIREMENTS

The client originally wanted three basic capabilities with the query
tool. First, and most difficult, is the ability to select the data of
interest using a simple to use interface. Simple interfaces are,
without a doubt, the hardest to write. For a marketer, even the
concept of a variable can be foreign. Add to this the need to be
able to do complex queries. Some analysts were sophisticated
enough to require complex queries built of subqueries. So an
interface needed to be point-and-click, drag-and-drop, but still
allow for extremely complex queries. Most interfaces on the
market are either one or the other: simple, or meant for
sophisticated users, not both. To meet this requirement, the tool
provides users the ability to create a query using a simple drop
and drag technique, along with buttons that appear as needed to
guide the user through defining a query. A view is also provided
to switch back and forth between an “English” query and a “Code”
query. Only the code version allows users to type directly into the
query.

Filter Drisplay
t code
% English

FilterSubgroup
All CP Affind Literaryd = WORMENS FICTION nl;l

Filter Cizsplay
% Ccode

C English

FilterrSubgroup
[i 701 CP Affin/ Literary™f _B1_7 FWOMENS FICTIO - |;|

The second necessary capability was the ability to define groups.
These groups could be based on character variables, continuous
variables, or a combination thereof. And they needed to be ad-
hoc, so if we want to try new age brackets, it is a simple task.
However, from a programming standpoint, this is not a trivial task.
While experienced SAS programmers understand what a format
is, marketers do not, nor are they interested in learning.
Therefore, a point and click interface had to be developed which
allowed users to drag actual values into the groupings they
wished to define. This interface allows the novice to easily
regroup selected variables into whatever structure they can need.

Define Bange Groups

[_B2_ |[a11 cP Affin/ Apparel/ |

Sk

Buckets Created

Using Format:

Inc lude
Bucket Label Values
Z |7 - —
[|ACCESSORIES 001
[¥ |APPAREL 004
¥ |CAPS 007
[|COACHS SHIRT 008 b
|FLEECE 014
[|FOOT WEAR 015
¥ |GIFTWEAR 016
@ |[JACKET 216
¥ |JERSEY 217
|| # |LONG SLEEVE SHIRTS 021 I

o 2

Lastly, the query engine needed the ability to do analysis and
facilitate it in other applications. The client didn’t just need a
simple query tool with counts; they needed to be able to provide
sums, means, maximums and minimums. Result data had to be
in a form that could be used by SAS programmers for more
sophisticated processes, loadable into Enterprise Miner, and
exportable to Excel and HTML as a fully formatted report. Since
version 6.12 was the only SAS available and several versions of
Excel had to be accounted for, the coding for these tasks fell to
the query tool. This is not a trivial task — page breaks are nice to
have in a printed report, but not so great in a spreadsheet. As
ODS was not yet available, any report created with Proc Tabulate
had to be calculated into a data set as well to make it exportable.
The result of this requirement was that several different report-
generating objects all were subclassed for the creation of
different output formats.

QUERYING NON-DATA,

Or how to write a custom query tool with no data. The answer is
to use data driven code. Not knowing how your data will be
presented provides a challenge, but it is also liberating, in a way.
By creating detailed metadata for the application to read, | could
provide an engine that was flexible and customizable. Tables and
variables could be easily dropped and added from the database
by modifying the metadata. Also, by using object oriented design
principles, | could write a system where it was easier to add
different types of data, simply by adding new classes. The query
tool has two main functions linked together: the interface and the
business logic. However, by placing the business logic in
metadata, we have managed to separate these functions,
allowing for the same engine to be used on multiple applications.
More complex business logic gets its own class definition,
allowing for easy modifications with new business needs. In this
way, we have an engine that is both generic and customizable.

IT I

Hints

Add: Select Last Row

Remove: Uncheck box

Type over to change buckets

Type over or drag and drop
to change values

DATA-DRIVEN DESIGN

Metadata can mean many things to many people. The Dictionary
tables available in SAS in version 6.12 already provide a pretty
rich source of metadata. However, this was not enough. With
dozens of tables and thousands of variables to choose from,
users needed to have a system for narrowing down the list. Once
a variable was selected, the user needed to know what values
were available for that variable. In different lines of business, the
range of available values was different. So, several more tables
were added to the metadata read by the interface.

The first was a table to define the different lines of business. With
over 4 dozen unique businesses to be tracked independently,
there was a need to simply have that list available, along with the
appropriate 2 character code used for naming variables. Next
was a table to combine these lines of business into logical
groupings to allow for easy selection of several at a time. A single
business can belong to several groups simultaneously. However
the interface had to protect the user from getting the same data
twice, since each brand, or logical group, also had it's own table
of more summarized information. Without this protection users
would end up with reports showing inflated numbers that they
were unable to explain.

Also needed were tables for categorizing variables for easy
selection. For example, in the first application, there were
variables for the last month, last three months, last 6 months, last
12 months, and life to date. These variables maintained a naming
convention that allowed for rules to be defined so all the life to
date variables could be listed together. By placing this information
in a table, the rules are easy to change. Other variables that
didn’t have a naming convention could still be related using
another table in the metadata that simply listed the variable and
it's appropriate category. The application also provided a
shortcut that users find very attractive. Instead of having to
choose the same variable in 4 different lines of business, it only
has to be selected once in the interface. The query tool checks
the metadata to see if that variable exists for other selected lines

of business and automatically selects it for each.

Thus, users can quickly hone in on the variables of interest
through the use of categories and then select them with minimal
mouse clicks through the use of shortcuts. There is even a table
in the metadata pointing to custom wizards for an application
requiring specific business logic.

Another useful table in the metadata matched summary tables
with applications. This allowed for users to enter into EIS
applications that were developed for some of the data, or to
create their own reports based on an entirely different mix of
variables. Likewise, by tagging summary tables in the metadata,
the application is able to utilize the appropriate report generator,
which handles summary data differently from detail data.

As the client added complexity to the requirements, more tables
were added to the metadata. For example, the original structure
called for a single primary identifier for each customer. However,
the client had household level data that could be combined with
multiple customers. By simply adding a table to the metadata and
a new class definition to the application, this was possible. As
another example, when the data warehouse was finally available,
we discovered that the datamart required ‘bucketed’ variables,
where data is stored in multiple variables, rather than multiple
observations. Users want to be able to query all buckets
simultaneously, but this requires an OR condition in the query for
all the variables. For example, if there are 8 buckets for clothing
affinity and | want to select everyone who likes hooded
sweatshirts, | have to look at all 8 clothing variables in my query.
Better if the interface can figure out how to do that for me. By
adding a table to the metadata that defined bucketed variables,
the interface is written to look at all the necessary variables
automatically. This turned out to be a real bonus for marketing
data, as the bucketing issue came up in other applications as
well.

OBJECT ORIENTED DESIGN

Rapid application development can not be discussed without
object oriented design being mentioned. With 2 months to write a
complex application, this tool did not have much of a design
phase. However, by creating re-usable classes and utilizing
inheritance, the design was expandable and the application was
able to perform extremely complex data manipulations. Luckily,
with SAS SCL we are able to utilize object-oriented principles in
our application. For example, one of the classes used was
VARIABLE. The information stored seems simple enough —
name, label, format, type, etc. However, that same variable may
occur in 12 different lines of business. When a user clicks on it,
they want all 12. They may want the sum of all 12, or each
individual value from each business. They may also want to use
this particular variable as a group variable. All of this information
is stored on the object VARIABLE. However, suppose we are
working with summary data. This variable already has a weight. It

o=

¥

needs to be treated differently than a detail level variable, but
many functions overlap. So we create a subclass called
VARSUM. This class inherits much from VARIABLE, but it has
specific methodology for report production that differs from its
parent class. This simple concept extends throughout the entire
application. On occasion, there may be a capability needed of the
query tool which does not already exist. By using OOP, we can
usually reuse our code we've already written and add a subclass
for our new twist. So when we decided to allow the user to define
a new variable on the fly, we added a new module called
VARUSER. It is identical to VARIABLE, except that it provides for
the creation code that will create this new variable. Users can
even embed another query in VARUSER to create a complex
indicator variable. All of this new functionality builds on the
capabilities provided by VARIABLE, without affecting it. New
complexity doesn’t require breaking of old code.

PORTING TO NEW OPERATING SYSTEMS

Uncertainty in operating systems is a challenge that SAS has met
admirably. During development, the client didn’t know where the
interface or the data would reside. The result is that the interface
can run on Windows (95/98/NT) or Unix, and the data and
compute server can reside almost anywhere. Using
SAS/Connect, we can generate reports on data on any server
with SAS 6.09 or better. Currently there are 10% and 1%
samples of the data occupying about 30GB on a Unix box. Users
can work out their queries and play with their reports on the
sample data with immediate response. The same queries will run
in batch on the MVS system against 100% of the data. All of the
underlying locations of the data are stored in a table in the
metadata that matches the sample with the machine it is stored
on. The 100% query is automatically routed to the appropriate
machine, and the JCL is inserted as needed.

FEATURES THAT MADE THE OTHER GUYS JEALOUS
Because of the use of object-oriented design, as well as the data-
driven nature of the application, some of the features in this query
tool are unique. In no other application at the client site is it so
easy to create an indicator variable based on a complex
subquery. The ability to create ad-hoc groups on continuous
(numeric) variables is difficult to find in any query tool — most are
predefined by the programmer. By simply creating a subclass
and adding an entry into the metadata, programmers can easily
add wizards, which guide users through common tasks. The ease
of linking this application to an EIS or an Excel application is
another custom feature that requires no programming to
accomplish a slick-looking transition.

PORTING TO OTHER APPLICATIONS

As it turned out, the same functionality provided by this interface
was needed by other applications. Merely by spending a day or
two generating metadata, we were able to utilize the same engine

_[Of

Select Status to Use:

[Active

[T Inadtive

ActivesInacti

[T Prospect

[T Skip Staws

Cancel £ HBaok Next > Finigh

in three completely different applications. This allowed for the
production of an application in a matter of days that could have
taken weeks or months. We were able to produce customized
query tools in a fraction of the time expected, allowing for more
time to be spent on the data, the business logic, and the analysis,
as it should be. The design of this interface engine makes it a
simple matter to ‘drop in’ a new data warehouse. It is a simple
matter, as well, to customize the interface to the new application.
Because of the structure of the objects used, it is relatively easy
to replace the screens to give the interface a completely different
look. In fact, this same query tool has even been successfully
coupled with a Java applet for the interface. The engine itself
remained the same, reading the metadata and returning the
appropriate results. The interface provided with the tool is
sufficient for most needs, and makes for an inexpensive way to
surface data to the marketers.

CONCLUSION

Writing a reusable engine has significantly cut back on the coding
requirements for our department. No longer are programmers
required for every question a marketer may have. SAS has
provided the tools necessary to create a great query engine. This
tool is extremely powerful in that it is generic, customizable, and
easy to use. It may seem like writing such a program is not such
a bright idea for a programmer who wants to keep her job.
However, just the opposite is true. By producing a program
requiring limited resources, the field is cleared for other program
development. Our programming needs have actually increased
as we are asked to create new applications by more and more
groups. Yet, even now, some of those requests are perfectly
suited to the engine we already have and we are able to produce
a ‘new’ query tool in a fraction of the time expected.

ACKNOWLEDGMENTS

SAS is a registered trademark or trademark of SAS Institute Inc.
in the USA and other countries. ® Indicates registration.

Brand and product names are registered trademarks or
trademarks of their respective companies.

Thank you to Charles Bininger, who has agreed to present this
paper since the author cannot be present.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Amy Swinford

333 S 200 W

Lehi, UT 84043

Work Phone: 801-766-9685

Fax: 801-766-9686

Email: aimless@fiber.net

	SUGI 26 Title Page

