
Paper 10-26

Database Access Using the SAS System
Frederick Pratter, Computer Science Department, University of Montana Missoula

INTRODUCTION: CLIENT/SERVER
DATABASE MANAGEMENT SYSTEMS
The SAS® System currently provides many of the
features of a database management system, including
database views and an extended superset of ANSI SQL.
However, it is often impractical or just plain impossible to
convert desktop or legacy databases into SAS.
Consequently, the SAS System® provides several
procedures for access to relational databases. This paper
will review how to use the various SAS/Access®
products to link networked workstations to remote
servers. Most of the examples will use the SAS/Access®
Interface to Oracle, but the principles described apply
equally to local databases in Microsoft Access 2000, as
well as other client/server systems such as DB2.

In order to understand the various SAS/Access® options,
it is important to recognize that this product was written
specifically to run on client/server database systems, in
which a separate database engine supplies data to the
local application. In this paper, all of the examples use
SAS as the client and a relational DBMS as the server.
Since the SAS System® was originally written to run only
on the mainframe platform, it did not initially provide a
separate server engine. 1

In contrast, a relational DBMS (Database management
System) such as Oracle runs as a network-centric
application that supports efficient database access. This
efficiency results because it is not necessary to copy the
entire database each time a set of records is selected. The
server engine selects the desired records and only these
are sent over the network to the client. The database
server is generally not on same platform as the application
although in principle it is possible to have the server run
locally on the same machine.

ACCESS TO RELATIONAL DATABASE
MANAGEMENT SYSTEMS (RDBMS)
The complexity of the SAS/Access® product results from
the necessity of sending database commands from the
client to be executed by the server. The product is
available in three different forms, depending on the
platform. As the following table illustrates, there are

1 The SAS/Share® product was added to allow this
functionality for reading SAS data libraries.

more options available for Windows than for systems
running Unix operating systems.

Table 1. SAS/Access Interfaces by Platform

Client Server Available Interfaces
Unix Unix SAS/Access Interface to

Relational Databases
Windows Unix SAS/Access Interface to

Relational Databases
SAS/Access Interface to
ODBC
SAS/Access Interface to
OLE DB

Windows Windows SAS/Access Interface to
Relational Databases
SAS/Access Interface to
ODBC
SAS/Access Interface to
OLE DB
SAS/Access to PC File
Formats

It is important to note that there are DBMS specific as
well as operating system differences from system to
system. For example, to use SAS/Access for Oracle on a
Unix system, it is necessary to set the environment
variable SASORA to V7, V8, or V8i, depending on the
ORACLE version. When using this product on a
Windows platform, it is necessary to install and properly
configure Oracle SQLPlus on the client workstation in
order to access remote databases via TCP/IP. The best
advice is to consult the documentation that comes with
the specific version of the SAS/Access® product.

The only option available for a user at a Unix client
workstation is to use one of the relational database
specific products. Currently a number of these are
available, the most widely used of which are probably the
SAS/Access Interface to Oracle and the SAS/Access
Interface to DB2.2

Each of these interfaces includes three procedures:

• PROC ACCESS – Used to download DBMS
data into SAS

• PROC DBLOAD – Load SAS data into DBMS
• PROC SQL Pass-Through – Execute native SQL

(Structured Query Language)

2 Other supported products include SQL Server, Sybase,
CA-OpenIngres, Informix., and Adabas

Advanced Tutorials

2

The Access procedure (as distinct from the SAS/Access®
product) is extremely cumbersome to use. I once
described it as “probably the worst designed SAS product
of the decade” (Pratter, NESUG ‘94). This was because
in Version 6 of the SAS System® it was necessary first to
create an Access descriptor to describe the data in a single
DBMS table and then create a second View descriptor to
define a subset of the DBMS data described by the Access
descriptor.

PROC DBLOAD works in the opposite direction from
PROC ACCESS. It is used to copy data into a DBMS
from a SAS dataset. This PROC is useful for bulk loads,
e.g., copying entire SAS datasets into Oracle, but caveat
programmer: there are two important “features” that must
be noted:

• The default load limit is 5000 records; in order to
load larger tables, specify limit=0

• The PROC will abend if table exists; it can only
be used to create new tables.

One of the important changes in Version 7 and higher, is
that it is no longer necessary to go through this
cumbersome process-- one no longer needs to create
access and view descriptors. As the following code
illustrates, by using a “dynamic libname engine” SAS can
treat the remote database as if it were a SAS dataset.

libname oralib oracle
user=scott password=tiger path=sample;

Using the interactive feature in the latest versions of the
SAS System, this process is even simpler. Selecting File,
New from the libname window brings up the window
shown in Figure 1. The user is prompted to enter a
libname, which can be any valid SAS library name. In the
example, the engine selected is Oracle and the user and
path information is from the batch example above.

Note the “Enable at startup” check box. If this is selected,
the library name will be available in this user’s profile.
The next time SAS is started, the Oracle data will be
available automatically, along with the standard SAS data
libraries.

The Access and DBLoad procedures are still available.
Programs written using Version 6.06 and later should still
work correctly. Using the new libname engines feature,
however, allows the SAS user to create relational
database tables in the DATA step, greatly simplifying the
process. It is even possible to update and delete Oracle
tables directly from SAS, using PROC DATASETS or the
LIBNAME window, just as if they were native SAS
datasets.

SQL PASS-THROUGH
The least complicated way to manage remote database
tables in Version 6 was with PROC SQL. This alternative
still offers a powerful and relatively straightforward
interface for experienced SQL users. Except for bulk
loads, where it is still probably better to use DBLoad,
PROC SQL has the advantage of simplicity and
familiarity.

The following example illustrates how to use the PROC
SQL connect to as an alternative to PROC ACCESS:

proc sql;
connect to oracle
 (user=scott orapw=tiger path=sample);
create table EMP as
 select * from connection to oracle

(select * from emp);
disconnect from oracle;
quit;

Three SQL statements are necessary. “Connect” and
“disconnect” attach to the database and detach
respectively. The “select” statement has two parts: the
parenthesized expression select * from EMP is the pass-
through SQL. This code is sent to the Oracle database
server to return the data from table “emp”. The outer
select * from connection to oracle returns the result to
SAS. Finally, the “create table“ clause cause the results to
be saved as the temporary dataset work.EMP. If this
clause were omitted, PROC SQL would simply display
the table in the output window (the default behavior for a
SAS select).

The advantages of using SQL pass through can be
substantial. For example, in the above illustration the
parenthesized expression select * from emp could
include a where clause, limiting the records to be selected.
Alternatively, the outer select statement from the oracle
connection could have a SAS SQL where clause, which
would have the same effect of limiting the records
displayed. The difference, of course, is that in the first
case only the selected records would be sent to the client,
while using a SAS where clause would result in the entire
employee table being sent to the client, at which point the
client would discard the unneeded records.

UNIX SERVER/WINDOWS CLIENT
It is still possible to use the SAS/Access® Interface to
DBMS if the database is on a Unix server and SAS is
running on a Windows client. In general, however, it is
usually easier to use SAS/Access® to ODBC. The main
advantage of the latter, as opposed to the DBMS specific
products, is that it allows a Windows client to access a
wide variety of database engines, not just the one it is
licensed for.

Advanced Tutorials

3

The main drawback is that before using this product it is
necessary to set up an ODBC data source that points to
the database. The user needs to install the correct driver,
for example, Microsoft ODBC for Oracle, and then go to
the Windows Control Panel and click on “ODBC Data
Sources (32 bit)” to set up an ODBC data source name,
e.g. “Oracle”. Figure 2 illustrates how this is done in
Windows 98; Windows 2000 is virtually identical

This process only needs to be done once for each client
workstation, after which the database will be accessible
using the following SQL code:

proc sql;
connect to odbc

(dsn=oracle uid=scott pwd=tiger);
create table EMP as
 select * from connection to odbc

(select * from emp);
disconnect from odbc;
quit;

As the comparison to the previous example clearly
illustrates, SQL pass-through works the same way in the
DBMS specific products and in SAS/Access® to ODBC.
The only difference is that the “connect” statement
references the “DSN” (data source name) created using
the ODBC administrator.

It is also important to note that in Version 7 and higher,
one can use the dynamic libname engine to access Oracle
tables and views via ODBC as if they were SAS datasets:

libname save odbc
dsn=oracle uid=scott pwd=tiger;

The procedure for doing this is identical to the Oracle
example shown in Figure 1, except that the options for
ODBC are slightly different (see Figure 3).

There is one more database access option available in
SAS Version 8 for client workstations using Windows.
The SAS/Access product for OLE DB can support both
native Oracle and ODBC access. The library window
looks like Figure 3. It is only necessary to supply a value
in the name field and select the OLE DB engine. Clicking
on OK brings up the Data Link window shown in Figure
4 below.

Note that, depending on what software is available on the
workstation, there are providers available for a variety of
data sources including Oracle and ODBC. It is
Microsoft’s plan that the OLE DB engine should replace
these native access methods, and SAS offers transparent
connectivity to databases via this source.

ACCESS TO PC FILE FORMATS
In contrast to the other two products described,
SAS/Access® to PC File Formats is not used to access
client/server databases. Instead, it can be used on the
Windows platform to read and write database or
spreadsheet files. Licensing this product in SAS 6.12
includes PROC DBF and PROC DIFF, which were
available in Version 6.04 as part of Base SAS but were
subsequently unbundled. Alternately, one can set up
Access and View descriptors to read Dbase and FoxPro
tables (but not Visual FoxPro) and Lotus and Excel (but
not Excel 97 or Excel 2000). In addition, the File menu
Import/Export commands will run AF wizards that can be
used to read and write PC files.

In PC File Formats for SAS version 7 and higher there is
new support for MS Access and Excel 97. Also, PROC
IMPORT and PROC EXPORT are available as
standalone procedures, not just as menu items.

CONCLUSION
The SAS System® offers a variety of choices for RDBMS
access, depending on client/server platform. The dynamic
libname engines for Oracle, ODBC, and DB2 available in
Version 8 are a great improvement over the clumsy access
and view descriptors of the earlier releases. It is to be
hoped that in future versions of SAS the situation will
continue to improve and SAS will continue to expand
libname support for external data sources of all sorts.

REFERENCES
SAS Online Documentation for Version 8.
SAS/ACCESS® Software for Relational Databases:
Reference. SAS Institute, Cary NC.

Frederick Pratter, "Desktop Database Management Using
the SAS System®". Proceedings of the Sixth Annual
Regional Conference, Northeast SAS Users Group,
November 1993.

Andrew T. Kuligowski, “Advanced Methods to Introduce
External Data into the SAS System®”. Proceedings of the
Twenty-Fourth Annual SAS Users Group International
Conference. SAS Institute. Cary, NC.

TS329: SAS/ACCESS to ODBC Setup and Use with
SAS. SAS Institute. Cary, NC.

TS-501: Data Acquisition and Exportation in PC
SAS. SAS Institute. Cary, NC.

TS-518D: SAS/ACCESS® Guidelines for Connecting to
ORACLE® Databases in the UNIX® Environment. SAS
Institute. Cary, NC.

Jeff Polzin and Cheryl Garner, “Cross Platform Access to
SAS DATA Files”. SAS Institute. Cary, NC.

Advanced Tutorials

4

TS-609: Minimum Requirements for using
SAS/ACCESS® Software for Relational Databases in the
UNIX® Environment. SAS Institute. Cary, NC.

TS-624: Connecting to Oracle from SAS on WINNT or
WIN95. SAS Institute. Cary, NC.

Roger E. Sanders, “Accessing Data from Your PC Using
Version 7 of the SAS System”. SAS Institute. Cary, NC.

CONTACT INFORMATION
Frederick Pratter
Computer Science Department
University of Montana
Missoula, MT 59812
pratter@cs.umt.edu

Figure 1. New Library Window: Oracle Engine

Figure 2. Define ODBC Data Source

Advanced Tutorials

5

Figure 3. New Library Window: ODBC Engine

Figure 4. OLE DB Data Link Properties

Advanced Tutorials

	SUGI 26 Title Page

