
Paper 5-26

1

The Basics of Dynamic SAS/IntrNet  Applications
Roderick A. Rose, Jordan Institute for Families, School of Social Work, UNC-Chapel Hill

ABSTRACT
The purpose of this tutorial is to introduce SAS programmers to the
components and processes required in order to create dynamic
SAS/IntrNet applications. Dynamic SAS/IntrNet is a robust topic,
covering everything from ODS and drill-down capabilities to
htmSQL. This tutorial ignores many advanced topics and most
optional components available in SAS/IntrNet. Instead, the
instruction focuses on the basic skills needed to generate a simple
dynamic application that utilizes the SAS Application Dispatcher, a
web-based SAS processor.

Dynamic applications go beyond static Internet applications by
allowing users from remote locations to process SAS programs and
data sets online. The user does not need SAS installed on his or her
machine, and the analysis is provided through the web browser
rather than a SAS interface. This has limitations - the user can
choose only from those options that have been prepared by the
programmer, and its drawbacks – for instance, dynamic applications
require significant server resources for processing. But it is a
versatile means of implementing interactive SAS applications in a
cost-effective manner.

Programming dynamic SAS/IntrNet applications is best left to the
experienced SAS user. Web authoring experience is not required. I
use only a minimal amount of HTML in this tutorial, and much of the
required HTML can be produced using an HTML editor. The goal of
this paper, and the reason for presenting it in this section of the
conference, is to develop experienced SAS programmers into
beginner-level dynamic application programmers. Suggestions and
hints that are not essential to the tutorial are in italicized text.

This paper was adapted from a web site prepared for instructing
users in dynamic SAS/IntrNet applications (referred to in this paper
as the “companion web site”). It has links, programs and data sets
that can be used as an instructional supplement to this paper. It can
be found at http://ssw.unc.edu/workfirst/sasint/.

DYNAMIC INTERACTION
A dynamic application is a combination of web pages, SAS
programs and a web server-based SAS component called the
Application Dispatcher. The output – the page that your audience
retrieves over the Internet – is created “on-the-fly” by the interaction
of the web form with the application dispatcher, data and program:
• A user will select some information on a web form and submit it

to the Dispatcher.
• The Dispatcher will pass this information, along with the SAS

program, to an open SAS session.
• The SAS program will query the data set for this information,

and a subset of the data set will be produced. This subset will
meet the criteria established by the user on the form.

• A web page that contains an analysis of this subset will then be
produced and displayed on the user’s browser.

The above description of how SAS/IntrNet processes requests
submitted by a form is simplified, and sufficient for this tutorial. The
SAS Institute provides a more comprehensive description, including
some illustrations (please refer to the URL in the reference section).
For the most part, these can be ignored if you are not involved in
the maintenance of the Dispatcher in your organization.

THE DATA STEP AS A FOUNDATION
Data steps are the foundation of SAS/IntrNet, just like in Base SAS.
You normally use data steps to manipulate data and produce output

data sets. Now you will add a multi-faceted web component. You will
(1) use web information to manipulate data and then (2) instruct
SAS to produce HTML output using a data step.

With dynamic applications there are 2 sources of information - a
data set and a web form - that are required to make everything work.
• A Data Set – This is probably the concept with which

experienced SAS programmers are most familiar. For each
observation in the data set, the program will perform the actions
specified in the data step or procedure.

• A Web Form - Even experienced SAS programmers may not
have encountered web forms before. In addition to using a data
set as a data source, the data step in SAS/IntrNet will use, as
an additional source of information, a macro variable passed
from a web form to the SAS program.

This constitutes most of SAS/IntrNet programming and will be
covered in the next part of this tutorial.

DYNAMIC VS. STATIC
There are actually three sources of data. The third is “none”. If you
have no intention of using a form or outputting data elements to the
web pages, but instead simply want to enhance your Web pages
with web elements such as pictures, headers, footers, and other
distractions, you'll use a data _null_ with no data set or web form.
This is simply static web publishing, whereby permanent web pages
are created and stored on a server for web access.

Most requirements for using the HTML Formatting Macros or ODS
in dynamic applications carries over from static publishing. The little
that must be done to modify them for dynamic processing will be
explained further on, but the modifications are minor and the
instruction is brief. Those of you with static SAS web publishing
experience will undoubtedly be relieved about this! Those of you
without any experience in static SAS web publishing will not find it
difficult to follow, but you are encouraged to review static ODS
HTML for further development.

THE WEB FORM
Your first task is to design a web form from which a user can select
query criteria. Specifically, you need to (1) specify several required
hidden form fields, (2) create a pool of query criteria from which the
user can make selections, and (3) create a macro variable that
corresponds to a field in your data set, with values corresponding to
values of that field.

REQUIRED HIDDEN FIELDS
The following is a very simple web page that contains a form. The
form consists of hidden input fields, radio button input fields and a
submit button.

The following is required for making a web page:

<html>
<body>

The following FORM element and hidden input fields, which have
three attributes - type, name, and value - are required for processing:

<FORM NAME="form"
ACTION="http://statweb.unc.edu/cgi-
bin/broker8">
<INPUT TYPE="hidden" NAME="_service"
VALUE="default">

Advanced Tutorials

2

<INPUT TYPE="hidden" NAME="_program"
VALUE="rarose.proj2.sas">

The code follows HTML standards for forms. The portions in bold
text are subject to revision based on how your organization sets up
the Dispatcher and libraries and what you choose to name the
program. The remaining code can be copied verbatim.

QUERY CRITERIA
A pool of criteria from which the user can choose, and a submit
button are required. This part is variable, and based on your needs.
The criteria are created in HTML using input fields, much like the
hidden ones above.

<input type = "radio" name = "vara" value
= "1"> 1

<input type = "radio" name = "vara" value
= "2"> 2

<input type = "submit">

The input type employed here is the radio button (type = “radio”),
from which the user can select only one option at a time. The query
criteria also include specifications for what will become a macro
variable.

THE MACRO VARIABLE
The name “vara” (name = “vara”) in the input fields will be invoked in
the program as the macro variable. A field in your data set – one
that is to act as a filter of observations - plays an important part in
determining the values of each input field. The values given by the
radio buttons (above, value = “1” and value = “2”) should, ideally,
match the values of this field.

Required elements for closing the form and the page:

</form>
</body>
</html>

EXAMPLE
The HTML code above produces the web page pictured below.

When the user presses the button labeled “submit query”, the
information in the form is submitted, and the Dispatcher will look for
a program called proj2.sas in the library given by my userID,rarose.
You need to write this program yourself, and that is the subject of the
next part of this lesson.

Other elements, such as images, other links, and text can be on the
Form page as well. The page given above is the fully functional

minimum and can be copied, with some exceptions, verbatim. Other
methods of submitting information involve multiple choices
(checkboxes) and variable fields (text boxes, whereby the user
types in exactly what they want to see). Additional information
about these options is available at
http://ssw.unc.edu/workfirst/sasint/altinput.html.

THE SAS PROGRAM
As mentioned previously, the data step is the foundation of
SAS/IntrNet programming. I assume that you know about data sets.
You'll need at least one of those for processing data. In order to
process the query submitted by the user on the form and produce
output, the program requires the three items that are described in
this section: (1) queries using the macro variable, (2) the content-
type declaration, and (3) a method of analysis.

Note: Security constraints on macro variables in SAS/IntrNet have
changed since SAS implemented version 8. Since you are not
precluded from implementing these security precautions in version
8 (they are not necessary, but it does not hurt to add them), and
some of you may have to use version 2.0, I have chosen to include
them as part of the instruction. The SAS Institute web site explains
this better if you feel you really must know. See
http://www.sas.com/rnd/web/
intrnet/dispatch20/progsec.html#amp.

QUERIES USING THE MACRO VARIABLE
If you've ever written a SAS program where you have specified an if-
then clause such as

if var1 = 1 then do;

where var1 is a fieldname in your data set, then you know most of
what you need to accomplish this task. The difference in
SAS/IntrNet is to replace the digit 1 on the right side of the equality
with the name of the macro variable (vara, in our example above).
The Application Dispatcher will "retrieve" the macro variable from the
form, and pass it, with the program, to the open SAS session. The
data set will be queried for the specified value.

The importance of this concept cannot be understated. var1 is a
fieldname in our data set, and our macro variable is a character
variable named vara, passed to the SAS system by submitting the
web form. If the user selected "Choice 1", which has a value of "1",
on the example form from the previous page, then the program will
look in the data set for all values of var1 that have the matching value
"1" and produce a corresponding subset.

To begin, construct a libname where the data set is stored, then the
data statement that performs the query:

libname rose '~rarose/public_html/';
data one;
set rose.test;
if var1 = symget('vara');
run;

symget(‘vara’) can be replaced with %superq(vara), or if you are
using the Application Dispatcher version 8, just “&vara”.

Please remember, as with all SAS applications, the variables on
each side of the if-then must be the same type (you need to compare
character with character and compare numeric with numeric, etc.).
The macro variable retrieved from the form is, by default, a character
variable. If the field in the data set does not agree, then simply
change one of them.

THE CONTENT-TYPE DECLARATION
The standard destination for dynamic SAS/IntrNet output is
_webout. You will use it whenever you need to send anything to the

Advanced Tutorials

3

web destination. The Dispatcher requires the following code, called
the content-type declaration, in your program before any analysis is
sent to _webout (for instance, it can follow the code above in the
order presented in this paper):

data _NULL_;
file _webout;
put 'Content-type: text/html';
put;
run;

Do not overlook the last (blank) put statement in the data step.

A METHOD OF ANALYSIS
There are several options for performing an analysis: the data step,
ODS HTML, the HTML Formatting Macros, and a combination of
SAS procedures. If I could choose one word to describe your
analysis options, it would be "versatile." I'll look at ODS HTML
further on, and leave the rest to you.

You can also add static content to your output pages. The
companion web site contains information about using HTML and
DATA _NULL_ to add static content, such as links, images and
header/footer text, to your dynamic web pages.

UPLOADING, TESTING & OTHER HINTS
For writing the program, several different applications are available.
Of course, you can use SAS, but it is not necessary (although the
enhanced editor, with its color-coded interface, can be useful). Any
simple text processor will do. I use Notepad, a simple
Windows95/98/NT text utility with which you are undoubtedly
familiar.

After you write both the form and the program, you'll need to put
them in their proper places on the server. When I teach the static
lesson, I encourage students to use the SAS FTP Access Method.
That will not work for dynamic SAS/IntrNet. I suggest you use WS-
FTP or another FTP utility to upload both the web form and the
program. Information on WS-FTP is available on the companion
web site. Alternatively, you may be able to write the program in its
place on the server if you can obtain that kind of access and you are
familiar with the necessary text processors.

The form, which is a Web pages with a .html extension, is stored in
your public_html directory for public access via the web browser.
The program goes in your sascode directory, for access only by the
application dispatcher. The data can be in either directory.
However, if it goes in your public_html directory, then it can be
accessed by anyone with web access. If it goes in your sascode
directory, it can only be accessed by the Application Dispatcher.
DISCLAIMER: Much of this is subject to how your organization has
set up the Dispatcher, so check with the responsible parties in your
organization.

To test your web page/program combo, go to the web form you've
created, interact with it by selecting options, and then wait for the
magic to occur. If your magic is anything like mine, it won't work the
first time and you'll get incorrect or missing output. This is ok.
Please refer to the next section.

DEBUG
Normally, when something goes wrong, you would access the SAS
log to see what you've done wrong, fix it and then re-run the
program. However, because you are using the application
dispatcher to run the program, there technically isn't a SAS log to
review.

The solution is to create a SAS log in the browser window by
appending the diagnostic variable _debug, with the value 131, to the
URL in the address bar (as highlighted in the illustration below, at

the end of the string is probably easiest):

&_debug=131

This will append the contents of the log to the web-based output in
the browser window, below what output is produced, if any. Then it
will be simple to identify the problem, fix it, and then run it again.

It is not always necessary to go back to the form to verify that the
modifications have worked. If you do not have to revise your query
information, then just click the reload button on the browser. This will
re-submit the information to the server using the same information,
re-run the program, and reproduce the output. If the macro variable
value needs to be changed then it can either be changed it in the
URL of the output page (there is more on this option further on) or
re-submitted on the form.

131 is not the only valid debug value. Please refer to
http://www.sas.com/rnd/web/intrnet/dispatch/debuginp.html for
more information.

DYNAMIC INTERACTION WITH ODS HTML
I encourage you to use ODS HTML to produce your dynamic
analysis, as opposed to the HTML Formatting Macros (a brief lesson
in the HTML Formatting Macros is available on the companion web
site). ODS is more versatile in its output and easier to manipulate.
Also: There are economies to be had by learning and using ODS,
as it has many other applications besides HTML output.

MODIFY THE DESTINATION
Using ODS for dynamic applications is a matter of a simple
modification in the output destination of the static version. This must
come after the content-type declaration.

Take the following ODS HTML call (you can use file in place of
body):

ODS HTML
body = ods2.html;

To modify this for dynamic output, simply replace the filename
ods2.html with _webout.

ODS HTML
body = _webout;

The rest of what you need to know about ODS HTML is the same:
after opening the HTML destination, you add some data
manipulation and PROCs and then you close the destination.
Closing the destination in dynamic applications is the same as it is in
static applications:

ODS HTML CLOSE;

ODS HTML WITH FRAMES
A useful enhancement that ODS HTML has over the HTML
Formatting Macros is the built-in ability to generating pages
consisting of multiple windows or frames, as pictured below.

A browser window with two frames in it actually consists of three
pages. The two pages shown are the body page, containing the

Advanced Tutorials

4

analysis, and a contents page, with links that allow the user to jump
from section to section of the body page when selected. The third
page holds the two of them together, side-by-side as they are.

Due to the temporary nature of the three files created in a dynamic
application, modifying Dynamic ODS HTML to include frames
requires a little more than simply modifying the body option.
Instead, leave the body and contents options as they are in a static
application, specify _webout as the frame option, and add a path
option, exactly as it is represented below (you cannot use file in place
of body):

ODS HTML
body = bods2.html
contents= cods2.html
frame=_webout
path=&_tmpcat(url=&_replay)rs = none;

For creating frames, the path option and all of its components are
required. The illustration below shows the contents section, on the
left with a gray background, and the body section with the lightly
colored background taking up most of the window.

The SAS Institute has more information on using ODS with dynamic
applications. See the URL in the reference section.

AN EXAMPLE PROGRAM
The following is a complete program incorporating all of the variables
and procedures necessary to process a data set and produce
dynamic output. For simplicity, the program will not generate
frames. The web form from the first part of this paper is sufficient
for processing this program. At the companion web site, you can
download the web form and the data set.

First I need to include all of the necessary SAS code, as specified in
the second part of the tutorial. This includes the libname referencing
the data set and the DATA _NULL_ that opens the _webout
destination and places the content-type declaration on the web page.

libname rose '~rarose/public_html/';

data _NULL_;
file _webout;
put 'Content-type: text/html';
put;
run;

Close the Listing destination (the Listing destination is, by default,
open, and the SAS Institutes suggests that it should be closed
before opening the HTML destination). Specify the HTML
destination _webout.

ods listing close;

ods html file = _webout;

The following is a data step that manipulates data according to the
form submitted by the user, and a set of PROC PRINTs that I use to
illustrate that the macro variable accomplished its task by subsetting
the data set. First I print the entire data set, then only the subset
according to the query. The HTML destination is closed in the final
line.

data one;
set rose.test;
if var1 = symget('vara');
run;

proc print data = rose.test;
title "all observations";
var _all_;
run;

proc print data = one;
title "only selected observations";
var _all_;
run;

ods html close;

AN ALTERNATIVE TO THE WEB FORM
I introduced in the third part of the dynamic tutorial the required code
of a web form for processing the form with the Application
Dispatcher and producing output. This section explains that there is
some variability in how the web form is presented to the user.

You may have noticed, when testing your SAS/IntrNet application,
that the URL of the output page contains what seems to be, at first
glance, an unreadable string of letters, numbers and special
characters. On closer inspection, you will find that the URL contains
all of the information that was passed from the form to the
Dispatcher, including the form action, the hidden and query input
fields, and the value of the macro variable. Moreover, the string is
easy to understand and an essential part of this part of the lesson.
The motivation for introducing this alternative is thus twofold: to gain
familiarity with another method for submitting information to the
Dispatcher, and to better illustrate how the information is presented
to the Dispatcher and how you can make quick adjustments to
submitted forms.

Advanced Tutorials

5

THE “OLD” WAY: FORM
In the first section, you were instructed that the following HTML form
code is necessary for processing an Application Dispatcher
program:

<FORM NAME="form"
ACTION="http://statweb.unc.edu/cgi-
bin/broker8">
<INPUT TYPE="hidden" NAME="_service"
VALUE="default">
<INPUT TYPE="hidden" NAME="_program"
VALUE="rarose.proj2.sas">

The information contained in this form and the input tags can be
alternatively included in a link (pictured below).

THE “NEW” WAY: LINK
For a link, all of the content, including variable content, must be
included in the link as well. Instead of giving your users radio buttons
to choose from, give them links.

It is very important that you understand that the links store all of the
information required for processing the program: the form tag, the
two hidden input tags (_service and _program), and the options
available to the user - the macro variables that will determine how the
data is processed.

Example (this should be an unbroken line of code with no carriage
returns or spaces):

<a href="http://statweb.unc.edu/
cgi-bin/broker8?_service=default
&_program=rarose.proj2.sas&vara=1">
Choice 1

The illustration below shows two links, reproducing the form from the
first section of this tutorial, using the link method.

Let's study each component of this link, from left to right:

<a href= This is an HTML anchor (link) tag and reference attribute.
This is essential for linking static pages or dynamic applications.

http://statweb.unc.edu/cgi-bin/broker8 This is the same as the
value of the ACTION attribute of the FORM tag. It sends the request
to the Application Dispatcher. Note that it is followed by a question
mark: the “?” indicates that what follows it is a query string. The
query string is composed of all input fields, including required input
fields, and the query criteria input fields.

_service=default This is equivalent to the hidden tag named

"_service". Note that it is followed by an ampersand (see below).

_program=rarose.proj2.sas This is similar to the hidden tag
named "_program". This processes the program proj2.sas, which is
located in my SASCODE directory (which has the libname rarose).
Note that it is followed by an ampersand (see below).

vara=1> This constitutes what was formerly submitted by using a
radio button. The variable “vara” is the macro variable whose value
(in this case, "1") will be used to query a data set to produce an
analysis subset. The > closes the tag.

Choice 1 This is the click-able text that the user will click to make
the selection. It appears on the page in the web browser (see the
illustration).

 This closes the anchor tag.

Note that there is an ampersand character after each query value. In
a query string (the part of the URL following the question mark)
variables are separated by the ampersand character. The only
variable without an ampersand behind it is the last one. If you’ve
ever used a search engine, you may have noticed in the address bar
at the top of the browser that your search terms follow a “?” and are
separated by ampersands. This is the same principle.

This should illustrate how easy it is to reference a dynamic
application from nearly anywhere on the web. The disadvantage to
this is that if you have more than one choice for the user to make,
you'll have to program a separate link for every set of choices. For
instance, if your original form has a selection box with 3 selections,
and a set of 3 radio buttons, you will need 9 links: one for each pair
of selections. This makes it unreasonable for loads of more than a
handful of choices.

A good example of a dynamic web site that uses multiple and
overlapping methods of submitting information to the Dispatcher can
be found at http://ssw.unc.edu/workfirst/demos/.

SUMMARY
The following might be thought of as a checklist.

BEFOREHAND (Do this only once)
• Obtain the URL of the dispatcher in your organization
• Set up a “sascode” directory and assign it a permanent libname
• Set permissions on the sascode directory for the Application

Dispatcher
• Set permissions on public_html directory for global read

access

WEB FORM
• Create a web form with the appropriate action and hidden input

fields
• Add to the form a way for your users to select query criteria and

submit it
• Put the form in the appropriate place on the server (the

public_html directory)

DATA SET
• Create or obtain a data set and store it in either your sascode or

public_html directories
• You should already be familiar with methods of manipulating

data sets

SAS PROGRAM
• Retrieve the query criteria from the form
• Manipulate the data appropriately
• Output the content-type declaration to _webout
• Output analysis to _webout after the content type declaration

Advanced Tutorials

6

• Put the program in the appropriate place on your server
• Test, debug, retest, etc.

CONCLUSION
This presentation provides experienced SAS programmers with the
foundation for creating basic dynamic SAS/IntrNet applications.
The focus was on the requirements for creating a form and a
program sufficient for performing a web-based analysis, placing
aside most optional enhancements. The requirements were
presented as components which could be copied directly from this
tutorial and, with only a few modifications, applied to a working
analysis. The method by which the Application Dispatcher
processes a user request was reduced to the essential components
that the programmer is required to know.

REFERENCES
The following references represent selected material from the SAS
Institute web site and are useful supplements to this tutorial:
• HTML and Forms -

http://www.sas.com/rnd/web/intrnet/dispatch/refhtml.html
• SAS/IntrNet Application Dispatcher 8.2 -

http://www.sas.com/rnd/web/intrnet/dispatch/index.html
• SAS/IntrNet Application Dispatcher 2 -

http://www.sas.com/rnd/web/intrnet/dispatch20/index.html
• The Output Delivery System in Dynamic SAS/IntrNet -

http://www.sas.com/rnd/web/intrnet/dispatch/ods.html

The companion web site to this tutorial is available at
• http://ssw.unc.edu/workfirst/sasint/
• http://www.unc.edu/~rarose/sasint/

CONTACT INFORMATOIN
Your comments and questions are valued and encouraged. Contact
the author at:

Roderick A. Rose
Jordan Institute for Families
CB 3550
301 Pittsboro St.
Chapel Hill, NC 27599
919-962-8826
rarose@email.unc.edu

The author gratefully acknowledges the assistance and support of
Dennis K. Orthner, Ph.D., Kimberly Flair, Sally Muller, Rosemary
Hallberg, Dean Duncan, Ph.D., and John Painter, Ph.D.

Advanced Tutorials

	SUGI 26 Title Page

