
Paper 74-25

An Automated Method to Create a Descriptive Index for a Directory of SAS Programs
Gary Cunningham, Sanofi-Synthelabo Research, Malvern, PA

ABSTRACT

The methods presented in this paper can be used to significantly
aid with a programming documentation effort by automating the
process of creating a descriptive index for a directory of SAS
programs. As referred to in this paper, a descriptive index is
simply a listing of the name of each SAS program in a directory
and its corresponding description.

Using a pipe to communicate between the SAS System and
Windows NT, base SAS code can be used to create a list of all
SAS programs in a directory, get each program’s description as
written in the program’s standard header, and output an index
that lists each program’s name and its accompanying description.

This paper describes a SAS macro that uses the methods above
to automate the creation of this index. The SAS macro was
developed to run under Windows NT, in Release 6.12 of the SAS
System for Windows. This paper is intended for users with an
intermediate level of experience with the SAS language.

INTRODUCTION

The value of a well-documented program is widely acknowledged
and cannot be overstated. Clear and concise comments that
describe data manipulation steps, complex mathematical and
statistical computations, and not-so-common coding techniques
are essential to a well-developed and well-utilized program.

External program documentation is just as important as internal
program documentation. One example of external program
documentation is the focus of this paper: a descriptive index for
a directory of SAS programs. A descriptive index lists the name
of each SAS program in a directory and its corresponding
function. It serves an important role in that it creates
documentation that provides any user the ability to easily and
quickly identify and locate programs of interest.

SAS macro PROGINDX was developed to completely automate
the creation of this index, thereby saving a tremendous amount of
time while significantly contributing to the programming
documentation effort.

MACRO OVERVIEW

SAS macro PROGINDX uses base SAS code and some features
available with the SAS System and Windows NT to automate the
creation of a descriptive index for a directory of SAS programs.
First, the macro creates a list of all of the SAS programs located
in a directory. Second, for each program on the list, the macro
scans the header of the program to get the program’s description
as written by the program developer. Finally, the macro outputs a
text file that lists the names of the SAS programs in the directory
and their corresponding descriptions.

The call to macro PROGINDX takes the following form,

 %PROGINDX(dir=, exclude=, outfile=)

where

dir = the directory in which the SAS programs reside,

exclude = any SAS programs that should be excluded from the

index (by default, no programs are excluded), and

outfile = the name, including the path, of the external file to which
the index should be written (by default, this file is named
PROGINDX.TXT and is filed in the directory in which the SAS
programs reside).

As an example, the macro call

 %PROGINDX(dir=u:\drug1\prot1,
 exclude=junk garbage,
 outfile=u:\drug1\doc\progdoc.txt)

will generate an index for the SAS programs in directory
U:\DRUG1\PROT1, excluding programs JUNK.SAS and
GARBAGE.SAS. The index will be filed in directory
U:\DRUG1\DOC as a text file named PROGDOC.TXT.

The next three sections describe in detail the primary steps taken
by the macro to create the index.

STEP 1: CREATE A LIST OF SAS PROGRAMS IN A
DIRECTORY

Macro PROGINDX first creates a list of all of the SAS programs
in the user-specified directory. This is done by using a pipe.

As defined in the SAS Companion for the Microsoft Windows
Environment, Version 6, Second Edition, a pipe “is a channel of
communication between two processes.” “With the SAS System
and Windows NT, ... you can use a specialized Windows
application to provide information to your SAS session or vice
versa.”

There are two types of pipes: named pipes and unnamed pipes.
Unnamed pipes are also referred to simply as pipes. A
discussion of the differences between the two is beyond the
scope of this paper. See the SAS Companion for the Microsoft
Windows Environment for more information.

“Unnamed pipes enable you to run a program outside the SAS
System and redirect the program’s input, output, and error
messages to the SAS System. This capability enables you to
capture data from a program external to the SAS System without
creating an intermediate data file.” Unnamed pipes, therefore,
can be used to create a list of files in a directory.

To use an unnamed pipe in SAS, a FILENAME statement of the
following form is issued,

 FILENAME fileref PIPE ‘program-name’
 option-list;

where

fileref is any valid fileref,

PIPE is the device-type keyword that tells the SAS System you
want to use an unnamed pipe,

‘program-name’ specifies the external Windows application
program, and

option-list can be any of the options valid in the FILENAME
statement.

Coders' Corner

The following FILENAME statement in macro PROGINDX uses
an unnamed pipe to create a list of all SAS programs in the
directory denoted by SAS macro variable DIR:

 filename getfiles pipe "dir/b &dir.*.sas";

In this statement, ‘program-name’ is a DOS command, DIR/B,
that instructs the system to list all files with the extension SAS in
the directory denoted by SAS macro variable DIR. The /B
qualifier tells the system to list the file names only, excluding any
size, date, or time information.

This list of SAS programs can be put into a SAS data set by
using SAS INPUT statements and an INFILE statement that
references the FILENAME statement above. The SAS code to
do this follows:

 data filenams;
 infile getfiles length=l;
 length filename $200;
 input @;
 input @1 filename $varying200. l;
 filename=upcase(filename);
 run;

The SAS code above represents a slight modification of the SAS
sample program GETNAMES.SAS that is located in the
Technical Support area of the SAS web site.

As an example, assume the following macro call was made:

 %PROGINDX(dir=u:\drug1\prot1)

Assume that five SAS programs reside in directory
U:\DRUG1\PROT1: AE.SAS, DEMOG.SAS, LAB.SAS,
MED.SAS, and VITAL.SAS. Figure 1 below shows how SAS
data set FILENAMS would look in this example.

Figure 1 Data Set Containing List of SAS Programs

Quoted text in this section has been reprinted with permission of
SAS Institute Inc. from the SAS Companion for the Microsoft
Windows Environment, Version 6, Second Edition. Copyright
1996 by SAS Institute Inc.

Some SAS code presented in this section has been reprinted with
permission of SAS Institute Inc. from SAS sample program
GETNAMES.SAS located in the Technical Support area of the
SAS web site.

STEP 2: GET THE DESCRIPTION FOR EACH PROGRAM

After creating a list of all of the SAS programs located in the user-
specified directory, the macro deletes programs from the list that
have been designated by the user as exclusions. Then, for the
remaining programs, macro PROGINDX reads in each of the
files, searches the program header to find the program
description, and retains the text that has been entered in the area
designated for the program description. The macro therefore
relies on each program having a standard program header and a
concise, informative description written in the header by the
program developer.

Figure 2 presents an example of the standard header for SAS
program DEMOG.SAS. For purposes of this example, the
executable SAS code has been removed.

Figure 2 Standard Program Header

Macro PROGINDX simply uses base SAS code – primarily DATA
steps, character functions, %DO loops, and macro code – to
perform the tasks mentioned above.

Specifically, for each of the SAS programs in the directory, the
macro will input and examine the text of the program line-by-line
until encountering the keyword “Description:” in the program
header. Any and all text entered after the keyword description,
but before the final program header line, will be retained by the
macro as the description for that program. The text that was
retained is placed into an intermediate SAS data set. Each of
these data sets is appended in turn to another SAS data set that
contains cumulative information from all of the SAS programs
that have previously been processed.

Figure 3 below displays the intermediate data set formed after
processing the header for program DEMOG.SAS.

Coders' Corner

Figure 3 Data Set Containing a Single Program Description

Continuing with the example presented previously, Figure 4 below
displays the cumulative data set formed after processing all of the
programs in the directory.

Figure 4 Data Set Containing Multiple Program Descriptions

STEP 3: CREATE A DESCRIPTIVE INDEX

After all of the SAS programs have been processed, the macro
uses the REPORT procedure to format the listing and the
PRINTTO procedure to output the index as a permanent text file.
As mentioned previously, the macro allows the user to direct the
output file to a specific directory and to name the file as desired.

Figure 5 presents the final output from the example macro call
presented earlier. Note that titles on the listing include the
directory in which the programs reside and the date and time that
the SAS session was initiated. These titles are automatically
generated by the macro.

Figure 5 Final Output

CONCLUSION

This paper has shown how SAS macro PROGINDX uses some
unique features available with the SAS System and Windows NT
to completely automate the creation of a descriptive index for a
directory of SAS programs. The index serves an important role in
that it creates documentation that provides any user the ability to
easily and quickly identify and locate programs of interest. This
macro, therefore, is a time-saving tool that significantly
contributes to the programming documentation effort overall.

Note, however, that while this macro is a valuable, time-saving
tool, it will only be of value if the program developer has been
diligent in writing a clear and concise description in the standard
header for each program. The resulting program index will only
be as useful and informative as the individual descriptions within
the programs.

REFERENCES

SAS Institute Inc. (1996), SAS Companion for the Microsoft
Windows Environment, Version 6, Second Edition, Cary, NC:
SAS Institute Inc.

SAS Institute Inc. (1998), GETNAMES.SAS [Computer program],
Cary, NC: SAS Institute Inc.

TRADEMARKS

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries.  indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the author at:

Gary Cunningham
Sanofi-Synthelabo Research
9 Great Valley Parkway
P.O. Box 3026
Malvern, PA 19355
(610) 889-6451
Gary.Cunningham@sanofi-synthelabo.com

Coders' Corner

Appendix 1 Macro PROGINDX Code

%macro progindx(dir=,exclude=,outfile=);

options nodate nocenter number pageno=1 ps=50 ls=100;

title1 "Program Index";
title3 "Directory: %upcase(&dir)";
title4 "Date/Time: &sysdate &systime";

* Create a file reference for the output file.
***;
%if &outfile = %then %do;
 filename outfile "&dir.\progindx.txt";
%end;
%else %do;
 filename outfile "&outfile";
%end;

* Use a pipe to create a list of all SAS programs located in the user-
* specififed directory.
***;
filename getfiles pipe "dir/b &dir.*.sas";

data filenams;
 infile getfiles length=l;
 length filename $200;
 input @;
 input @1 filename $varying200. l;
 filename = upcase(filename);
run;

filename getfiles clear;

* Exclude any user-specified programs from the list of SAS programs created
* above.
***;
%if &exclude ^= %then %do;
 %let morepgms = YES;
 %let pgmnum = 1;
 %let pgm = %upcase(%scan(&exclude,&pgmnum,' '));

 %do %until(&morepgms = NO);
 data filenams;
 set filenams;
 if scan(filename,1,'.') = "&pgm" then delete;
 run;

 %let pgmnum = %eval(&pgmnum+1);
 %let pgm = %upcase(%scan(&exclude,&pgmnum,' '));
 %if &pgm = %then %let morepgms = NO;
 %end;
%end;

* Determine the total number of SAS programs on the list.
* For each of the programs, get the program description by retaining the text
* entered after the keyword DESCRIPTION but before the final program header
* line.
***;
data _null_;
 set filenams end=eof;
 if eof then call symput('total',left(_n_));
run;

data saspgms;
run;

%do i = 1 %to &total;
 %let pgm = ;

 data _null_;
 set filenams;
 if _n_ = &i;
 call symput('pgm',trim(filename));

Coders' Corner

 run;

 filename saspgm "&dir.\&pgm";

 data saspgm2;
 length pgm $ 200;
 infile saspgm missover lrecl=200 pad;
 input @1 line $200.;
 retain descript colon linenum gotdesc 0;
 drop descript colon gotdesc i;
 pgm = "&pgm";
 if not gotdesc then do;
 if index(upcase(line),'DESCRIPTION:') > 0 then do;
 descript = 1;
 colon = index(line,':');
 end;
 if descript then do;
 if index(line,'*******/') = 0 then do;
 line = trim(substr(line,index(line,'*')+1));
 if linenum = 0 then do;
 do i = 1 to colon-1;
 substr(line,i,1) = ' ';
 end;
 end;
 linenum = linenum +1;
 output;
 end;
 else gotdesc = 1;
 end;
 end;
 run;

 data saspgms;
 set saspgms saspgm2;
 if _n_ = 1 and line = ' ' then delete;
 line = left(line);
 run;

 filename saspgm clear;
%end;

* Output the index of programs and delete work data sets.
***;
proc sort data=saspgms;
 by pgm linenum;
run;

proc printto new print=outfile;
run;

proc report data=saspgms nowindows headskip split='?' missing;
 column pgm line;
 define pgm / order width=12 'Program?--';
 define line / display width=80 flow 'Description?--';
 break after pgm / skip;
run;

proc printto;
run;

proc datasets library=work memtype=data;
 delete filenams saspgms saspgm2;
quit;

title;

%mend progindx;

Coders' Corner

	CD Table of Contents

