Advanced Tutorials

Paper 13-25

XML and SAS®: An Advanced Tutorial
Greg Barnes Nelson, STATPROBE Technologies, Cary, NC

ABSTRACT

One of the goals for SAS applications developers has been to
develop three-tier and n-tier applications where the application
logic (business rules) is separate from the data, which, in turn, is
isolated from the user interface. In a previous paper (Barnes
Nelson, 1999)! we discussed how to implement this logic
separation using the SAS Component Language. This paper
extends that line of thinking by introducing SAS developers to
XML. eXtensible Markup Language, or XML, is a protocol of
sorts that can be described as a technique for separating data
from its presentation. In this paper, we will discuss XML in the
context of SAS applications and how it can be used in the
preparation and presentation of data. We will explore some of the
features of XML that makes it a good partner for SAS-based
applications.

INTRODUCTION TO XML

XML has been referred as the next ASCII; kind of like HTML; a
boon to corporate information exchange and technologies’ next
savior. This paper is an attempt to look beyond the hype and
begin to understand the ideas behind XML, its purpose and
implications for technology and business improvements. There
have been 100’s of articles written about its benefits, and yes we’ll
cover some of those here as well, however the focus of this paper
is to discuss the role of XML in SAS applications. Specifically, we
will discuss XML and related TLAs*; the benefits of XML; common
tasks that can benefit from an XML architecture; and wrap it all
within the context of SAS. By the time we are finished here, you
should benefit from the practical uses of XML and the SAS code
that we used to produce them.

DEFINITIONS

As people are introduced to new technology, it is often confusing
when terms are introduced before they are defined. Yet, when
definitions come before they are used in context, the full benefit of
the term is not realized. Throughout this paper, we will do our
best to define terms within the context that they are used. We
will also provide an annotated glossary at the end which, not only
explains the term or phrase, but identifies its context and
implications, if any. If you see a term in bold text, you can rest
assured that we will provide greater depth to its meaning in the
glossary at the end of this paper.

An obvious place to start in a paper about XML is with XML itself.
XML stands for eXtensible Markup Language. XML is a
language that is used to create other “languages”. Many people
have taken XML, for example, and created a standard “language”
to describe an industry vocabulary (see for example, BizTalk.com
and HRMML).

RELATIONSHIP TO SGML

XML has its roots in a more complicated meta-language called
SGML, or the Standard Generalized Markup Language. SGML was
formally approved as a standard in 1986 but had been in use at
IBM for several years in the production of their technical
publications. SGML is the father of another widely used standard
that propelled the Internet into widespread adoption: HTML.
SGML is a language that publishers, technical writers and library
automation personnel have been using to create “"documents”
such as museum catalogs, technical publications and product
catalogs from manufacturing specifications.

SGML is, by definition, a markup language. Markup refers to the
additional information that is added to the text of a document to
enrich either its meaning or presentation. In word processing
packages, for example, markup is used to control the way

! Barnes-Nelson, G.S. (April, 1999) Extending the Life of Your AF Application:
Exploiting the Model-Viewer Paradigm. Invited paper at the annual convention of the
International SAS Users Group (SUGI), Miami Beach, FL.

* Three letter acronyms &

information is presented (or how it looks when viewed or printed.)
But we don't always have to use markup to control the way the
document is presented. In the case of XML, markup is used to
describe the actual contents - that is, to enrich the data by
describing its use, context or definition.

RELATIONSHIP TO HTML

If we remember back to our first HTML lesson, you will recall that
if you wanted to display the words “Hello World” in a browser, you
had to markup the contents of the HTML with special tags.

<HTML>
<HEAD>
<TITLE>My First HTML Document</TITLE>
</HEAD>
<BODY>
<P>Hello World</P>
</BODY>
</HTML>

We needed that much HTML simply display the text “Hello World”.
We soon realized that by adding additional tags, we could change
the characteristics of the text - making it bigger, bolded, blinking,
and blue. The challenge that faced content providers soon
became - “how do we write this simple passage without having to
know the nuances of the markup language”? - the solution: the
HTML editor. Not yet satisfied, we wanted it more interactive -
the solution: JavaScript. Ah yes, now we need someone else to
write the code - the solution: SAS HTML formatting macros.
Faster, better, easier! — the solution: SAS/IntrNet (Application
Dispatcher & htmSQL) and Java Server Pages.

HTML IS OLD, XML IS COOL!

HTML has and will continue to serve a very important role in
delivering information across the globe. HTML won’t go away
anytime soon, just like printed books will not disappear. We
accept HTML for the gifts that it has brought us - displaying static
information on our web browsers. But what about my cell phone
or PalmPilot™ - my webTV or web-enabled refrigerator? What
about getting real data like stock quotes, movie times and SAS
output! XML was designed from the ground up to help us
describe, transfer and deliver data. Similar to its cousin, HTML,
XML is a markup language. XML's markup doesn't tell us how the
data should be presented, rather it tells us what it is, how it can
be used - its role is to describe the content, rather than how to
display it.

The Problem with HTML

HTML was designed primarily for delivering information over the
web. Itis, at its roots, a language used to describe what
information will look like when rendered through a web browser.
Both the content and formatting of the information is tied together
in the HTML language tags.

In HTML, we have a finite number of tags that we can use to
markup our documents. These tags are used for controlling how
the document should be presented. For example, in our previous
example, we could have made the text “Hello World” bolded by
added the tag.

<P>Hello World</B</P>

In XML we are not limited by the number of tags that someone
else has thought of to describe our data - that’s our job! We use
the tags as we see fit to describe the content and context of the
data. For example, the following is XML document describes the
first observations from some data that we may have about our
customers.

<?xml version="1.0" ?>
<customer-data>
<contact-information>
<cust-id>137000</cust-id>
<name>Kraft, Ms. Rose</name>
<gender>Female</gender>
<age>34</age>
<income>32,340</income>
<status>Married</status>
<address>
<street ORDER="1">869
Veterans Blvd.</street>
<street
ORDER="2">Business
Research</street>
<city>Rutherford</city>
<state>NJ</state>
<zip>70702</zip>
< region
>NORTHEAST</region>
</address>
</contact-information>
</customer-data>

XML Document 1. XML document produced with a SAS
DATA STEP.

This XML document was produced dynamically from a SAS DATA
Step?. But notice that instead of the usual tags like , <P>,
<A HREF> and so on, we have custom tags that we have used to
describe our data. The first line tells us that we are dealing with
an XML document. The second line has a tag called <customer-
data>, which tells us that we are dealing with our customers.
Within this, we find that we have some customer information,
designated with the <customer-information> tag. Within each
customer, we have collected a variety of information - for
example, their name <name>, gender <gender>, income
<income>, marital status <status>and another section that
contains their address <address>.

Although not a terribly complicated example, we have exposed
one of the key benefits of XML: simplicity. This document
represents a hierarchy of information with easily understood
patterns. Because of this simplicity, both humans and the
computers can access it, understand it, and translate it into useful
information.

In our example, the hierarchy dives only 3 levels deep: Customer
Data, one or more customers (customer-information) and one
more level for address information. There is no reason that an
XML document could not represent a complex hierarchy with
multiple, nested levels of information. We will explore a more
complicated example later in this paper where we pull information
from multiple tables to create a complete customer history profile.

INFORMATION TECHNOLOGY CHALLENGES

Despite incredible advances in technology, there are some
persistent challenges that face us as technologists trying to solve
real-world business problems.

XML will likely not be the technology that saves us from
painstaking processes to make our data cleaner, more accessible
or provide a richer context for information and its delivery across
the web or across the room. However, if applied appropriately,
XML can help solve some common barriers to productivity.

Multiple Views of the Same Data

A common challenge faced by many organizations requires data to
be formatted differently depending upon its use. For example,
account history or a customer’s profile may be generated for the
Customer Service department in order to interact with customers
on the phone. The Finance department, however, may require a
different view of the data in order to invoice the customer. The
Sales and Marketing departments need yet a different view of the

2 See Appendix A for an example of producing XML using a SAS Data Step.

Advanced Tutorials

customer - requiring both granular data for each customer as well
as highly summarized data for database marketing (buying history
and cross-selling campaigns). Each department requires a similar,
but different view of the data. In addition, data for each of these
applications may be housed in different systems and defined
somewhat differently.

XML can help us by providing a framework for understanding the
customer in terms of a patterned hierarchy -- essentially giving
us a common definition of a “customer”. By defining a standard
such as this, departments can exchange information about a
customer easily and quickly -- regardless of where and how the
data was stored. Additions or modifications to the source data
have little impact on the XML document if care is taken to retain
the way that the customer is defined according to the XML
document. Because the data is separated from the way that it is
presented, any changes in process or business rules, wont cause
the systems to break -- especially when those systems cross-
organizational boundaries. In addition, new views or
representations of the data that are required can be generated
without changing the underlying XML data.

We will explore later different methods to render or display XML
data, but one of the benefits of XML is that once data has been
delivered to the client application, it can be manipulated,
transformed and presented in a variety of ways - all without
having to request the XML document from the server a second or
third time.

Application Integration

Implicit in the first point above is the idea that data can be
integrated from disparate sources and/ or multiple applications.
In our case, for example, we may have data that is housed in one
or more source systems (e.g., ERP systems, billing systems,
Sales-Force Automation, database marketing/ data mining
databases). Despite this “separateness”, data from these diverse
sources and/ or applications can be brought together using a
common meta-language that defines our customer. In our
fictitious customer application, we have various applications
connected over a network. When one application wants to access
information from another application, an XML-formatted document
is sent across the wire to the requesting application.

Because the definition of customer has been defined as a
standard, information about the customer can be exchanged
among companies much more easily as the mechanism for data
interchange doesn’t rely on, nor expose, the internal business
systems. Data can be sent, for example, to a partner with only
parts of the “customer” that they care to have the partner see.
Invoicing might be shared with your billing supplier or the
customer directly through the web, e-mail or other electronic
means (PDAs, Cell Phones, etc.).

Information Optimization

Another business challenge that is often faced is the assimilation
of huge amounts of unstructured data into meaningful context.
As humans, we can process data very efficiently when the data
doesn’t appear to have a pattern to it. In our customer
application, we may want to include all sorts of information about
our customers from diverse data sources outside of our firewalls.
Take for instance the following scenario:

As we cruise the web, we find an article about a new product that
a potential customer is developing. Our company creates
products and services that would be a good fit for this new
potential client. As we read this article, we can parse the text,
assimilate its meaning and make judgments about what we have
read. Next, we decide to get an independent assessment of their
company — we request information from Dunn & Bradstreet that
will show us how they have done financially, who holds senior
management positions, where they have offices, etc.

A trip to their web site affords us an opportunity to get another
perspective: to get a sense of their culture - from the words they
use to describe their company to the opinions they have about
their own products. Finally, we incorporate some of what we have
learned about this company into our own Sales Forces Automation
system so that our sales representatives will be more
knowledgeable as they interact with this new potential customer.

XML to the Rescue
Much of what we have described above can be best characterized

as unstructured data. A contemporary solution to this problem
would be a Knowledge Management system. A non-technology
solution would be to create new positions whose job would be to
“surf and assimilate”. But XML does offer some key advantages to
this problem.

Smart Agents. Suppose instead of you sitting behind the
terminal searching for documents, you tell the computer the kinds
of things you were interested in and have a computer do the work
for you - filtering, cataloging and storing the retrieved
information. The XML paradigm keeps the information separate
from the presentation rules, allowing for intelligent agents to scan
through a document'’s content and ignore the style sheet if one is
present.

Meaningful Searches. HTML-based search tools use keywords
and text to manage the information about the millions of web sites
in existence. XML-based search tools, however, use the inherent
data structure in the XML documents themselves as well as the
meta-data contained both in the XML document as well as the
Document Type Definition (DTD). Given the amount of
information on the web, technology that gives us more precise
control over searches should help sift through information more
cleanly than before. If we were to conduct a search on the web
today - say on SAS - we would get between 268,000 and over a
million hits depending on the HTML-based search engine we used.
The topics returned range from SAS Institute to Scandinavian
Airlines to Surfers Against Sewage. Because XML provides a
context for our searching, we could specify SAS in the context of
<company>, <software> or other relevant elements.

Granular Updates. Since the structure of an XML document is a
known hierarchy of information, we are able to update information
by sending only parts of the document each time there is a
change. By using this feature of XML, we don’t have to resend
the entire hierarchy to the requesting application.

Technology Optimization

At the time of the writing of this paper, there are literally billions
of pages of information available on the web on over millions of
web sites globally. Most of the web pages are written using HTML.
As we have learned earlier, HTML is a great tool for constructing
documents to be displayed over the web. As you surf the web,
you request a document from a web server using a Uniform
Resource Locator (URL). Assuming the document can be located
on the specific server, the page is downloaded to your browser for
rendering. Once downloaded, the communication between your
machine and the web server is essentially broken. That is, the
relationship between the browser and the server is
connectionless.

Continuing with our customer scenario, let’s assume that we have
downloaded a table of information that lists all of our customers,
what products they have purchased, how much they have spent
with us, where their home office is, who their sales rep is and so
on. If we wanted to sort the information by any of the data that
we have in the table, we would have to send a request back to the
web server to have it re-processed and re-rendered. This
approach places a tremendous burden on the web server to
handle fairly simple requests. A more efficient approach would be
to have the client machine handle the local manipulation of the
data where it could be sliced-and-diced, sorted, filtered and
rendered differently.

By combining XML and XSL (eXtensible Stylesheet Language),
we can achieve this goal of local computation and manipulation
(more on XLS later.) Once an XML document is downloaded, we
can achieve this level of interactivity on the client side with a
single request from the web server. Figure 1 shows an example
of an interactive document that is built entirely of XML data
delivered to the client by a single request to the server. For more
information on this example, refer to the article entitle “Transform
Your Data with XSL” found at

http://www.xml-zone.com/articles.asp

Advanced Tutorials

2} Kurt Cagle's Resume - Microsoft Internet Explorer M= E]
J File Edit View Favoites Took Help

About This Resume = I_I

I»i

Kurt Alan Cagle

Pressing on a
Curriculum Vitae This document is an example of how JML red ivon (@)
hnology can be used to simplify a will expand the
@ Contact Information number of very vexing problems on the entry to show
@Fducation web. All of the data for this resume is additional
@sLills contained in an XL structure -- the topics. Chick on
@ Clients and Fmployers HTML that is displayed and the code for ablue icon (@)
@Publications and Speaking handling interactions are all created | --tofteeze that
Engagements dynamically, and can be configured to text in the text
@Information change depending upon the requirements at display. Click.
@Thilosophy the time again to
@ tbout This Resume unffeeze it
@Help Econcmies of scale definitely come into
play here. The amount of work necessary
to put together one JML file and its
associated J(SL (zml stylesheet language)
can be fairly intensive. However, once the
EL file has been created, then you can
create multiple zml files that can all take

&] Done [[My Computer

Figure 1. Dynamic XML application.

In addition to the flexibility gained through local processing and
manipulation, we can realize efficiency gains by off-loading the
requests from the server. As the above example shows, data can
be translated from this interactive version into a print version or
XML only version so others who can process this XML can
incorporate the data into their applications. In fact, there is a
movement to unify the format of resumes so that human
resources information can be shared universally (see the Human
Resources Management Markup Language in the glossary for
more information.)

UNDERSTANDING THE XML LANDSCAPE

So what? We have an XML document that is self-describing. We
still can’t print invoices, e-mail with it or build applications with it,
right? What we have discovered thus far in our exploration of
XML is the simple case of the XML document. The beauty of an
XML document is that it can be written, read and rendered by
countless applications. These three, oversimplified, tasks help
define some of the technologies that surround XML. Before we
discuss these three tasks and how to perform these tasks with the
SAS System, it is important to understand the rules that govern
XML documents.

Rules to Live By

Unlike HTML, XML has a rigorous set of rules that govern how a
document should be constructed. A well-formed XML document is
one that has all of the characteristics that it is supposed to have.
There are a few simple rules about how an XML document should
be constructed.

v Beginning and ending tags must match. That is, you cannot
have an <ADDRESS> tag without one that ends the expression
</ADRESS>.

v Elements can be nested within each other, but they cannot
cross boundaries. For example, we can have

<Customer>
<ID>109</ID>
<Name>Greg Barnes Nelson</Name>
</Customer>
but not:
<Customer>
<ID>109
<Name>Greg Barnes Nelson</ID>
</Name>

</Customer>

v" XML tags are case sensitive. Each of the following, for
example, is considered a different element.

<Customer> <CUSTOMER> <customer>

v' Because each element must have a beginning and ending tag,
empty elements are signaled by either a closing tag or a />.
These two lines are equivalent:

<Customer/>

<Customer></Customer>

v Just like in HTML, there are some reserved characters that
cannot be used. These include:

< < & &
> > " "
N '

Each XML document must have a root element that denotes the
top of the hierarchy or root. In our example <customer-data>

represents the root element and cannot occur anywhere else in
the document.

Assuming an XML document follows all of these rules, browsers or
other parsers that can read XML are guaranteed to be able to
read your document. This is one of the primary differences from
HTML. Because all of these rules are adhered to, our XML
document is said to be well-formed.

In addition to being well-formed, documents that have something
called a Document Type Definition (DTD) and are well-formed
are valid. Although it is not necessary that a document be valid
(i.e., have a DTD), is it often useful to document them in a DTD
so that other people or applications can benefit from knowing how
they are supposed to be used.

A DTD essentially describes the document'’s rules - that is, which
elements are present and the relationship among the elements.
DTDs, although optional, help to validate the incoming XML
document when the application doesn’t have a built-in definition of
the XML document.

Writing XML

As SAS applications developers, one of our primary tasks in the
near future will be to learn how to create an XML document. Just
as we have learned how to write HTML from our SAS applications,
XML documents can be created programmatically using the SAS
language.

In SAS Version 8.0 (M01), there exist several lightly documented
methods for writing XML natively. We can write XML from a Data
Step (see Appendices A and B for examples), from output that we
generate using SAS’ Output Delivery System (ODS) or using the
Version 8 XML libname engine. Let’s discuss each of these with an
example of each.

SAS DATA STEP

In addition to providing a very powerful engine for creating
complex documents, the DATA STEP will be perhaps the most
familiar method to most SAS programmers. As depicted in
Appendix B, we can programmatically create an XML document
from a SAS data set. Despite its simplicity, we can extend this
example to combine a much richer XML document by combining
multiple data sets to create the patterned, hierarchical output that
characterizes the XML document. In Appendix B, we find a more
complicated example of this as we pull in data from multiple data
sources.

In our simple case (see XML Document 1 shown earlier), we
created a simple XML document that displayed our customer data
with basic name and contact information as well as some brief
demographics. But there is no reason that you couldn’t extend
the example to include past orders, billing and shipping address or
marketing constructs such as Life-Time Value, Segmentation, etc.
By using the power of the SAS Data Step, we can
programmatically include additional content as well as metadata
from SAS’ dictionary tables and formats. The example shown
below was created to show how we would create a complete
customer history from multiple tables (see Appendix B.) Here we
show an XML document that contains several customers, their
contact information, demographics and all of their past invoices.
We have collapsed the view to show only the high-level portion of
the invoices. Below, we show an expanded invoice section.

Advanced Tutorials

<?xml version="1.0" ?>
<customer-data>
<cust-info>
<cust-id>137000</cust-id>
<name>Kraft, Ms. Rose</name>
<demographics>
<gender>Female</gender>
<age>34</age>
<income>32,340</income>
<status>Married </status>
</demographics>
<address>
<street ORDER="1">869
Veterans Blvd.</street>
<street ORDER="2">Business
Research</street>
<city>Rutherford </city>
<state>NJ</state>
<zip-code>70702</zip-code>
<region>NORTHEAST</region>
</address>
<invoices>
<invoice INVOICE-ID=">107707"
INVOICE-
DATE="07MAR1994">

<invoice INVOICE-ID=">135872"
INVOICE-
DATE="08AUG1994">

<invoice INVOICE-ID=">243377"
INVOICE-
DATE="24APR1998">
</invoices>
</cust-info>
<cust-info>

</customer-data>

XML Document 2. Customer History XML document.
Here we show one particular invoice for August 8, 1994.

<invoice INVOICE-ID=">135872" INVOICE-
DATE="08AUG1994">
<lineitems>
<line-item ID="Item1">
<product-code CAT="Toys">TY1200</product-code>
<quantity>4</quantity>
</line-item>
<line-item ID="Item2">
<product-code CAT="Toys">TY2100</product-code>
<quantity>1</quantity>
</line-item>
<line-item ID="Item3">
<product-code CAT="Toys">TY2300</product-code>
<quantity>1</quantity>
</line-item>
<line-item ID="Item4">
<product-code CAT="Toys">TY4100</product-code>
<quantity>1</quantity>
</line-item>
</lineitems>
</invoice>

XML Document 3. Customer history XML document with
expanded view of an invoice.

ODS

Starting with Version 7, SAS programmers were able to take full
advantage of the Output Delivery System or ODS. The goal of
ODS was to rules that governed what output should contain
versus how it should be presented. Although experimental in
Version 8.00, we can now direct any output that can be created
and send it to an XML document. The default XML engine for ODS
in Version 8.0 (M01) produces a proprietary XML document that

adheres to SAS Institute’s Version 8.0 DTD. The code to create a
sample XML document with PROC TABULATE is shown below. The
XML document that is created as a result of this contains a
tremendous amount of metadata, which can be used to describe
the output and its potential relationship to other output objects.

ods xml file="c:\xmltabulate.xml";

proc tabulate data=SASUSER.CLASS ;
table ALL
,(sex age height weight) * n =""

!
class sex age height weight;
run;
ods xml close;

In Version 8.01, additional experimental engines will be developed
that support the DocBook? standard as well as a few variants of
HTML output (with CSS and a bare-bones HTML version). By
combining SAS Institute’s raw XML documents with the
appropriate DTD, we have a powerful method for transforming
and filtering output in other applications that can read, write and
render XML documents.

XML Libname Engine

Although experimental in Version 8.0 (M01), the XML LIBNAME
engine provides an easy method of writing XML documents
directly from libname references. Those tasks that you can
perform with a standard libname such as updating data are
available through this engine. The development at SAS Institute is
ongoing in this area, but we can see a simple example of taking a
SAS dataset and writing it out to an XML document.

libname sampdata 'C:\mylib' ;
libname DestXML XML 'output.xml'’;

data DestXML.dsetanything ;
set sampdata.customer
(label="My customer information");
addrl=urlencode(addrl);
label custnum ="Customer-Information";

run;

The first row of the XML document that is produced from these
statements is presented below. We had to use the urlencode
function in our code to encode any special XML element names
such as the ampersand found in one of our addresses (see “Rules
the Live By” section above for examples of these.) When we
created the XML files, we specified a data set name just like we
would for a permanenet SAS data set (dsetanything). This name
is used in the XML as a descriptor for the document. However,
with the default engine, which is generic mode XML*, variable
labels, formats and lengths are not written to the document. We
can use a different engine by using the XMLTYPE= option and
specify the values values of GENERIC|ORACLE or HTML or
OIMDBM?®.

<?xml version="1.0" ?>
<TABLE>
<ROW>
<CUSTNUM>137000</CUSTNUM>
<NAME>Kraft, Ms. Rose</NAME>

<ADDR1>869%20Veterans%20BI

vd.%20%20%20%20%2</ADDR

1>
<ADDR2>Business Research</ADDR2>
<CITY>Rutherford</CITY>
<STATE>NJ</STATE>
<PHONE>201-507-2211</PHONE>
<REGION>NORTHEAST</REGION>
<AGE>34</AGE>

3 For more information about DocBook, see http://www.oasis-open.org/docbook/
This is compatible with the Oracle8i XML implementation.

The OIMDBM is an industry standardization and attempts to express formatting
information in its output. see http://www.mdcinfo.com/OIM/OIM10.html

Advanced Tutorials

<INCOME>32340</INCOME>
<MARRIED>1</MARRIED>
<SEX>0</SEX>
<ZIP>70702</ZIP>

</ROW>

</TABLE>

XML Document 5. XML document Created with the XML
Libname Engine (Version 8.0 M01).

Reading XML

The primary value of an XML document is that it can be easily
interpreted by someone else - especially by computer. The
exchange of information through XML as the medium requires that
the recipient be able to read, process and possibly transform the
information into something usable. There are a variety of XML
parsers available which can read and interpret an XML document
(see for example IBM, Microsoft and Sun Microsystems.)

A parser, or engine that reads an XML document is typically
embedded in an application. Its job is to read the document and
convert the content into constructs that the application
understands. For SAS application developers, we can write our
own parser using SCL or Base SAS, but it would be much simpler
to use an XML parser that was written by someone else. IBM'’s
parser is one of the most powerful and is available as a Java
applet.

Which parser you use will depend on your application. A likely
scenario for SAS application developers would include a back-end
or middle-ware parser would interpret the document and apply
programming logic to load a database, construct an HTML page or
render a PDF document.

Through the use of the XML Libname engine, we demonstrate
below the conversion of an XML document to a SAS dataset.
Once parsed, we can then use our traditional SAS programming
constructs to develop robust client/ server or web-based
applications. The general form of the XML syntax for reading an
XML document is given here. (Remember, this is experimental!)

libname myXML XML 'C:\mylib\class.xml';
proc datasets dd=myXML; run;

data readback;
set myXML.row;
run;

Proc print data=readback;

run;

Rendering XML

Although XML was designed primarily as a way to solve the
problem of exchanging web documents, it is clear that XML has
potential for solving other sorts of data exchange problems that
are not limited to the web. In Version 8.1 of the SAS System, we
will see support for WAP (Wireless Application Protocol) that
will enable XML documents to be sent over wireless protocols to
such devices as PDAs and cellular telephones.

Despite its youth, XML already has a rich set of tools, which allow
us to render XML documents in a variety of ways. If our browser
supports the viewing of XML documents, we can open them
directly. IE 5 is currently the only browser that supports XML
natively. Because of this fact, rendering HTML on the server and
pushing it to the client will probably be the most common method
of rendering XML until there is a larger base of browser support
for XML.

Other types of transformations include:

v Converting XML into Scalable Vector Graphics (SVG) based on
the W3C’s SVG markup language to produce pie charts and
other graphical formats from XML documents.

v' Rendering XML into PDF documents using James Tauber’s FOP
(Formatting Objects into PDF).

v Converting XML documents into TeX files which can be

rendered on a variety of platforms.

v Converting XML into speech (VoiceXML) which can be used
create audio tracks by a variety of software tools.

v' Rendering XML into an HTML document.

Microsoft Internet Explorer 5.0

Because we are most familiar with the visual presentation of the
web, we will explore rendering XML documents in a web browser
using Microsoft’s Internet Explorer (IE5). This first example
shows the use of Microsoft’s XML Data Source Object (DSO),
which is a Java applet that can be used to bind an XML data
source to a web page (in IE5).

The HTML used to produce this page is fairly straightforward. The
key to this page is the APPLET reference where we pass it a
parameter pointing it to the proper XML data source. This
example shows XML's simplicity - we have not done anything else
to this document to make it appear in the table except what you
see below. The XML document referenced here is the same one
that we showed in XML Document 1 above.

2} http://localhost/test. html - Miciosoft Intemet Explorer H=] B

JE\Ie Edit View Favortes JIools Help u

Sample XML Object-IE 5

Eraft, Ms. Rose Female|[34[832,340 | Married
[Yang, Ms. Joan Female|[28[531,350 | Mot Married
Hinfelt, Mr. Robert Male |23[546,000 | Married
Toncs, Mr. Bruee Male |47684,000 Marricd
Gibson, Mr. Rebert Male |43[651,000 Marricd
Fose, Mr Tohn Male [43[§34,000 [1ot Married
Tones, Ms Salle Female|[455128,000 Marrisd
‘Montrosa,M Tom ‘Mala |0—|$0 ‘Not Married
‘Monsano,Ms Anne ‘Female |0—|$0 ‘Not Married
Tones, Mr Robert Mals |41[545759 | Mot Married

|@] Dane || %% Local intranet

Figure 2. XML Document rendered through Microsoft's DSO.

<html><head></head><body>
<h2> Sample XML Object - IE 5</h2>
<center>

<APPLET code=com.ms.xml.dso.XMLDSO.class id=Customer
width=0 height=0 MAYSCRIPT="true">

<PARAM NAME="url" VALUE="http://localhost/customer.xml|">
</APPLET>
<table border=1 datasrc=#Customer>
<tr> <td></td>
<td></td>
<td></td>
<td>$</td>
<td></td>
</tr></table></center></body></html>

Advanced Tutorials

Style Sheets (CSS). CSS was an early attempt at separating the
information contained in HTML from how it was presented.
Instead of marking up a page header with font specifications that
control the size, orientation and other font characteristics, we can
use Cascading Style Sheets and a class definition to control this.
This allowed us to create basic HTML documents whose look and
feel could be controlled by an external style sheet.

XML has a similar construct for handling the complex presentation
requirements of the web. In XML, one can either use Cascading
Style Sheets (CSS) or the Extensible Stylesheet Language
(XSL) to present data in a browser. Figure 3 shows an XML
document formatted with a CSS (left) and an XSL (right).

) E:\webshars\wwwroot\umldemos\customercss.xml - .. [B[s] EY) Customer Address Book XML Example ... M |
| Elo Edt Vew Favoites Took Help ﬁ | Ble Edt View Foveles Jook Help _

™ Gibson, Mr. Robert

Kraft, Ms. Rose
869 Veterans Blvd. 18th & C Streets, NW
Business Research S 222

Rutherford NT 70702 NORTHEAST Washington, DC 20553

Hinfelt, Mr. Robert

Yang, Ms. Joan
224 Kingsland Ave. 2424 K Street, MW
Bldg. 619, 3rd Floor Suite 200
Nutley NJ 71114 NORTHEAST Washington, DC 20015

Jones, Mr. Bruce
Hinfelt, Mr. Robert
2424 K Street, NW 555K Street ITW
Suite 800 Suite 212
‘Washington DC 20015 NORTHEAST Washington, DC 20003

Jones, Mr. Robert
Jones, Mr. Bruce
555 K Street NW 559 Smith St
Suite 212 Monitoring Section
Washington DC 20003 NORTHEAST Washington, DC 20425

Jones, Ms. Sallie

Gibson, Mr. Robert
18th & C Streets, NW
MS: 222
‘Washington D

1144 18th Street, NW
Suite 800
Washington, DC 20005

553 NORTHEAST

Kraft, Ms. Rose

|‘ Rose, Mr. John
2999 Canctibabian Az NTIT

< I

| - 869 Veterans Blvd.
3 |J Business Research =l

XML Document rendered with a XML Document rendered
CSS. with an XLS.

HTML Segment 1. HTML code for binding and XML data
source to a web page.

Expanding on this simple example where we bind our customer
XML document to a web browser, we could also display it in a form
view with navigations that allow us to move through the dataset
(forward, backward) as well as add/ modify and delete records.
For more information on the XML Data Source Object (DSO),
please refer to the glossary at the end. Here we provide
references to on-line resources.

Doing it in Style
Those familiar with HTML may also be familiar with Cascading

Figure 3. XML Document rendered with Cascading Style
Sheets versus an Extensible Style Sheet.

Despite the fact that Cascading Style Sheets were designed for
HTML, it is just as good at formatting XML documents for the web.
The XML document that was used was identical to that described
in XML Document 1 referenced earlier in this paper. The only
difference was the addition of a header describing where we can
find the CSS. The CSS can be found in Appendix D.

<?xml version="1.0" ?>
<?xml-stylesheet type="text/css" href="Labels.css"?>

<customer-data> and soon ...

XLS (extensible Style Sheet) is a style sheet technology designed
specifically for XML. With XSL, we are able to control our
document’s presentation much more than before. As
demonstrated here (one in Figure 3-Right and again in Figure 4),
we have two XML documents that are identical except for the
reference to its XSL style sheet. Note the clear separation of the
content (XML document) from its presentation (through its XSL
reference.)

The XML header for this document is shown here:
<?xml version="1.0" ?>
<?xml-stylesheet href="Labels.xsl" type="text/xs|"?>

This second rendering below shows the exact same document -
the only difference: the XML header points us to a different XSL
document.

<?xml version="1.0" ?>

<?xml-stylesheet href="Table.xs|" type="text/xsl|"?>

/3 Customer Address Table XML Example - Miciosoft Internet Explorer =] B3

| Fle Edt View Favoites Tooks Help

Customer List, sorted in
decending order

‘ Name | Address | City State | Zip

Yang, Ms.
224 Eingsland Ave

Joan Bidg 619, 3rd Floor Hutley, NI 71114

Rose, Mr. 2222 Constitution

John \Averme MW Washington, DC 20223
Eoom 6224

Montrose, M. 4555 North 4000

Tom Wisconsin Ave [Washington, DC 20016

Monsano, Ms. 246 H Street, NE

Anne Washington, DC 20219

Kraft, Ms.

Rose B60 Veterans BIvd. \p ford, [T 70702
[Business Research

Jones, Ms, 1144 18th Street,

Sallie 1At [Washington, (DC ||20005
Suite 300 =

@] Done [[[My Computer 7

Figure 4. XML Document rendered with Table.xls.

Transformation Through XSL and XSLT

In addition to being able to render XML documents, XML provides
us with a rich toolset for transforming documents as the style
sheet is applied. Through the use of both XSL and XSTL (XML
Transformation Language) we can move text from one place in
an XML document to another (for example, moving the value of
first name and last name around); sorting elements (see, for
example Figures 3 and 4 - note the order of the names in each);
generating text and performing calculations (such as the count of
all of the line items in an invoice); and numbering items in a list.
Both XSL and XSTL provide a rich set of tools for manipulating and
managing the information contained within an XML document.

CONCLUSION

XML brings a tremendous amount of power and flexibility to both
client/ server and web-based applications. As we have seen in
this paper, there are a number of compelling benefits to both
developers and to the organizations they serve. For the SAS
developer, XML offers a rich toolset for communication across
application and organizational boundaries. We are able to
structure data in the context of meaningful hierarchy in a way that
other people and software can easily understand. Because of its
patterned structure, data can be shared literally with any
application or user that requires it. As data and its corresponding
structure changes, the XML document and its structure change
with it.

THE FUTURE OF XML AND SAS

Although no production SAS Institute applications have been
delivered to date using XML, we can easily incorporate XML into
our applications by using common programming elements such as
SCL and the DATA Step or combining other technologies in
concert with the SAS System.

As more vendors, like SAS Institute, incorporate XML into both
applications and lower level language support, we should expect
to see a wide variety of uses for XML in our applications. In the
short term, we can expect to see more experimental engines in
BASE SAS with ODS and the LIBNAME engines in Version 8.1.

Potential Applications

Beyond simple tasks like reading and writing, we would hope to
see a variety of application level support for XML. Here are just a
few ideas.

Native SAS XML Tree-Viewer. Having a built-in editor for viewing/
editing XML documents that have been created within SAS. For example,

Advanced Tutorials

one could pull up an XML document from the File -> Open Menu to display a
tree-view for editing/ viewing the XML structure.

SAS/IntrNet Extensions. For web-based applications, native support for
both parsing XML and writing XML to the Application Dispatcher sessions for
use in subsequent pages would be a logical extension of this technology.
The XSL language is common in many regards to what we see in htmSQL as
it handles a records sets in the {eachrow} directive. I would expect native
htmSQL to be able to navigate an XML document hierarchy.

Messaging Transport. With respect to messaging, we should be able to
expect will provide a transport mechanism (both receiving and sending)
XML-based messages between both SAS and non-SAS based clients and
servers.

Balanced Scorecard. For applications, like Balanced Scorecard, we could
use XML to deliver metrics from throughout the organization in a single,
common format.

In general, XML can be used wherever data is being exchanged
between multiple applications and/or organizations to facilitate the
understanding and assimilation of the data in its new context.

By allowing SAS developers to fully exploit the benefits of XML,
the SAS System will continue its leadership role in the integration,
analysis, presentation and decision support for years to come.

ACKNOWLEDGMENTS

The author would like to sincerely thank several people for their
rule in gentle and thoughtful review of this manuscript.
Specifically, we would like to thank Ian Whitlock, Don Henderson,
Chris Olinger and Anthony Friebel for their support.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Please
feel free to contact the author at:

<?xml version="1.0" ?>
<business-card>
<author>
<name>
<first-name>Greg</first-name>
<middle-initial>S.</middle-initial >
<last-name>Barnes Nelson</last-name>
</name>
<title>Director</title>
<company>
<comp-name>STATPROBE Technologies</comp-name>
<web-site>www.statprobetechnologies.com</web-site>
<address>
<street>117 Edinburgh South, Suite 202</street>
<city>Cary</city>
<state>NC</state>
<zip-code>27511</zip-code>
</address>
</company>
<contact-methods>
<business-phone>919-465-0322 x351 </business-phone>
<business-fax>919.465.0323</business-fax>
<b-email>greg.barnesnelson@statprobe.com</b-email>
<personal-email>gregbn@ix.netcom.com</personal-email >
</contact-methods>
</author>
</business-card>

...or simply email me at greg.barnesnelson@statprobe.com.

APPENDICES

Appendix A. Producing a simple XML document from a SAS
Data Set

filename outxml "c:\simplecustomer.xml";

Data null ;
file outxml;
set sampdata.custl0 NOBS=Lst;
length gender $6. marital_ status $11.

%let tab=" "y
addrl=htmlencode (addrl) ;
addr2=htmlencode (addr2) ;

if sex=0 then gender='Female';

else gender='Male';

if married=0 then marital_status="Not Married";
else marital_ status="Married";

if n_=1 then do;
put '<?xml version="1.0" ?>';
put '<customer-data>';

end;

put '<contact-information>';

put &tab'<cust-id>' custnum '</cust-id>';

put &tab'<name>' name '</name>';
put &tab'<gender>' gender '</gender>';
put &tab'<age>' age '</age>';

put &tab'<income>' income '</income>';
put &tab'<status>' marital_ status '</status>';
put &tab &tab '<address>';
put &tab &tab '<street ORDER="1">'
addrl '</street>';
put &tab &tab '<street ORDER="2">'
addr2 '</street>';
put &tab &tab '<city>' city '</city>';
put &tab &tab '<state>' state '</state>';
put &tab &tab '<zip-code>' zip '</zip-code>';
put &tab &tab '<region>' region '</region>';
put &tab &tab '</address>';

put '</contact-information>"';

if _n_ = 1st then do;
put '</customer-data>';
end;
run;

vanced Tutorials

<xsl:for-each select="address">
<xsl:apply-templates select="street"/>
<xsl:apply-templates select="city"/>
<xsl:apply-templates select="state"/>
<xsl:apply-templates select="zip-code"/>

</xsl:for-each>

</xsl:for-each>
</body>
</html>
</xsl:template>

<xsl:template match="name"><h2><xsl:value-of/></h2>
</xsl:template>

<xsl:template match="street"><xsl:value-of/>

</xsl:template>

<xsl:template match="city"><xsl:value-of/>,
</xsl:template>

<xsl:template match="state"><xsl:value-of/>
</xsl:template>

<xsl:template match="zip-code"><xsl:value-of/>

</xsl:template>

</xsl:stylesheet>

Appendix B. Producing a simple XML document from
Multiple Data sets

CustomerInvoiceVieW.Sasc.ccvcreriarariararimsassasasnnsnss
Because of the length of this program, the

code for this example can be found on-line
at http://www.statprobetechnologies.com/XML

Appendix C. Cascading Style Sheet used to format an XML
document

LabelS.CSS iiiiimmnmitimmnmnsietsansasssnssassassansnssnssnnsanss

contact-information {

display: block; width: 350px; padding: 10px; margin-bottom: 10px;
border: 4px double black; background-color: white; color: black; text-
align: center;}

name {
display: block; font-family: Times, serif; font-size: 16pt;
font-weight: bold;}

street {

display: block; font-family: Times, serif; font-size: 14pt;}
city, state, zip-code {

display: inline; font-family: Times, serif; font-size: 14pt;}

cust-id, gender, age, income, status {
display: none;}

Appendix D. eXtensible Style Sheet used to format an XML
document as Mailing labels

Labels.xlIs.....c.cuuaue

<?xml version="1.0"?>
<xsl:stylesheet xmins:xsl="http://www.w3.0rg/TR/WD-xs|">
<xsl:template match="/">

<html><head><title>Customer Address Book XML

Example</title></head>
<body bgcolor="#FFFFFF">

<xsl:for-each order-by="+ name" select="customer-data/contact-

information">
<xsl:apply-templates select="name"/>

Appendix E. eXtensible Style Sheet used to format an XML
document as a Table

Table.xls

<?xml version="1.0"?>
<xsl:stylesheet xmins:xsl="http://www.w3.0rg/TR/WD-xs|">
<xsl:template match="/">
<html><head> <title>Customer Address Table Example</title></head>
<body bgcolor="#FFFFFF">
<h1> Sorted in decending order </h1><p/>
<table align="center" border="1">
<tr>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
<xsl:for-each order-by="- name" select="customer-data/contact-
information">
<tr>
<td><xsl:apply-templates select="name"/></td>
<xsl:for-each select="address">
<td><xsl:apply-templates select="street"/></td>
<td><xsl:apply-templates select="city"/></td>
<td><xsl:apply-templates select="state"/></td>
<td><xsl:apply-templates select="zip-code"/></td>
</xsl:for-each>
</tr>
</xsl:for-each>

</table>
</body>
</html>
</xsl:template>

<xsl:template match="name"><h3><xsl:value-of/></h3>
</xsl:template>

<xsl:template match="street"><xsl:value-of/>

</xsl:template>

<xsl:template match="city"><xsl:value-of/>,
</xsl:template>

<xsl:template match="state"><xsl:value-of/>
</xsl:template>

<xsl:template match="zip-code"><xsl:value-of/>

</xsl:template>
</xsl:stylesheet>

0
I
8
=]
-
IS
8]
g
S
<

*adedsiaN
[UY"ZXSpUI/3dN3es3)/9T/L0/666 T/qNd/IM/WOI MIIASIGOM//-ANY 1o Ja10jdX3 39UJSIU] SB YINS Jasmo.q e Ybnoayl gam ay3 JSA0 PaMaIA ¢ ued abenbue
1995 TWLH PUB TWLHX U99MIaq S30USIRIP DY 404 A3y} 3eY] 0S SIUSWNDOP JeW.I04 03 Pasn Sl TWIH ‘gam ay3 jo abenbue| ayl ANLH dnyaey xa JodAH
‘paJeys pue abenbue
pajuasaudad S| Uoj3_WLIOUl BDJN0SDL UBWNY YdIYM Ul Jduuew ayj Ajlun 03 dnyJey Juswabeuely
S| wie asoym uoiedjdde ue si ‘*oul ‘spoyis|y 91n30nJ3sS Agq pajeatd “TWWAH TNWYH S904N0S9Y UeWNH
*Jayjoue ojul y buiuaauod
TR BT e R 7T pue pr._wE:uo_u e Jo 3no eiep HuIab 404 SUOIDNIISUL SUIRIUOD SX “TIX Ul
USRI "J19SH JUSWIND0P WX Y3 Woly ajesedas S| 3ey3 JusWNI0p e 03 sa|nd
[WX-DUTWI0JSUBI}/UCIIBONPa/I3d0[SASP/SI1BMIJ0S/W0d Wql H-MMM//Td1y bunyew.oy sajdde 31 ‘SSD 03 JejlwiS “S9INJ uol3RUdSaId JUBWNDOP I|qIX3) abenbue 399ysalAls
dse geUIMZN/66UIMT0/666 T /[WX/S9IN3eo)/991)/pe0o|dNn/W0d bew WX MMM //:d13Y m_u_>o._n_ 0] pasn aq ued eyl wmm3mcm_ e S9qII0Sap jeyy yedp mc_v_._0>> \v ISX 9|qIsualx3y
W3 WX [W3Y/[W3y/Wod 1Sd0[SASPqaM MMM/ d 13y
WY 0SpIND/0T/86/aNd/Woo [WX MMM/77d1y
woo wqrsylomeydie"Mmm//-dg
dse bejjwix/[e1auab/[luX;/ W02 330S00 W upsw//:dniy
B 2 T e ot Tt e suonjezjuebio pue suoijeddde usamiaq pue ulym
’ ejep buibueydsxa Joj 3ew.oy) |eapl ue si 3] ‘uoneijuadsald pue uoieindwod
WY TWX/I9A03/D10"USUO-SISE0" MMM//:dY |e20] J0j dopysap ay3 03 suonedijdde Jo AJolIRA-SPIM B WO BIRP PaINIONIIS abenbue
Wy bey/ WX/ 00N MMM //Tdny Bulianlap J10) dlomawe.y e sapiroad 3T "goam ayj jo abenbue| mau ay3 sI TWX TAX dnJen 9|qIsuaixa
U0 OS pue S3aUO JBY30o YdIym Yiim uoieuiquiod uj Jeadde
ued SJUBWIBID YdIYM ‘Sawieu Juawa|d ay3 Jo 3si| e sapiaodd 3] "Ssjuswndop uoliuyaq
W3y PIP/WOd SHEUM MMM // 13y TINX 4O SSe|D B 10 XBIUAS pljeA ay3 saulap uoijuyap adAy Juswnoop ayl aira 9dA] juswndoqg
-1dioseaer pue 1ddsgA 91| sabenbue)
bundos ybnouayy ssadoe sapinoid pue DEM Y3 WOJ) UOI3RpUSWILIOI
e S| WOQ TWX UL 239 ‘sjewloj ‘a4n3dnais ‘3uajuod Jusawndop WX
7WOQ/BIo"EM MMM/ TdY JO [043u00 diewwelboid siadojaaap saalb jeuy (Idy) @oesa3ul buiwweaboud 19POW
T-[OAS T-WOA-D34/9L/BI0OEM MMM /77 a1y uopjedljdde pajualio pajdafqo plepuels e S| |opow 393[qo Jusawndop ayl wWwoda 303[qO juswndoQq
3diOSgA
pue yddseaer 91| sabenbue| bundiids apis-3uald ul usIM AjjedidAy aue
swelbold ‘sjuawa|d JWLH 243 03 ssadoe dipewweldbold ybnoayl Ajanoedsiul
Wy uWquUAp upsw/[wiy/puibypeq/AJelqi/uwod Josoniwrupsw//:dny paseq-49smo.q J0 -3udi|d |0J3uU0d 03 wsiueydaw e sapiroldd W 1H diweuAq IWLHA TWLH JiweuAq
*SI9SMO0.Q S,3J0S0IDI|\ 03Ul pappaguid
s| 3ey3 Abojouyoay Aueiaiudoud e sisiyl ‘sabed WLIH 03Ul “TIWX Buipnppul
58°5551N0581ep/PUlqeIep/I0yINy /d0ySSI0M/ W0 oS00 IW UpSW /7 a1y ‘ejep painjonuis paqui ued jeyy s3a[qo aJe (sOsa) spa[qo 21nos ejeq 0sda P3[gQ 824n0S eleq
*3UBWNJ0P WX
ue Se ||9M Se JUSWNI0op JWLH Ue jew.o) 03 pasn ag ued SSD ‘juawndop
B UIY3IM paliauapl Ajjeoyidads aJe jeys suoijdas 03 1o JUSWNIOop e ssoloe
buizew.oy Aldde 03 <TH> se yons suoiiuyap bey asn ued sSsH *pajuasald
/31A3S/BI0"EM MMM/ /TdY sem 31 3ey3 Aem ay3 wody JWLH Ul Ju23uod ay3 ajeledss siadojaasp 199ys
WU 91A15/91A15/S9pINb/ W0 MaIASIGoM// A1y djay 03 3dwane Ajuea ue se paubisap abenbue| 39ays 9JA1S e SI SSD SSD 9]A1s buipedse)
EERITENETEN] asodand /uondiidsaqg wAuo.oy w1

JWX/WO05 Sa1b0j0uUDa]9q01dIeIs MMM//:d11y 18
punoy 2q ued 3|ge] Syl JO UOISISA 31ep-03-dn Uy ‘Sjuswndop WX Bulapual pue Buisssdold ‘Buizeald Jo 3xa3U0d ay3 Ul pasn sasedyd pue Swa} UoWWod ISoW 33 Jo awos sapirold Alesso|b siyl

AHdVYOO0IT4919 ANV AYVSSOTO A3LVLIONNY "9 XIONIddVY

0
I
8

=]
-
IS
8]
g
S
<

“19430Ue 03 1eW.I0) BJep U0 WO} JUSIU0D X Wiojsuel] 0}

dSe 66UIMZON/66UIMT0/666 1/IWX/SaIN18a}/59.3/pe0[dNn /W0 bew WX MMM //-dny pasn aq ued jeyy abenbue| pe s3qIOSap 3yl DEM Y3 Woly yedp bupiom y 11SX suonewdojsued] JWX
*pa3aJdiaijul 8q p|NOYS JUsWNI0P WX Ue MOy 404 uoijuap e sapiaold
U BWIBUDS MMM/ TaT1Y eWIYDS WX UY 'SNoJobli a10w aJe s3|nt S} INg dLd WX ue 03 Jejiwis ewayds X
=IENES
10 @@ e 3suiebe juswnoop ay3 a3epleA siasied awos “(Aydtelaly)
[UysIosied/geWiX/Sainjes)/bewnd,/Woo 1oUpZ MMM //7d11g 99.43 paJnidnJls e sajesauab pue ejep WX 40 Bulls e speau sasied WX Uy Jasied WX
'pasn sjusawa|d ay3
JO saweu ay3 03 3x33u0d apinold djay sadedsawen 30U JO dAIFOR S| JUNOdde
9y3 J3yjaym 03 Jajad Aew <SNnjelIS> SWeuU ay) ‘9d10AUl JNO Ul SeaJIaYM SNiels
|e}IBW UBBW 0} <SN3RIS> SWERU JUdWI| 3y} 9sn Aew am ‘sjdwexa 104
‘suoledijdde 10 /pue SIOpUSdA 34BMIOS JUIBYIP AQ pasn saweu jo delusano
SSWRU-[WX--734/4L/DI0OEM MMM //Td11] 3y3 Juanaud 03 pJepueis B se DEM U3 WOy UOIIRPUSWIWOdI B Ajuadin) saoedsawep saoedsaweN WX
(*<43¥H V> bupjui S, TINLH 03 Jejiwis) Jayjoue auo 03 paxyul| abenbue
€0€0866T-130X-AM/866T/dL/DI0"EM MMM//7d13y 3Q ued SUBWNJ0P WX MOY S2q1IdSIP Jey} uoljedoydads abenbuel yelp v AulX Bupjur TWX
‘suoljenba |eonewayew
X¥9TZ0666T MMM WY XopUl/3IN3ea}/9T/Z0/666T/qNd/IM/W0d MIIASIGEM//Td13y 1] sbuiyy buippaquws 104 sbey WX swos asn Ing “JWLH Ul syuswndop
TIWIYX/91/BI0DEM MMM //-dYg 91eaJd 03 SJasn smoj|e 3eyy DEM 243 Aq panoidde uoneoynads e st JWLHX TNLHX TWLHX
‘widolldw|ed
e 0} J9AJDS 4OM B WOy pallajsuely ejep 3q pjnom sjdwexa uy ‘suoljedjdde
W3y xapur/sbey/bIo wniojdem Mmm//:dny SS9]2JIM Y3IM passad0.ld pue paddajsuel) ‘papodus aq pinoys eiyep moy Joj 0203014
7610 WnIiojdem MMM/ dny suonedads ay3 suiejuiew yoiym ‘adoun3 ui buneuiblio ‘Abojouyday mau y dVM uonediddy ssajadip
"Wy} Y3Im pajelnosse gla e aAey 3,uop Aayy ‘sa|nd ayy moj|o} Aj|e13uassa
SIUSWINJ0P pawJoy [|]9M ybnoylly ‘uonedynads WX 243l Aq paulap
SeT|WX-ST-jJegm/[elauab/[luxX/Wo3 3JosonIwrupsw//7diy S9INJ 3Y3 JO || SMOJ||04 I JI paWLIOJ |[PM 3Q 0] ples S| JuaWndop JAX Uy pawIo) [I9M
"9SN pue JU3U0D SII SBULBP ey} BWAYDS
[WIY E9pINb/0T/86/qNd/WoD (WX MMM// d11y TWX 40 @Ld B Ssey jJuawndop WX PleA e ‘pawloy-|[am bBuiaq 03 uoiyppe ul plleA
*<DI0AUI> JO <I3WO03ISND> 31| SBe} umMo Ino 23310 M “JWX UI *pap|oq
2Q pINOYS SMOJ||0} 3_UM 3RU3 Sh S[|93 <q> Bel ayj ‘sjdwexa 404 ‘uolijew.ojul
Uy sbe3/buiuiel/A0b eseuro e XIung 13//-dny QWOS 2qlIdsap 03 pasn s| bey e abenbue| dnyaew Juswnoop e ul sbe]
*AJIBAIIBP-0aM 10J TIWDS 40 IN0 A3X3|dw0d Y3 JO SWOs a¥e} 03 paubisap abenbue
SeM pue JWOS JO UOISIDA papijdwis e S| JWX UOI3RIUSWNIOoP JIU0III3|D dnyJle pazijelsauan
W3y [WbS/Woo SeymM MMM // a1y Ul JUUOD pue a1n3dnJ3s ay3 buluyap Joj piepuels |RUOIIRUIDIUI Y3 SI TWDS INDS plepuels
‘sabenbue|
9jea.d 03 9|doad smojje ay3 abenbue| e uayied Inq ‘|je e abenbue| e Ajjeal
Wy BIa W/ W00 SNeyM MMM/ dnYy J,uUsl WX ‘sebenbue| Joyio 93340 10 2qIIISIp 03 pash si 1eyl abenbue| v abenbuei-eo
‘ejepeaw
se paqlIosap aq p|nod sa|qe3} AJeUOIIp 9Say] 32 ‘so|qelleA ‘saiqe)
9QqII2Sap YdIym ‘sajqe3 A1euoidip 1OS ay3 3A_Y M ‘SyS ul 'asn Jo buiueaw
7005 OJUPPW MMM//Td11y S3 JO SWU) Ul B3RP S9QIIOSIP YDIYM IRyl S| eIepeId|y °,eiep inoge eied, eyepeis|y
EERITEYETEN] asodand /uondiidsag wAuo.aoy wJaal

	CD Table of Contents

