Posters

Paper 203

A Simple Framework for Sequentially Processing
Hierarchical Data Sets for Large Surveys

Richard L. Downs, Jr. and Pura A. Peréz
U.S. Bureau of the Census, Washington, D.C.

ABSTRACT

This paper explains a simple framework for applying traditional
sequential processes (reformat, edits, imputation, etc.) to a
hierarchical group of SAS® data sets. The framework merges the
data sets using a series of layered DATA step views. It then
shows how users can write DATA step code that processes the
merged data sets and outputs updated versions of one or more of
those data sets. The DATA step code uses a macro to help
dynamically create a keep option for each output data set. The
DATA step then uses a combination of checking for last. variables
and missing values to determine the proper time to output to each
data set. This framework largely isolates the complexity of relating
the data sets from the complexity of the actual process, it
maintains the data set hierarchy, and eliminates the need for any
post-process processing (all output data sets are complete at the
end of the process data step).

INTRODUCTION

Most U.S. Bureau of the Census demographic personal or
telephone interview surveys have switched from paper
guestionnaires to electronic instruments run using the Computer-
Assisted Survey Execution System (CASES). Post collection, we
extract data from CASES and, for most surveys, convert the output
into one or more SAS data sets for processing.

(=Y SO N <
] ()]
3 A A A A A A
=) HEEFEEEED

SEEOEE
EEEEEE

Figure 1

Processing varies from survey to survey, but usually it involves
taking the CASES output data through a series of sequential
steps: reformat, edits, imputation, weighting, recodes, table
production, and internal/external user file production. Traditionally,
we process on a mainframe environment running 3GL (FORTRAN
and COBOL) programs against one or more flat or hierarchical
files. Redesigned processing is on UNIX workstations running
SAS programs against a hierarchical series of data sets. The
memory and storage resources available are much more limited
than those in the mainframe environment. Consequently, we need
to process the data while maintaining the data set hierarchy
through each process.

In this paper we explain and demonstrate a simple framework for
applying traditional sequential processing steps to hierarchical

data sets while largely isolating the complexity of the data set
relationships from the complexity of the actual processes.

CASES OUTPUT DATA

CASES organizes data at the case level and in rosters. Case level
information is usually information about the household. A roster is
a repeating group of data items. Each roster is a "child" of either
the case level or another roster; instruments have a case level and
may have up to three roster levels. For example, if we have a
survey that collects information on jobs, each interview has a case
level with information about the entire household. Each household
can have several persons, so we have information about each
person stored in a roster at a second level. Each person could
have several jobs, so we have information about each job stored in
another roster at a third level, etc.

When we translate CASES output to SAS data sets each
repeating group becomes a separate data set. Depending on the
complexity and size of a survey, the results can be upwards of 50
data sets in a hierarchy up to four levels deep. An example data
set hierarchy taken from the Medical Expenditure Panel Survey
(MEPS) is shown in figure 1.

The data sets are related and uniquely identified by common
variables; for the purposes of this paper we will call them
relationship variables. We can see this by looking at a subset of
the MEPS data sets from figure 1, shown in figure 2.

The househld data set contains a
variable ctrinum that uniquely identifies
each household.

househld
identified by ctrinum
Persons has a variable ctrinum that
links the person to the household; it
also has a variable persons that
uniquely identifies that person within
that household.

persons

identified by ctrinum and persons . . .
g P Events (in this example an event is a

health care event, such as a doctor
visit) has variables ctrinum and person
that link that event to a person; it also
has a variable events that uniquely
identifies the event for that person.

events

identified by ctrinum, persons,
and events

Finally, ed_prov (SBD provider
information concerning health care
providers a person initially saw at one
facility and later saw at outside that
facility) has variables ctrinum, persons,
and events that link the SBD provider
to the event; it also has a variable
ed_prov that uniquely identifies the
SBD provider for that event.

ed_prov

identified by ctrinum, persons,
events, and ed_prav

Relationships between the data sets
are either one-to-one or one-to-many
where many is either one or zero
based. The MEPS example has the following relationships:

Figure 2

® Each household relates to one or more persons.
@ Each person relates to zero or more events.
® Each event relates to zero or more SBD providers.

REQUIREMENTS

Our issue is how do we implement the traditional sequential survey
processes using SAS given the data hierarchy? Our solution
should allow us to maintain the hierarchy, largely isolate the
complexity of relating the data sets from the complexity of the
survey processing, and eliminate the need for any post-processing
at the completion of each processing step.

By maintaining the hierarchy, we require that users do not collapse
the hierarchy into one "big file" by either amalgamating the data or
creating temporary data sets. Amalgamating the data (creating a
household level representation) introduces more chances for
errors because roster variables must be renamed since they will
repeat per observation. It is also wasteful because of the number
of blank values in each observation. Creating a temporary data set
based on the lowest level of the hierarchy, in our example ed_prov,
is wasteful because of the number of values that repeat over
multiple observations. Also, for larger surveys, amalgamating or
creating a temporary data set to represent the input relationships
may be impossible due to resource constraints.

By isolating the complexity of relating the data sets, we want users
to have to build minimal relationship logic into their process step
code. Ideally users can reference the related data sets as if they
are one "big file." Also, users should have to build minimal output
control logic into their process step code to create new versions of
the appropriate input data sets.

Finally, we want to eliminate the need for any post-processing.
This means that all data sets produced by the processing step
have the correct number of observations; usually this is the same
number of observations as the corresponding input data set.
Consequently, the way we build the input relationships usually
cannot restrict the universe of the relationships. If we do restrict
the input universe on any data set that we output, then we may
have to run additional steps after the process step to add back the
excluded observations. These additional steps unnecessarily
complicate the process and introduce more chances for errors.

EXPRESSING HIERARCHICAL INPUT
RELATIONSHIPS

A solution to creating a "big file" feel is to create a series of layered
SAS views. We relate two or more data sets with each view
depending on the relationships between data sets. We need to
have one view for each instance where data sets being related do
not have a one-to-one relationship. For example, to relate the
MEPS data sets shown in figure 2 we need three views because
the relationships between data sets (househld to persons, persons
to events, and events to ed_prov) are all one-to-many.

Let us look at how we create these views by setting up the
relationships among the four MEPS data sets shown in figure 2.
Please note that all the related data sets need to be sorted by their
appropriate relationship variables. Please also note that in our
examples we create our views in the work library; we can make our
views permanent and reuse them if appropriate by creating them in
another library.

We start at the bottom by relating the lowest two data sets in the

hierarchy; here, we relate events and ed_prov. As shown earlier,
these data sets are related by the variables ctrinum, persons, and
events. The code for the first view (we will call it view1) is shown
below:

data viewl / view=view1;

merge datalib.events(in=ininner)
datalib.ed_prov;

by ctrinum persons events;

if ininner;

View1 gives us all observations that match both data sets and all
observations from events that did not match to ed_prov. In the
latter case the variables contributed by the second, or outer, data

Posters

set are set to missing. Please note because of the nature of the
data, we will not have a situation where an observation on the
outer data set does not match to the inner data set, but we allow
for such a situation in the data step. This is the logical equivalent
of a SQL left outer join.

We then move up the hierarchy by relating the next data set
(persons) with the view we just created (viewl). The relationship is
by the variables ctrinum and persons. The code for the second
view (view?2) is shown below:

data view2 / view=view2;

merge datalib.persons(in=ininner) viewl;
by ctrinum persons;

if ininner;

Finally we get to the top of the hierarchy by relating the top data
set (househld) with the previous view (view2). The relationship is
by the variable ctrinum. Remember that each household has to
have at least one person, so we add that restriction to the DATA
step. The code for the final view (view3) is shown below:

data view3 / view=view3;

merge datalib.househld(in=ininner)
view2(in=inouter);

by ctrinum;

if ininner and inouter;

We need to be very careful when/if we apply process-specific
restrictions to the views. In the above examples we did not apply
any process-specific restrictions; we applied restrictions that
express the relationships between the data sets. Usually we apply
any necessary process-specific restrictions in the process code.
We should only apply process-specific restrictions to the views
when both:

@ The data set being restricted is not output.

@ The restrictions do not result in a subset of data sets lower in
the hierarchy and any of those data sets are output.

Additionally, if we have a situation where we relate just two input
data sets then we have an option of using a MERGE statement in
the process DATA step instead of defining a view that merges the
two data sets and setting that view in the process DATA step. At
first glance it appears that these approaches produce the same
result, however, there is a difference in the way SAS initializes
contributed variables in the PDV. We discuss initialization of
contributed variables in the final section of the paper: writing
process-specific DATA step code.

Finally, some of you may wonder why we did not use PROC SQL
to create our views. We found that using PROC SQL created
several issues:

@ Due to the nature of the select statement, we found it
necessary to use the coalesce function to compensate for
duplicate variables in the SQL views. The PROC SQL code that is
the equivalent of the DATA step views described above is shown
below.

proc sq;

create view viewl as

select *,

coalesce(events.events, ed_prov.events) as events
from datalib.events left join datalib.ed_prov

on events.ctrinum=ed_prov.ctrinum and
events.persons=ed_prov.persons and
events.events=ed_prov.events;

create view view2 as

select *,

coalesce(persons.persons, viewl.persons) as
persons

from datalib.persons left join viewl

on persons.ctrinum=viewl.ctrlnum and
persons.persons=viewl.persons;

create view view3 as

select *,

coalesce(househld.ctrinum, view2.ctrinum) as
ctrlnum

from datalib.househld, view2

where househld.ctrinum=view1.ctrinum;

@ Because SQL processes an outer join by forming the Cartesian
product of the data sets then selecting the observations, we found
that performance severely degraded as the size of the data sets
increased.

RELATING DATA SETS ACROSS BRANCHES OF THE
HIERARCHY

In our example the input data sets are on one branch of the
hierarchy shown in figure 2. Because of the way these data sets
are related this is usually a requirement. However, in some
situations relating data sets across branches of the hierarchy is
possible. Working with CASES data as instruments become
larger and more complex, relating data sets across branches will
become more common because CASES currently limits the
hierarchy to just four levels. To relate data sets across branches,
the data sets at a peer level must meet the following criteria:

® The data sets must have a one-to-one or one-to-many logical
relationship; the data sets cannot have a many-to-many
relationship.

@ The data sets must have the appropriate variables to uniquely
relate to each other. The relationship variables described earlier
are not sufficient to relate across branches.

e Figure 3 shows househld and

w persons from the previous example

related to proxy (proxy contains

information on a person providing
information about one or more
other people). Proxy and persons
are related to househld by the
variable ctrinum. Proxy and
persons are related by the variable
proxy_In; proxy_In is not a
relationship variable. We can sum
up the relationships between the data sets as:

Figure 3

® Each household relates to zero or more proxies.

® Each household relates to one or more people.

® Each proxy relates to one or more persons.

@ Each person can relate to no more than one proxy.

The code for the views that setup these relationships is shown
below:

data viewl / view=viewl,

merge datalib.proxy
datalib.persons(in=inouter);

by ctrlnum proxy_In;

if inouter;

data view2 / view=view2;
merge
datalib.househld(in=ininne

r

viewl(in=inouter);
by ctrinum;
if ininner and inouter;

View1 gives us all observations
that match from proxy and persons
and all observations from persons
that do not match to proxy. This is

Figure 4

Posters

the logical equivalent of a SQL right outer join. View2 is similar to
view3 from the previous example.

These views create the relationship shown in figure 4. We get
from househld to persons through proxy. However, the views
make this connection even if a proxy observation does not exist for
a persons observation.

EXPRESSING HIERARCHICAL OUTPUT
RELATIONSHIPS

Since our processing might update values or create new variables
at any level of the hierarchy, the processing step needs to be able
to create new versions of each input data set. This brings up two
issues: first, how do we assign the correct variables to the
different data sets; and second, when do we output to the different
data sets.

We handle the first issue by using a keep data set option and
dynamically creating a list of variables from the corresponding
input data set with a macro. Generating the list dynamically is
crucial to maintaining data integrity. The macro (%VARLST) is
listed below:

%macro varlst(dataset);

%local dsid i rc;

%let dsid = %sysfunc(open(&dataset));

%do i = 1 %to
%sysfunc(attrn(&dsid,nvars));
%sysfunc(varname(&dsid,&i))

%end;

%let rc = %sysfunc(close(&dsid));

%mend;

%VARLST goes through the following steps:

@ Open the specified data set.

@ Looping from one to the number of variables in the data set,
retrieve and display the name of each variable.

® Close the data set.

Please note that this macro requires at least SAS 6.12 or 6.09e. If
you are running an older version of SAS, an alternative macro
approach is described in Appendix A.

Going back to our first MEPS example, the data statement that
produces the new versions of all four input data sets is listed
below:

data househld(keep=%varlst(datalib.househld))
persons(keep=%varlst(datalib.persons))
events(keep=%varlst(datalib.events))
ed_prov(keep=%varlst(datalib.ed_prov));

We handle the second issue, when to output, through a
combination of last. variables and checking for missing values.
The set statement for our example is shown below; note that we
set our last view (view3) by all of the relationship variables, though
the last view was defined only by the first relationship variable:

set view3;
by ctrinum persons events;

We do the actual output handling at the end of the process data
step. Output to any of the data sets is based on two conditions:
first, is it the right time to output to that data set; and second, does
data for that data set exist in the PDV.

We determine proper time for output by testing whether or not the
last. variable associated with a data set is true. For example, in
our MEPS processing the time is right to output to persons when
last.persons is true. A proper time test is not necessary for the
bottom data set in the hierarchy.

We determine whether the data are missing by testing whether or
not the relationship variable associated with a data set is missing.
For example, in our MEPS processing we do not output to persons
if persons is missing. The missing test is not necessary for the top
data set in the hierarchy.

The output handling code for our MEPS example is shown below:

if last.ctrinum then output househid;

if last.persons and persons ne . then
output persons;

if last.events and events ne . then
output events;

if ed_prov ne . then output ed_prov;

Of course there are processing situations that require deviating
from this output handling logic. However, changing the output
requirements requires minimal changes in the basic output
handling code.

DEMONSTRATION

Let us show the way SAS processes these views; the complete
code for this demonstration is listed in the unabridged version of
this paper available at the URL given in the Contact Information.
The following data steps setup simplified versions of our MEPS
data sets for two households. Our sample data are depicted in
figure 5.

ed_prov

CTRLNUM: 1 PERSONS: 1
0BS:1 0Bs: 1

PERSONS: 2 EWVENTS: 1
0BS: 2 0Bs: 1

EVENTS: 2 ED_PROV: 1
0832 0BZ:1

CTRLNUM: 2 PERSONS: 1 EWVENTS: 1 ED_PROW:1
0BS: 2 0BS: 3 0Bs 3 0BS: 2

ED_PROV:2
0BS:3

Figure 5

data datalib.househld;
input ctrinum;

cards;

001

002

data datalib.persons;
input ctrlnum persons;
cards;

001 001

001 002

002 001

data datalib.events;

input ctrlnum persons events;
cards;

001 002 001

001 002 002

002 001 001

data datalib.ed_prov;

input ctrlnum persons events ed_prov;
cards;

001 002 002 001

002 001 001 001

002 001 001 002

We set up the views as described earlier and set view3 in the data

Posters

step shown below. Note that this DATA step creates new versions
of all four input data sets.

data househld(keep=%varlst(datalib.househid))
persons(keep=%varlst(datalib.persons))
events(keep=%varlst(datalib.events))
ed_prov(keep=%varlst(datalib.ed_prov));

set view3;

by ctrinum persons events;

put ctrlnum= last.ctrinum=/
persons= last.persons=/
events= last.events=/
ed_prov= last.ed_prov=/;

if last.ctrinum then output househid;

if last.persons and persons ne . then
output persons;

if last.events and events ne . then
output events;

if ed_prov ne . then output ed_prov;

Running the DATA step, we get the following values for each
iteration in the PDV; periods represent missing data:

CTRLNUM=1 LAST.CTRLNUM=0
PERSONS=1 LAST.PERSONS=1
EVENTS=. LAST.EVENTS=1
ED_PROV-=.

CTRLNUM=1 LAST.CTRLNUM=0
PERSONS=2 LAST.PERSONS=0
EVENTS=1 LAST.EVENTS=1
ED_PROV-=.

CTRLNUM=1 LAST.CTRLNUM=1
PERSONS=2 LAST.PERSONS=1
EVENTS=2 LAST.EVENTS=1
ED_PROV=1

CTRLNUM=2 LAST.CTRLNUM=0
PERSONS=1 LAST.PERSONS=0
EVENTS=1 LAST.EVENTS=0
ED_PROV=1

CTRLNUM=2 LAST.CTRLNUM=1
PERSONS=1 LAST.PERSONS=1
EVENTS=1 LAST.EVENTS=1
ED_PROV=2

Comparing this with the data representation in figure 5, we see
that the PDV contents mirror figure 5.

The relationship variables tell us which data sets contributed to
each iteration and with their last. variables tell us when we output.
For example, look at iteration two. The PDV tells us we are
looking at the first event for the second person in household one.
We also know there is no SBD provider for this event (ed_prov is
missing). Finally, at the end of this iteration we will only output to
events, since we are not in the last iteration for this household or
person (last.ctrinum and last.persons are false), and there is no
data in the SBD provider variables.

We look at the output data sets from our demo to verify we output
the correct variables at the correct time. Since our demo did not
update or add any variables in any data sets, using PROC
COMPARE we can verify that all our output data sets are exact
copies of the input data sets. An excerpt from the PROC
COMPARE output for the input and output persons data sets is
show below:

Data Set Summary

Dataset NVar NObs
DATALIB.PERSONS 2 3
WORK.PERSONS 2 3

Variables Summary

Number of Variables in Common: 2.

Observation Summary

Number of Observations in Common: 3.

Total Number of Observations Read from DATALIB.PERSONS: 3.
Total Number of Observations Read from WORK.PERSONS: 3.

Number of Observations with Some Compared Variables Unequal: 0.
Number of Observations with All Compared Variables Equal: 3.

NOTE: No unequal values were found. All values compared are
exactly equal.

WRITING PROCESS-SPECIFIC DATA STEP CODE

ITERATION
N | INPUT | OUTPUT
househld ! ! 3
2 4 5
1 1 1
persons 2 2 3
3 4 5
Table 1

The series of layered SAS views create a “big file” feel from a
series of merges. Any time we merge data sets we need to be
aware of the timing of when each data set is input and output.

Table 1 shows the DATA step iterations where each househld and
persons observation from our demonstration is input and output.
For example, we read the first househld observation in iteration
one, but do not output the observation until iteration three.
Similarly, we input the second persons observation in iteration two,
but do not output until iteration three. Also, SAS resets all data set
variables to their input values each time it executes the set
statement at the beginning of each iteration. We can generalize
two implications of this common situation:

@ The values contributed by a single data set observation may be
in the PDV for multiple iterations.

® We should only update a data set variable’s value in the same
iteration where that data set is output.

For example, if we update a variable from the househld data set in
iteration one we will lose that update because househld is not
output in iteration one and SAS resets all househld variables to
their input values at the beginning of iteration two. Consequently,
we should restrict updates to househld variables to iterations
where the last. variable associated with househld (last.ctrinum) is
true. This is shown below:

if last.ctrinum then do;
[* update househld variable(s) here */
end;

Recall that if we have a situation where we relate just two input
data sets we can use a MERGE statement instead of creating a
view and setting the view. If we used a MERGE statement then
the way SAS initializes contributed variables in the PDV changes;
SAS initializes contributed variables only when it reads a new
observation from a particular data set. This means that the
second implication above does not apply. Also, we can generalize
an additional implication from using a MERGE statement in this
situation:

@ Depending on the application, if we have data sets in a one to
many relationship, an observation of the outer data set (in our
example persons) will not necessarily be processed with the same
information contributed by the inner data set (in our example
househld) as subsequent observations from the outer data set.

For example, if we use a MERGE statement and update a variable

Posters

from the househld data set in iteration one we will not lose that
update because SAS does not reinitialize the variables contributed
by househld until it reads the next househld observation.
Consequently, we do not have to restrict updates to househld to
iterations where last.ctrinum is true as before. Also, if we do
update a househld variable, then any subsequent persons in that
household will be processed with the modified househld data, not
the original househld data.

We do not go into detailed examples of writing process-specific
data step code here because that is beyond the scope of this
paper. Also, we want to stress that these implications are not
unique to this framework; they need to be considered when ever
we merge data sets that have a one-to-many relationship. Simply
keep in mind which variables come from which data sets, when
those data sets are output, and time the references and updates to
those variables appropriately when designing process-specific
code.

CONCLUSION

Although our example is CASES output specific, we can easily
apply this framework in similar situations. We can apply this
framework in situations where we match-merge input data sets
that meet the criteria listed below and output one or more of those
data sets:

@® The data sets must be a hierarchy of one-to-one or one-to-
many relationships.

@ Each data set must contain relationship variables to uniquely
identify each observation and associate it with its parent,
grandparent, or great-grandparent observation as appropriate.

® Each data set must be sorted by its appropriate relationship
variables.

@ The data set relationships must either be down one path of the
hierarchy or be across branches of the hierarch and meet the
criteria discussed in the input relationships section.

The combination of input and output relationships described here
fulfill our requirements. Specifically, we preserved the hierarchy by
not amalgamating or physically combining data sets during
processing. We removed most of the complexity of handling input
and output data sets from processing by creating views before the
processing step and building a process step skeleton that handles
the appropriate output. Finally, we ensured the output is complete
by not restricting the input or output universe.

DISCLAIMER
This paper reports the results of research and analysis undertaken
by Census Bureau staff. It has undergone a more limited review

than official Census Bureau publications. This report is released
to inform interested parties of research and encourage discussion.

ACKNOWLEDGMENTS

SAS is a registered trademark or trademark of SAS Institute Inc.
in the USA and other countries. ® indicates USA registration.

CASES is a registered trademark or trademark of University of
California, Berkeley.

CONTACT INFORMATION

Richard's e-mail address is: Richard.L.Downs.Jr@census.gov.

Pura's e-mail address is: Pura.A.Perez@census.gov.

An unabridged copy of this paper is available on the Internet at the

URL: hometown.aol.com/dusia/sug98.htm.

APPENDIX A

Without %SYSFUNC, getting data set information on the fly is a
little more involved. The framework described above still applies,
however the macro(s) and their calls change slightly.

We create the variable list in two parts using two macros. Part one
is before the processing step. The first macro requires a data set
name and a prefix. It uses the prefix to form a series of global
macro variables; the prefix should be no more than five characters
and should be unique for the SAS session. The macro goes
through the following steps:

@® Run PROC CONTENTS storing the output to a temporary data
set (varlst).

@ Declare a global macro variable with the name based on the
given prefix with a zero suffix. For example, given the prefix hh the
macro variable is hhO.

® Run a DATA step that constructs strings that contain the data
set’s variable names separated by a space (varl var2 var3). Store
these strings in global macro variables with the names based on
the given prefix with a numeric suffix. For our example, given the
prefix hh the macro variables would be hh1, hh2, hh3, etc.

Also, store a global macro variable with the name base on the
given prefix and a zero suffix. This variable contains the number of
macro variables used to store the data set’s variable names.

@ Delete the temporary data set.
The macro code is listed below:

%macro mkvarlst(dataset,prefix);

%global &prefix.0;

proc contents data=&dataset noprint
out=varlst;

data _null_;

length temp $200;

retain count 0 temp ' ';

set varlst(keep=name) end=done;

temp = trim(temp) || ' ' || name;

if length(temp) > 190 or done then do;
count +1;
if done then

call symput("&prefix.0",
compress(put(count,4.)));
call execute('%global ' ||
"&prefix" ||
compress(put(count,4.)) ||
', %let ' || "&prefix" ||
compress(put(count,4.)) ||
=" || trim(temp) ||);
temp=""
end;
run;
proc datasets library=work nolist;
delete varlst;
run;
%mend;

The second macro requires the prefix specified to the first macro.
Based on that prefix, it loops through from 1 to the count of macro
variables with that prefix and displays the macro variables. The
code is shown below:

%macro ptvarlst(prefix);

%local i;

%do i = 1 %to &&&prefix.0;
&&&prefix&i

%end;

%mend;

Lastly, the macro calls are shown below. Please note that
%MKVARLST is invoked before %PTVARLST for each data set
and that %MKVARLST is called outside the DATA step.

%mkvarlst(datalib.househld,hh)
%mkvarlst(datalib.persons,per)
%mkvarlst(datalib.events,ev)
%mkvarlst(datalib.ed_prov,ed)

data househld(keep = %ptvarlst(hh))
persons(keep = %ptvarlst(per))
events(keep = %ptvarlst(ev))
ed_prov(keep = %ptvarlst(ed));

Posters

	Main TOC
	Section Contents

	p: Paper 203

