Applications Development

Paper 13

Strong Smart Systems: Software-Intelligent Development
for Reliable, Reusable, Extendable, Maintainable Applications

LeRoy Bessler
Strong Smart Systems, Bessler Consulting & Research, Fox Point, WI

Abstract

Applications designed and built with
Software Intelligence (SI) are robust, made
of reusable parts, and easy and quick to
extend or maintain. With dynamically auto-
customizing code, “living” applications go
beyond change tolerance to change
amenability, and further—to change
implementation. They continue to meet
needs in an environment of ever-changing
user or management preferences, run-
dates, data dates, and data content.
Limited changes in report/graph content
are handled without reprogramming. This
paper provides application components of
wide, general use. The code is suitable for
immediate use by even a novice or casual
user, and illustrates principles and
techniques that the very experienced
programmer may also find useful.

Introduction

Software Intelligence permits application
programs to dynamically customize
themselves, without human intervention,
to continue to meet design requirements in
a changing environment. Rather than
static expressions and engines of single-
point-in-time programmer decision or user
choice, such adaptive programs are “Living
Applications”. They go beyond change
amenability (maintainability) to change
auto-implementation. Short of a revolution
in host computer “ecology” or in business
or research process to be served, such
applications have the gift of “Eternal Life”.

This paper explains how the objectives of
reliability, reusability, extendability, and
maintainability can be met with the SAS*
System by using Software Intelligence (SI),
and illustrates that with examples.
Parameter files, macro variables, and
macros are SI enablers, for applications
that do dynamic autocustomization (i.e.,
that modify themselves).

Robust applications for users, and
techniques to maximize developer
productivity, need no special software or
new nomenclature. Macros are my objects.

My past implementations of dynamically
autocustomized applications—that can
handle, from run to run, the vicissitudes of
data and/or date while meeting graph or
report design requirements, and that adapt
to changing user or management
preferences—were documented in a series
of papers. (See the bibliography.)

This paper assumes an understanding of
SAS macros.

Software Intelligence

SI is really a collection of old techniques,
not invented by me, and not recently
invented by anyone else, for building
bulletproof, hands-off applications.

Though not new, SI techniques are a way
of working that is important to advocate
and to share. Many people in the SAS user
community are not long-time professional
application developers. SI is necessary for
Maturation in SAS System Use.

The first stage of SAS System use is as an
end-user tool—for ad hoc data analysis or
data presentation tasks. The second stage
is when the site's SAS support staff
enhance SAS software as an enterprise-
wide utility, by providing site-specific
customization, macros, formats, templates,
etc. The final stage is SAS as a production
application development tool, whether for
on-demand online or scheduled (possibly
computer-scheduled) batch processing.

Ad hoc processing is typically: (a) one-time
or irregularly needed; (b) custom and
iterative in development of the program
code; and (c) often done interactively.
Production processing, online or batch,

is standardized and hands-off. It must get
everything right the first time, every time.

Reliability

“Reusability, Extendability,
Maintainability, and Reliability . . . the
greatest of these is Reliability.”

A malfunctioning application is an
impediment to productivity and a barrier
between you and the information you need.

The key to reliability is simple—once your
program is working right, never touch it
again. The only safe program change is no
change.

More hazardous than changing your own
long-in-service program is to change one
that someone else wrote. Most hazardous
is to change a program that several people
have maintained. Part of an old program
may even be doing no longer needed
processing and producing no longer
referenced outputs. Such refusal or neglect
to maintain the program is a tacit
admission that no change is a safe change.

But, since user needs do change, an
application program must change to meet
them. What's a reasonable recourse?

Foreseeable change can be, and is best,
supported through Software Intelligence.

For example, if a tabular or graphic report
takes as input the last N years, months,
weeks, or days of historical data, it is more
prudent to keep N in a parameter file that
is read by the program, rather than “hard
code” N in the program itself. Every time
you or a successor might open the program
to change N, the program would be at risk.

Another good candidate to store in a
parameter file is a goal or threshold for a
measurement variable. Since judgement of
what is good or bad changes over time, it’s
best to plan ahead to accommodate that
without program change.

Common for novice application developers,
especially computer end users as opposed
to IS professionals, is to include data in the
program. This is a productivity aid during
application development and debugging,
when you don't want to go to a separate
file to change the input every time you
need to test a different case. However,

Applications Development

when development is complete, data should
be separated from the program.

Too frequent in applications, especially if
originally written for a supposed one-time
analysis or report (any ad-hoc application,
if valuable, is very likely to experience
recurrent use), are manually entered dates,
for a title and/or for a filter on data
selection. If such a date is dependably a
function of run-date, let the program use
SAS functions to retrieve today's date and
to compute and construct the title or filter
date(s) from it. If not a function of run-
date, supply the manually entered date via
a parameter file, for the program to read.

Program-change avoidance (i.e., reliability
enhancement) is implemented in the
examples described above by what I call
“Building Firewalls”. Build Firewalls
between your program and the data,
between your program and your (and
everyone else’s) keyboard.

With parameter files, macro variables, and
macros, SI can protect program integrity,
but still support limited revision of format,
content, or function—to support a “flexible
freeze” (to borrow a phrase from the 1970’s
USA-USSR arms control dialogue).

Reusability

The concept of reusable components is not
new. Reusability has nothing intrinsically
to do with “objects”. In the context of SAS
software, reusability is enabled through
either includable blocks of source code, or
macros. Code or macros are best stored in
shared-access libraries so anyone,
furnished with documentation as to
availability, purpose, required inputs, and
provided outputs, can use it or them.

Unfortunately, including reusable code by
saying “%INCLUDE sourcefilename” fails
to disclose what its inputs and outputs are.

Invocation of a well-designed macro,
however, explicitly requires identification
of the names of the inputs and outputs via
assignment of values to parameters. Other
parameters are used to control the function
of the macro. Such a macro “documents”
the program, and is less likely to be
erroneously invoked when reused.

Extendability

When I wrote the first edition of a Visual
Information System prototype, every time
the number of graph selections on the
menu changed (typically, increased), I had
to change lots of program code. Eventually,
I restructured the application with macro
processing, and controlled the number of
graph selections via a macro parameter,
supplied “outside” from a SAS AUTOEXEC
file. This provided extendability (or
shrinkability) by requiring the change of
only one number, and protected the
working program code.

The benefit was non-trivial. Prior to the
extendable macro implementation, each
selection line required its own screen
definition code, its own response-field
initialization and editing code, etc.

The macro's Software-Intelligent design
dynamically autocustomized the
application, without reprogramming every
time user needs changed.

Maintainability vs. Reality

Advocates of change in technique for
application development try to convert the
programming community with claims of
easier maintainability. Here is the reality.

Bessler's First Theorem: Application
maintenance is easy only when maintainer
and creator are the same person.

Corollary: Base of maintenance is inversely
proportional to k raised to the power N-1,
where N is the number of persons who
have touched it. Count the creator in N.

k is a constant, greater than 1. Its exact
value still needs to be discovered.

Bessler's Second Theorem: Application
maintenance is very easy only if the
maintainer created it recently—within the
last few weeks, preferably yesterday.

Software Intelligence can make application
maintenance rare, quick, and safe. With SI
design, all foreseeable changes can be
delivered by merely updating one or more
parameter files, rather than directly
changing the macro parameters in static
program code.

Applications Development

Examples

To respect page count limits, and to avoid
spending space on all the details of a big
application, most examples in the
Appendix are only components, which may
be widely usable, or are little applications.
Their use and function are explained there.

Related SUGI Papers by the Author

Published by SAS Institute Inc. (Cary, NC)
are: “Intelligent Production Graphic
Reporting Applications”, in Proceedings of
the Sixteenth Annual SAS Users Group
International Conference, 1991; “Software
Intelligence: Applications That Customize
Themselves”, in Proceedings of the
Eighteenth Annual SAS Users Group
International Conference, 1993; and
“Reusable, Extendable, Maintainable,
Reliable Application Development: Using
Software Intelligence to Build an EIS with
Only SAS & SAS/GRAPH Software”, in
Proceedings of the Twentieth Annual SAS
Users Group International Conference,
1995.

Trademarks

SAS/GRAPH and SAS are registered
trademarks or trademarks of SAS Institute
Inc. in the USA and other countries.

* denotes USA registration

Author

LeRoy Bessler, Ph.D.

Strong Smart Systems

Bessler Consulting & Research
PO Box 96

Milwaukee, WI 53201-0096, USA
bessler @execpc.com
414-351-6748

Dr. LeRoy Bessler is a SAS consultant, and
frequent speaker, with interests in
Software-Intelligent Application
Development, visual communication,
graphic design, information visualization,
color, and InfoGeographics. An award
winner for papers on graphic design and
visual communication, he is writing a book
to be published by SAS Institute, titled
“Chart Smart: Design Guide and Solution
Toolkit for SAS Graphs, Tables, and Maps
That Inform and Influence”.

Appendix: Examples of Software-Intelligent Application Development

Example 1.

DATA TESTREF; /* included for illustration only */
INFILE CARDS; /* data should be kept separate from program */
INPUT REFIN;

CARDS;

100

RUN;

%MACRO GETREF(EXTDATA=,IREFVAR=,0REFVAL=);
DATA _NULL_;

SET &EXTDATA;

%GLOBAL &OREFVAL;

CALL SYMPUT("&OREFVAL", TRIM(LEFT(& REFVAR)));
RUN;

%MEND;

%GETREF(EXTDATA=TESTREF,IREFVAR=REFIN,OREFVAL=MINVALUE)
RUN;

DATA EXAMPLEL; /* included for illustration only */
INFILE CARDS; [* data should be kept separate from program */
INPUT TESTVALU;

IF TESTVALU GE &MINVALUE;

CARDS;

1

20

300

4000

500

60

7

RUN;

OPTIONS NODATE NONUMBER;

TITLE "Listing of Observations with TESTVALU Not Less Than &MINVALUE";
FOOTNOTE;

PROC PRINT DATA=EXAMPLE1 NOOBS;

VAR TESTVALU;

RUN;

Output from PROC PRINT:

Listing of Observations with TESTVALU Not Less Than 100
TESTVALU
300

4000
500

Applications Development

Applications Development

Example 2. Extract from a data set the earliest and latest date keys, and supply them as formatted

global variables for use in a TITLE statement.

%MACRO DATERANG(DATA=,DATEVAR=,FDATEVAR= LDATEVAR=);
PROC SORT DATA=&DATA OUT=DATES(KEEP=&DATEVAR) NODUPKEYS;
BY &DATEVAR;
RUN;
DATA _NULL_;
%GLOBAL &FDATEVAR &LDATEVAR;
SET DATES END=LAST;
BY &DATEVAR;
IF_N_=1THEN DO;
MONTEXT = PUT(&DATEVAR,MONNAME9.);
DAYTEXT = PUT(&DATEVAR,DAY2.);
YRTEXT =PUT(&DATEVAR,YEAR4.);
DATETEXT = PUT((TRIM(LEFT(MONTEXT))|[" |
TRIM(LEFT(DAYTEXT))|[, || TRIM(LEFT(YRTEXT))),$18.);
CALL SYMPUT("&FDATEVAR", TRIM(LEFT(DATETEXT)));
END;
ELSE IF LAST THEN DO;
MONTEXT = PUT(&DATEVAR,MONNAME9.);
DAYTEXT = PUT(&DATEVAR,DAY2.);
YRTEXT =PUT(&DATEVAR,YEAR4.);
DATETEXT = PUT((TRIM(LEFT(MONTEXT))|["
TRIM(LEFT(DAYTEXT))|[, |ITRIM(LEFT(YRTEXT))),$18.);
CALL SYMPUT("&LDATEVAR", TRIM(LEFT(DATETEXT)));
END;
RUN;
%MEND DATERANG;

DATA EXAMPLEZ2; /* included for illustration only */

INFILE CARDS; [* data should be kept separate from program */
INPUT @1 DATADATE YYMMDD10. @12 DATAVALU $40.;
CARDS;

’RUN;

%DATERANG(DATA=EXAMPLE2,DATEVAR=DATADATE,FDATEVAR=FRSTDATE,LDATEVAR=LASTDATE)

RUN;

OPTIONS NODATE NONUMBER;

TITLE "Unsorted Observations from &FRSTDATE to &LASTDATE";
FOOTNOTE;

PROC PRINT DATA=EXAMPLE2 NOOBS;

FORMAT DATADATE YYMMDD10,;

RUN;

Output from PROC PRINT:
Unsorted Observations from July 11, 1917 to December 4, 1997
DATADATE DATAVALU

1945-09-04 Birth of Carol

1917-07-11 Birth of Chester

1919-09-13 Birth of Martha

1940-07-20 Wedding of Martha & Chester
1963-02-02 Wedding of Carol & LeRoy
1949-09-11 Birth of Gerald

1941-12-13 Birth of LeRoy

1997-12-04 Today's WISAS Meeting

Applications Development

Example 3. Extract from a data set the observation(s) for a selected date, and supply the date as a

formatted global variable for use in a TITLE statement.

%MACRO SLCTDATE(SLCTYR=,SLCTMO=,SLCTDA=,CHKDATE=);

%GLOBAL &CHKDATE;

%IF &SLCTYR NE AND &SLCTMO NE AND &SLCTDA NE %THEN

%LET &CHKDATE = %SYSFUNC(MDY (&SLCTMO,&SLCTDA,&SLCTYR));

%ELSE

%LET &CHKDATE = %EVAL(%SYSFUNC(TODAY()) - 1);
%MEND SLCTDATE;
%MACRO TTLDATE(INDATE=,
OUTDATE=);

%GLOBAL &OUTDATE;

DATA _NULL_;

MONTEXT = PUT(&INDATE,MONNAMES9.);

DAYTEXT = PUT(&INDATE,DAY2.);

YRTEXT =PUT(&INDATE,YEARA4.);

DATETEXT = PUT((TRIM(LEFT(MONTEXT)||'* ||
TRIM(LEFT(DAYTEXD)|[, ||
TRIM(LEFT(YRTEXT))),$18.);

CALL SYMPUT("&OUTDATE", TRIM(LEFT(DATETEXT)));

RUN;

%MEND TTLDATE;

DATA EXAMPLE3; /* included for illustration only */

INFILE CARDS; [* data should be kept separate from program */

INPUT @1 EVENTDAY YYMMDD10. @12 EVENT $40.;

CARDS;

1945/09/04 Birth of Carol

1917/07/11 Birth of Chester

1919/09/13 Birth of Martha

1940/07/20 Wedding of Martha & Chester

1963/02/02 Wedding of Carol & LeRoy

1949/09/11 Birth of Gerald

1941/12/13 Birth of LeRoy

1997/12/04 Today's WISAS Meeting

RUN;
%SLCTDATE(SLCTYR=1917,SLCTMO=7,SLCTDA=11,CHKDATE=SASDAY)
RUN;

%TTLDATE(INDATE=&SASDAY,OUTDATE=DAYTEXT)

RUN;

OPTIONS NODATE NONUMBER;

TITLE "What happened on &DAYTEXT?";

FOOTNOTE;

PROC PRINT DATA=EXAMPLE3(WHERE=(EVENTDAY=&SASDAY)) NOOBS;
VAR EVENT;

RUN;

Output from PROC PRINT:
What happened on July 11, 19177
EVENT

Birth of Chester

Applications Development

Example 4. Rank the Top NN observations from a data set, with NN being selectable and appearing
automatically in the title. If the ranking includes all the observations, or if a minimum cutoff is used,
then the title says “Ranked List of”, rather than “Top NN”. A subtitle shows what percent of the total
is accounted for in the table. An extra subtitle is generated if the minimum cutoff is used with effect.

Table A:

This list accounts for 89.9% of the total Count

Program A:

TTLTEXT=SAS PROCs Used From 12-01-93 To 01-31-95)

RUN;

Table B :

This list accounts for 86.3% of the total Count

Only values not less than 10,000 are listed

Program B:

TTLTEXT=SAS PROCs Used From 12-01-93 To 01-31-95)

RUN;

Top 10 SAS PROCs Used From 12-01-93 To 01-31-95

Rank PROC Count

1
2
3
4
5
6
7
8
9

10

DATASTEP 212,421
SORT 70,216
PRINT 26,836
GPLOT 23,504
MEANS 19,103
FORMAT 17,522
REG 15,047
PRINTTO 11,409
DATASETS 9,254
CONTENTS 7,545

%TOPNN(DATA=INDATA,
CLASSVAR=SASPROC,
CVARLABL=PROC,
RANKVAR=COUNT,
RVARFMT=COMMAY.,
RVARLABL=Count,

NN=10,

Ranked List of SAS PROCs Used From 12-01-93 To 01-31-95

Rank PROC Count

oO~NO O WN PP

DATASTEP 212,421

SORT 70,216
PRINT 26,836
GPLOT 23,504
MEANS 19,103
FORMAT 17,522
REG 15,047
PRINTTO 11,409

%TOPNN(DATA=INDATA,
CLASSVAR=SASPROC,
CVARLABL=PROC,
RANKVAR=COUNT,
RVARFMT=COMMAY.,
RVARLABL=Count,

NN=10,
MINRVAR=10000,

Macro for Tables A & B:
%MACRO TOPNN

(DATA=,CLASSVAR=,CVARLABL=,RANKVAR=,RVARFMT=,RVARLABL=NN=MINRVAR=, TTLTEXT=);

SET &DATA,;
%GLOBAL BELOWMIN;
IF _N_=1THEN CALL SYMPUT('BELOWMIN','N");
IF &MINRVAR NE . THEN DO;
IF &RANKVAR GE &MINRVAR THEN RETURN;
ELSE DO;
CALL SYMPUT('BELOWMIN','Y");
DELETE;
END;
END;
KEEP &CLASSVAR &RANKVAR;
RUN;
PROC SORT OUT=FORTOPNN; BY DESCENDING &RANKVAR;
RUN;
DATA TOREPORT;
SET FORTOPNN,;
IF_N_<&NN +1;
RANK = _N_;
RUN;
PROC MEANS DATA=&DATA NOPRINT SUM N;
VAR &RANKVAR;
OUTPUT OUT=ALL SUM=SUMTOT N=NTOT;
RUN;
PROC MEANS DATA=TOREPORT NOPRINT SUM N;
VAR &RANKVAR;
OUTPUT OUT=TOPNN SUM=SUMTOP N=NTOP;
RUN;
DATA _NULL_;
MERGE ALL TOPNN;
FORMAT PCTTOT 5.1;
PCTTOT = ROUND((100 * (SUMTOP / SUMTOT)),.1);
%GLOBAL RANKLEN;
CALL SYMPUT('RANKLEN',LENGTH(LEFT(&NN)));
%GLOBAL MIN;
IF &MINRVAR NE . THEN CALL SYMPUT('MIN', TRIM(LEFT(PUT(&MINRVAR,&RVARFMT))));
%GLOBAL PCTTOT;
CALL SYMPUT('PCTTOT', TRIM(LEFT(PCTTQOT)));
%GLOBAL HTTLMIN;
FORMAT TTLTOPNN $14.;
IF NTOP < NTOT AND NTOP = &NN THEN DO;
TTLTOPNN ="Top &NN";
CALL SYMPUT('HTTLMIN','0");
END;
ELSE DO;
TTLTOPNN = 'Ranked List of";
IF &MINRVAR = . OR "&BELOWMIN" = 'N'
THEN CALL SYMPUT('HTTLMIN','0");
ELSE CALL SYMPUT('HTTLMIN','1";
END;
%GLOBAL TTLTOPNN;
CALL SYMPUT('TTLTOPNN',TRIM(TTLTOPNN));
RUN;
OPTIONS NODATE NONUMBER;
PROC PRINT DATA=TOREPORT NOOBS U LABEL SPLIT="";
FORMAT RANK &RANKLEN. ;
FORMAT &RANKVAR &RVARFMT,;
LABEL RANK ='Rank'
&CLASSVAR = "&CVARLABL"
&RANKVAR ="&RVARLABL";
VAR RANK &CLASSVAR &RANKVAR;
SUM &RANKVAR;
TITLEL1 "&TTLTOPNN &TTLTEXT";
TITLE3 "This list accounts for &PCTTOT% of the total &RVARLABL";
%IF &HTTLMIN = 1 %THEN %DO;
TITLES "Only values not less than &MIN are listed";
%END;
%MEND TOPNN;

Applications Development

Applications Development

Example 5. Build a vary-able size menu of graph program selections, using the actual graph title text
that is in the graph programs themselves. Programs are kept in an MVS Partitioned Data Set, for
which the SAS FILEREF is “PROGRAMS Each program name is of the form “GRAPHnM, with “nn” being a
two-digit number (00, 01, 02, etc.). The maximum value of “nn” is kept in an external parameter file, for
which the SAS FILEREF is “PARMFILE’. Graph TITLE statements must be of the form “TITLE1 ‘text ’;”.

DATA _NULL_;
INFILE PARMFILE;

INPUT @1 HOWMANY 2.;

%GLOBAL COUNT;

CALL SYMPUT('COUNT’,HOWMANY);
RUN;

%MACRO GETTTLS; /* MACRO for getting graph titles */
%DO | =1 %TO &COUNT;
DATA _NULL _;
%GLOBAL TITLE&I,
INFILE PROGRAMS(GRAPH&I);
INPUT @1 LINE $80.;
IF SUBSTR(LINE,1,7) ='TITLE1 '
PRESTART = INDEX(LINE,™);
LINEEND = SUBSTR(LINE,PRESTART+1,80-PRESTART);
AFTEREND = INDEX(LINEEND,");
TITLE = SUBSTR(LINEEND,1,AFTEREND-1);
CALL SYMPUT("TITLE&I", TITLE);
RUN;
%IF &SYSERR > 0 %THEN %DO,;
[* code here to handle missing graph program situation */
%END;
%END;
%MEND GETTTLS;

%GETTTLS /* get the graph title text for use in the selection menu */
RUN;

YMACRO SLCTLNS; /* MACRO for graph-selection screen lines */
%LOCAL J;
%DO | =1 %TO &COUNT;
%LET J = %EVAL(&I + 3);
#&J @2 SELECT&I 1 REQUIRED=NO AUTOSKIP=YES @4 "&&TITLE&I"
%END;
%MEND SLCTLNS;

%WINDOW SELGRAPH /* define the window */

#01 @2 "Select a Graph: Type D for Display, P for Print, Q for Quit"

#02 @2 "Then press Enter"

%SLCTLNS

; I* this semi-colon terminates the %WINDOW statement */

Remaining application code uses this window definition, but is not presented here.

Rough lllustration of Graph Menu Window (not actual screen print):

SELGRAPH

I I
| Select a Graph: Type D for Display, P for Print, Q for Quit |
| Then press Enter |
I
_ Graph 1 title text as it is in its program TITLE1 statement |

e I
_ Graph NN title text |

	Main TOC
	Section Contents

	p: Paper 13

