
Using SAS/CONNECT Software in A Multi-Platform Environment
Cyndie Gareleck, RAND, Santa Monica, California
Rodger Madison, RAND, Santa Monica, California

ABSTRACT
This tutorial (1) provides an overview of client/server computing, (2)
discusses client/server services available in SAS/CONNECT software,
(3) gives instructions for installing and running the SAS spawner as an
NT service, and (4) presents code from several applications that use
SAS/CONNECT. The paper also discusses the use of scripts to
initiate and end remote sessions, and potential benefits of using
SAS/CONNECT software to improve program and cost efficiency.
While the examples illustrate use on an NT system and a UNIX
workstation, the concepts are applicable to other operating
environments.

INTRODUCTION
SAS/CONNECT software is a SAS-to-SAS client/server toolset; it
provides for a client/server environment and allows for direct and
indirect connections between two or more SAS sessions. In general,
the sessions are running on different host systems. With
SAS/CONNECT software you can access data on hosts with differing
architectures, use resources available on the network that would
otherwise not be available to the local environment, and distribute
processing over the network to the system most appropriate for the
application. In other words, SAS/CONNECT software allows you to
develop applications as efficiently and effectively as possible, given
the resources of your organization.

A BRIEF OVERVIEW OF CLIENT/SERVER
PROCESSING
Several years ago, most computing environments consisted of
mainframes connected to dumb terminals. Over the years, personal
computers (PCs) started to take the place of the dumb terminals, but
the processing was still done by the mainframe with the capability of
the PC largely ignored. However, with so much computing power
unused, people began considering ways to share some of the
processing demands between the mainframe and the PC.

The term “client/server” was first used in reference to PCs on a
network. These networks were based on file sharing architectures,
where the server downloads files from the shared location to the
desktop and the data are then used by desktop applications. File
sharing architectures are limited by the amount of shared usage,
update needs, and the volume of data to be transferred.

Because of the limitations of file sharing architectures, more advanced
client/server architecture emerged. Client/server technology is a
computing architecture that splits the workload between two or more
computers on a network; each function of an application is located on
the computer most capable of performing that particular activity.
Client/server architecture also allows for multiple users. For example,
if two users are attempting to update the same record at the same
time, the update must be reflected instantly on the other user's screen.
Simply downloading files from the server to the client is not true
client/server architecture. Advantages of true client/server architecture
include scalability, ease of maintenance, efficient resource utilization,
and flexibility.

Two-Tier Client/Server Architecture

Figure 1 details a two-tier architecture where a client talks directly to a
server, with no intervening server. With two-tier client/server
architectures, the client-based, local process is the front end that
sends a message to a server process requesting the performance of a
task. It is typically located in the user's desktop environment. As a
rule, client programs manage the user-interface portion of the
application, validate data entered by the user, and transmit requests to
server programs.

The server process fulfills the client request by performing the
requested task(s). The server is generally a more powerful
machine and is capable of servicing multiple clients.

Server programs generally issue responses to client requests,
receive requests from client programs, execute data retrieval
and updates, and manage data integrity. Processing
management is split between the local and server
environments.

Figure 1: Two-Tier Architecture

The problem with this architecture is that the application logic
may be distributed to dozens of client systems. This makes
application maintenance very difficult and expensive. Also, the
client environment becomes considerably more complex and
thus more unstable.

Three-Tier Client/Server Architectures

Figure 2 shows a three-tier architecture. In the three-tier
architecture, a middle tier, or agent, is added between the
client environment and the server environment. The middle
tier provides functions such as message queuing, intelligent
agent services, translation, application logic execution, and
database staging.

Figure 2: Three-Tier Architecture

The three-tier client/server architecture has been noted to
improve scalability and increase flexibility when compared to
the two-tier approach.

A limitation with three-tier architecture is that the development
environment is purportedly more intricate and difficult to use
than two-tier applications.

COMMUNICATIONS ACCESS METHODS
To use SAS/CONNECT software you must specify a
communications access method to connect a local and remote
SAS session on differing platforms. A communications access
method is an interface between SAS Software and the network
protocol you select to connect the local and remote host(s).
The method you select is dependent on the host platforms and
the available network protocols. SAS/CONNECT software
supports ten operating platforms and nine access methods,
but not all methods are available on all hosts. In most cases
the method you select must be available on both the remote
and local hosts. The protocol gateway service of a SAS
DOMAIN server can be used to allow two SAS sessions on
different hosts to communicate without a common
communications access method. To use the protocol gateway
services of the DOMAIN server, you must run a dedicated SAS
session either in an OS/2 or in a Windows NT environment.
The DOMAIN server will be discussed in more detail later in

Tier 1 Tier 2

Tier 1 Tier 2 Tier 3

Client
Workstation Server

AgentClient
Workstation Server

Advanced Tutorials

the paper.

Communications methods are subdivided into terminal-based
communications and program-to-program communications. Terminal-
based methods allow two processes to interact over a network using a
terminal interface. They are inexpensive and typically available. They
are somewhat limited in that they do not support all services (e.g.,
remote library services), nor do they support some of the more
advanced, multi-tier services. TELNET and ASYNC are examples of
commonly used terminal-based methods.

Program-to-program communications methods utilize network
protocols to allow two processes to interact over a network. They are
often preferred to terminal-based methods for a variety of reasons
including larger packet sizes, binary transmission, and asynchronous
message notification. TCP/IP1 is the most frequently used method in
this group. NetBIOS and APPC are less commonly used methods.

TCP/IP is the only access method available on NT systems and on all
UNIX platforms2; the remainder of this paper assumes use of the
TCP/IP communications access method.

SAS DOMAIN SERVER
The SAS DOMAIN server, which has been enhanced in Version 7,
delivers protocol-independent messaging and eliminates the need for
licensing, configuring, and supporting multiple protocol stacks in a
given environment. The DOMAIN server provides four services:
collection management, queue management, agent scheduling, and
protocol gateway. The DOMAIN server is initiated with PROC
DOMAIN.

SERVICES PROVIDED BY SAS/CONNECT
SOFTWARE
SAS/CONNECT software provides a client/server environment within
which local SAS sessions have access to remote files and remote
hardware and software resources via one or more remote SAS
sessions.

In order to use the services of SAS/CONNECT software, it must be
installed on each host, although the systems need not be the same
type nor do they need to be running the same operating system.

The client/server services provided by SAS/CONNECT software
include:

• Messaging Services: provide the ability to develop and deploy
multi-tiered applications that communicate by sending data in
messages

• Remote Objecting Services: provide the ability to process
Frame objects between two SAS/Connect sessions

• Agent Scheduling Services: provide the ability to schedule
executions of SAS statements on demand or periodically

• Compute Services: provide access to all available network
resources from a local SAS session

• Remote Data Services: provide access to data anywhere on the
network.

Depending on the needs of the application and available resources,
these services can be used alone or in conjunction with each other.

MESSAGING SERVICES

First introduced in the maintenance release of SAS 6.12, messaging
services provide the ability to develop and deploy multi-tiered
applications that communicate by sending data in messages. The
TCP/IP communication method is the only method that supports
messaging.

There are two types of messaging services, direct and indirect.

1 TCP/IP stands for Transmission Control Protocol/Internet Protocol.
TCP/IP is a set of protocols developed to allow cooperating computers
to share resources across a network. Multiple vendors on multiple
platforms support it.
2 APPC is also available on NT but only some UNIX platforms (HP-
US, Solaris, and AIX).

Direct: Direct messaging is the simplest form of messaging.
In this model, messages pass data directly between two
applications. In direct messaging both the client and server
systems must be active simultaneously.

An SCL interface to direct messaging allows you to develop

SAS/AF® and FRAME applications that can communicate
through a basic interface.

Indirect: Indirect messaging is more complex than direct
messaging. Indirect messaging is accomplished with SAS
message queues. Programs communicate indirectly by
delivering messages to queues and by fetching from or
browsing messages in queues. There are two interfaces
available for using SAS message queues: an SCL interface
and use through a SAS DATA step or a SAS macro.

With indirect messaging, the programs do not have to be
running simultaneously in order to communicate. This
minimizes the number of active connections. It also allows
increased independence between the programs with respect to
time.

A collection manager and a queue manager manage message
queues. The collection manager manages groups or
collections of queues. The queue manager allocates queues,
maintains access information, and administers messages in
each queue.

Both the collection manager and the queue manager are
services of the SAS DOMAIN server. The DOMAIN procedure
is used to start a DOMAIN server; the following code starts a
DOMAIN server to initialize the collection manager.

libname domain ".";
 proc domain collection id=/shr4;
run;

The ADMIN procedure is used after the DOMAIN server has
been started to perform general DOMAIN management and
queue administration. The DOMAIN server remains active
until stopped with PROC ADMIN.

REMOTE OBJECTING SERVICES

New to Version 7, remote objecting services is essentially a
messaging service for object-oriented applications. Remote
object services give SAS/AF developers the ability to process
Frame objects between two SAS/CONNECT sessions.

AGENT SCHEDULING SERVICES

Agent scheduling services allow you to schedule SAS
statements. They are used in conjunction with compute and
messaging services to provide task management across the
network. There are four types of agent scheduling services:

• Distributed agent processing: used to efficiently distribute
work on a network

• Periodic agent processing: used to schedule tasks at a
specific time or date or periodically

• Conditional agent processing: based on specific set of
criteria

• Parallel agent processing: agents spawn additional
agents which can be processed in parallel with each other

Agent scheduling services can be used together or separately
to maximize effectiveness and efficiency of application. In
order to use these services a DOMAIN server must be started
with the agent option specified:

libname domain ".";
 proc domain agent;
run;

COMPUTE SERVICES

Compute services provide access to all available network
resources from a local SAS session. They are provided by the
RSUBMIT command or statement and with Remote SQL

Advanced Tutorials

Pass-Through (RSPT). RSPT allows you to pass SQL statements
either to a remote SAS SQL processor or to a supported data base
management system.

When using compute services, the local host sends a request to the
remote computer; the remote host processes the request and returns
the log, list, and any other output such as graphs to the local host.

Compute services are best utilized when the remote system has
hardware or software resources unavailable to the local host; the data
files are frequently updated; one wants to balance CPU utilization
between local and remote resources; and it is not practical to transfer
the files3.

On the downside, the use of compute services increases CPU
utilization on the remote host, and network traffic is increased when
results are returned to the local host. Depending on the nature of the
data being returned, this could severely affect network traffic.

REMOTE DATA SERVICES

Remote data services provide access to network data. Remote data
services consist of

• Data Transfer Services: transfer data libraries between local and
remote hosts

• Remote Library Services (RLS): provide read/write access to
remote data

Remote Data Services: Data Transfer Services

Data transfer services allow you to transfer data libraries between local
and remote hosts, without regard to system architecture and operating
system. Data transfer services include the Cross-Environment Data
Access (CEDA) facility, PROC UPLOAD, and PROC DOWNLOAD.

New to Version 7, CEDA takes advantage of the Version 7 file
structure to minimize data conversion between different host formats
and reduce steps required by other transfer methods. With CEDA,
you can transfer Version 7 data files between hosts or NFS mount a
directory from another host and automatically access your Version 7
SAS data files—no translation is required. However, there are some
limitations to this facility:

• the hosts must both be directory-based4

• update access is not available

• the WHERE expression optimization with an index is not
available

• only version 7 data files can be transferred—views and utility files
are not supported

In addition, the number of observations that can be transferred
between two heterogeneous data sets may be limited to 231-1. This is
because the number of observations in a data set is stored in a long
numeric type, and the number of bytes used to represent long numeric
type varies between hosts. When this variance occurs5, the result is
either an inability to open the data set or an inability to add
observations to the file.

If the restrictions to CEDA make it impracticable to use, PROC
UPLOAD and PROC DOWNLOAD may be reasonable alternatives.
These procedures allow you to transfer data, including SAS libraries
and external files, between a local and remote host. The systems
need not have the same internal data representations nor must they
be running the same operating system. In addition, as of Version 7, a
wildcard character (*) may be used when specifying a data set name.

In a typical scenario, the local host sends the remote host a request to
transfer a copy of a file. The remote host fulfills the request and
transfers the file to the local host in the appropriate format without any

3 E.g., too big, not enough network bandwidth, security considerations.
4 Neither CMS nor bound libraries under MVS/390 are supported.
5 E.g., when a 4-byte long host opens or attempts to add an 8-byte
long data set containing greater than 231-1 observations or an 8-byte
long host opens or attempts to add a 4-byte long data set containing
greater than 231-1 observations.

loss of precision. The file is then available on the local host for
further processing, with no further impact on network traffic or
the remote host.

Because data transfer services result in multiple copies of the
data, data transfer is generally not a very feasible solution
when the remote data are updated frequently. There may also
be situations where security considerations prevent you from
maintaining more than one copy of the data. Additionally, you
might not want to transfer large files if it will negatively impact
network traffic. On the other hand, data transfer is often an
efficient way to offload work from a remote host or to maintain
copies of data for backup purposes.

Remote Data Services: Remote Library Services

Using a remote engine that executes in the local SAS session
and a single or multi-user server that executes in the remote
session, RLS provide read/write access to remote data. The
local SAS session requests records from the remote session,
which then transfers the records to the local session for
processing. The cycle continues until all processing is
complete.

Since it is not necessary to specifically request a file transfer,
RLS provides almost transparent access whether the data are
processed interactively or in batch.

RLS is a better choice than data transfer services if it is
advantageous to maintain only one copy of the data set.
However, since data are constantly moving over the network it
is generally not a practical solution for large data sets. In
addition, if the remote and local hosts have different internal
data representations, some loss of precision may occur with
numeric data.

RLS is not available with terminal-based communications
methods.

Comparing Compute and Remote Data Services

Compute services and remote data services offer some of the
same functionality and are often considered interchangeable.
However, there are situations where one may be more efficient
than another. Table 1 summarizes when and where these
services are most efficiently utilized.

Table 1: Modes of Service and Efficient Uses

Compute
Services

Data
Transfer
Services

Remote
Library
Services

Use remote hardware and
software resources

✔

Require multi-user access ✔a ✔

Minimize remote CPU use ✔

Minimize ongoing network traffic ✔ ✔

Access remote large data files ✔

Access remote small data files ✔

Back up files to remote location ✔

Maintain only one copy of data ✔ ✔

Access frequently updated data ✔ ✔

Need multiple passes of the data ✔

Transparent access to data ✔b ✔

Subset remote data for local
processing

✔

Use local GUI application with
remote data

✔

Reduce overall use of disk space ✔ ✔

a RSPT only
b CEDA only

When these services are utilized, there will always be impact
on the network. The severity of the impact can be controlled

Advanced Tutorials

somewhat through efficient use of the services but it can never be
eliminated. It is important to consider network impact and how much
can be tolerated when developing your client/server applications.

RUNNING SAS/CONNECT SOFTWARE
SAS/CONNECT sessions are initiated with a signon command. This
command invokes a script that controls the connection to the remote
host. The spawner is a program that listens for client requests for
connection to a remote host.

USING THE SAS SPAWNER ON AN NT SYSTEM

Before remote connections can be made to an NT system, the SAS
spawner must be installed and running as an NT service.

SAS Institute maintains a copy of the current spawner program for
Windows on its Web site. It is recommended that you download the
most current version of the spawner for installation on your system.
To download the spawner:

1) Point your Web browser to
http://www.sas.com/techsup/download/connect

2) Download the file winspawn.zip into directory
c:\sas\connect\sasexe (assuming you installed SAS in c:\sas)

3) Unzip the file. It will expand to two files, spawner.exe and
read.me

Installing the SAS Spawner as an NT Service

There are a large number of options available to use when installing
the SAS spawner. The most commonly used options are

• -INSTALL: This option must be the first option specified when
installing the spawner. This option will install the spawner as an
NT service—userids and passwords will be checked against the
NT domain.

• -COMAMID: This option specifies the access method to use.
The value depends on the operating system where the spawner
is running.

• -SECURITY: This option tells the spawner program to use the
Windows NT security subsystem6. This option is highly
recommended. If this option is not chosen, users will be able to
access all files on the remote system as a root user.

• -AUTHSERVER: This option names the domain used for userid
authentication. It can be either the local NT domain or the name
of a domain accessible through a network.

• -TELNET: The spawner listens on port 23 by default. The
TELNET option specifies an alternate port. This option would be
used to avoid conflict with another program, such as a telnet
daemon, listening on port 23.

To allow you and others to use SAS on your NT machine via
SAS/CONNECT, you must first give each person the privilege of
logging on as a batch job. Instructions are provided below. Note:
Before beginning this procedure, you must be logged on as local
administrator.

1. Do Start - Programs - Administrative Tools (Common).

2. Select User Manager.

2.1. Select Policies; User Rights.

2.2. Check the Show Advanced User Rights box.

2.3. Scroll down to Log on as a batch job. Click Add.

2.4. In the List of Names From box, select the appropriate
choice.

2.5. Click Show Users to display names.

2.6. Click the names you want to add, including your own.

2.7. After selecting the names, click Add, then OK. The User
Rights Policy box returns. The selected names should now
appear in the Grant to: box.

6 This option is only valid on Windows NT systems.

2.8. Click OK in the User Rights Policy box.

2.9. Close the User Manager.

3. Open a command prompt window. Click on the start
menu. Click on command prompt.

2) Change to the !SASROOT7 directory. From the
!SASROOT directory issue the following command:

C:\sas> C:\sas\connect\sasexe\spawner –install
–comamid tcp –security –authserver domainame

Before installing the spawner, we suggest you read
Communications Access Methods for SAS/CONNECT and
SAS/SHARE Software, chapter 13.

Starting, Stopping, and Deleting the SAS Spawner as an
NT Service

You can start, stop, and delete the spawner using the
command as shown below. You may also start and stop the
spawner from the NT services control panel.

Starting the spawner: Before connecting to the spawner, you
must start it. To start the spawner,

1) Open a command prompt window. Click on the start
menu. Click on command prompt.

2) Enter the following commands from the command
prompt:

C:\> net start "SAS job spawner" <CR>

While the spawner will automatically load when you restart the
machine, it must be manually started, using the net start
command above, before it will accept connections. The
spawner will remain resident on your system as an NT service
until it is removed.

Stopping the spawner: To stop the spawner,

1) Open a command prompt window. Click on the start
menu. Click on command prompt.

2) Issue the following command:

C:\> net stop "SAS job spawner" <CR>

Removing the spawner: To remove the spawner,

1) Open a command prompt window. Click on the start
menu. Click on command prompt.

2) Issue the following command:

C:\> net stop "SAS job spawner" <CR>

C:\> \sas\connect\sasexe\spawner –delete <CR>

USING SCRIPTS TO CONNECT TO A REMOTE NT OR UNIX
SYSTEM

Scripts are used to manage logging into the remote
SAS/CONNECT host. Script files are written using a
specialized set of SAS statements called script statements.
Scripts perform three basic functions:

1) Invoke the SAS system on the remote host using the SAS
command, setting proper communications options for the
remote SAS session. The script sets the COMAMID=
and DMR system options on the remote host.

2) Listen for responses from the remote host and determine
when the remote host is ready for communication with the
local SAS session.

3) Look for responses from the remote host and send
appropriate answers back to the local host.

A script can additionally perform several other functions
including prompting the local user for information such a
userid, password, and account information that controls
access to the remote host. Scripts can be written to evaluate
responses from the remote host and choose a different
response conditional on the response. This latter capability is
useful for error checking and allows a single script to handle

7 We are assuming SAS is installed in C:\SAS.

Advanced Tutorials

different types of connections.

SAS Institute provides a series of sample scripts for connecting to a
range of remote hosts. These scripts can be used as is; however,
modifications are often necessary because the scripts are somewhat
generic and cannot properly respond to every type of remote host.
Typically, an Institute-supplied script must be modified to allow it to
handle the login conversation with the remote host. For example, the
script for establishing a TCP/IP connection to a UNIX system,
tcpunx.scr, checks for a variety of possible responses:

unx_log:

 waitfor ’Hello>’ : unxspawn /*- Unix spawner prompt-*/
 , ’$’ /*-- a common prompt character --*/
 , ’>’ /*-- another common prompt character --*/
 , ’%’ /*-- another common prompt character --*/
 , ’}’ /*-- another common prompt character --*/
 , ’Login incorrect’ : nouser
 , ’Enter terminal type’ : unx_term
 , ’TERM’ : unx_term
 , 30 seconds : timeout
 ;

Since UNIX allows each user to set the prompt character, this
statement will not work in every instance. In addition, the login
conversation on a system may include a prompt for an account or
other identifiers. The script must be programmed to anticipate and
respond to different situations.

Script Examples

The first example shows a portion of the SAS-supplied script
tcpunx.scr. The next two examples show modifications to this script.
In both examples modified sections are highlighted.

/*----------------UNIX LOGON--------------*/
input ’Userid?’;
 type LF;
 waitfor ’Password’, 30 seconds : nolog;
 input nodisplay ’Password?’;
 type LF;

Example 2 shows a script modified to allow for a connection to a
RAND Solaris system.

/*----------------UNIX LOGON---------------------------------------*/

input ’Userid?’;
 type LF;
 waitfor ’Password’, 30 seconds : nolog;
 input nodisplay ’Password?’;
 type LF;
waitfor ’:’
/*-- Solaris sends this before the terminal prompt --*/

 , 30 seconds : timeout
 ;

waitfor ’Terminal’ : unx_term /* Generic terminal prompt */
 , ’TERM’ : unx_term
 , 30 seconds : timeout ;

Example 3 shows changes made to allow for account and terminal
type information that is requested by a RAND Sun OS system at login
time.

/*----------------UNIX LOGON---------------------------------------*/
input ’Userid?’;

 type LF;
 waitfor ’Password’, 30 seconds : nolog;
 input nodisplay ’Password?’;
 type LF;
 waitfor ’Account:’, 30 seconds : nolog;
 input ’Account?’ ;
 type LF;
 waitfor ’Terminal’, 30 seconds : nolog;
 type ’tty’ ;
 type LF;

USING SAS/CONNECT SOFTWARE:
EXAMPLES
Three examples of compute services and remote data services
are provided below.

Example 1 demonstrates updating a remote SAS file using a
local GUI. We use PROC FSEDIT to update interactively a
remote SAS file from a local system. The local host is a PII-
400 running NT 4.0, SP3, and the remote host is a Sun
workstation running Solaris 2.6.

/*Edit Remote Data with local FSEDIT session*/
/*Assign options and signon*/
/*Script=tcp.solaris.scr*/

options comamid=tcp options connectremote=wolf;

signon ’c:\programfiles\sas\connect\saslink\tcp.solaris.scr’;

/*Assign remote library=wolf*/

libname rhost ’/wolf/a/cyndie/saseval/700’ server=wolf;

/*Edit remote data 10 obs at a time*/
/Use where clause to subset data*/

proc fsedit data=rhost.v700
 (tobsno=10);
 where employ=’no’;
run;

While this method allows remote editing without the need to
interact with a second operating environment, the downside is
that when the remote and local machines have different
architectures, access to catalogs such as FSEDIT screens is
not supported. CEDA could be used to browse the data using
a custom screen, but updating is not supported when the
architecture of the hosts differs.

Example 2 shows use of compute services to convert a remote
Excel file to a local SAS data set. The local host is a Sun
workstation running Solaris 2.6, and the remote host is a PII-
400 running NT 4.0, SP3.

/*Assign local library on UNIX system*/
libname lhost v7 '.' ;

/*Specify remote host (NT) name*/
%let mynode=gareleck-c;

/*Signon*/

options comamid=tcp connectremote=mynode;

signon '/wolf/a/cyndie/sugi24/tcpwnt.scr';

/*Assign remote library on NT system*/

rsubmit;

libname rhost v7 'd:\saseval\connect';

/*Convert remote Excel file to remote SAS view with
PROC ACCESS*/

proc access dbms=xls;
 create sasuser.cyndie.access;
 path= 'd:\saseval\software.xls';
 getnames=yes;
 list all;
 create sasuser.cyndie.view;
 select all;
 list view;
run;

endrsubmit;

Advanced Tutorials

/*Create local permanent data from remote view with RSPT */
/*Specify server for RSPT*/
libname rhost2 ’d:\saseval\connect’ server=mynode;

proc sql;
 connect to remote(server=mynode);
 create table lhost.soft as
 select *
 from connection to remote
 (select * from sasuser.cyndie) ;
quit;

signoff;

Example 3 shows use of data transfer services to combine data from
two remote hosts with data from a third, local host. Data is
downloaded from two remote hosts, a SAS file is created from a local
Excel file, and three data sets are combined on the local host. A
format library is also downloaded. The local host system is a PII-400
running NT 4.0, SP3, and the remote host is a Sun workstation
running Solaris 2.6.

/*Assign local library*/
libname lhost v7 ’d:\saseval’;

/*Set TCP option for remote signons*/
options comamid=tcp;

/*Signon host 1*/
options connectremote=wolf;
signon ’c:\programfiles\sas\connect\saslink\tcp.solaris.scr’;

/*Signon host 2*/
options connectremote=didabal;
signon ’c:\programfiles\sas\connect\saslink\tcp.solaris.scr’;

/*Download from host 1-includes format library*/
submit wolf;
libname rhost1 ’/wolf/a/cyndie/sugi24’;
 proc download inlib=rhost1
 outlib=lhost mt=all;
 exclude soft b / memtype=data ;
 run;
endrsubmit;

/*Download from Host 2*/
rsubmit didabal;
libname rhost2 ’/didabal/a/share’;
 proc download data=rhost2.b out=b;
run;
endrsubmit;

/*Signoff host 1 and host 2*/
signoff wolf;
signoff didabal;

/*Convert Excel file to SAS view*/
proc access dbms=xls;
 create sasuser.xls.access;
 path= ’d:\saseval\c.xls’;
 getnames=yes;
 list all;
 create sasuser.xls.view;
 select all;
 list view;
run;

/*Combine Data from Two remote hosts and PC*/
/*Assign libname for newly downloaded format library*/
libname library ’d:\saseval’;
data lhost.all;
 set a b sasuser.xls;
 format var1 yn. ;
run;

VERSION 7 ENHANCEMENTS
Version 7 of SAS/CONNECT software contains many new
features and enhancements. Some, such as the DOMAIN
server, the CEDA facility, messaging services, remote
objecting services, agent scheduling services, and use of a
wildcard character for transferring binary files, have been
discussed elsewhere in this paper. Other enhancements to
SAS/CONNECT software include

• Support for the Microsoft security support provider
interface (SSPI), which enables a Windows NT user to be
transparently authenticated on another Windows NT
machine.

• Support for general Version 7 enhancements

• Data encryption8 to guarantee the security of data sent
across a network

• Asynchronous remote processing, which means that
control is returned immediately so you can continue
processing on the local host

• New translation algorithm to prevent unnecessary
translation from occurring

• Expanded list of filetypes that can be transferred with the
memtype option in PROC UPLOAD and PROC
DOWNLOAD

• Additional options in PROC UPLOAD and PROC
DOWNLOAD to help identify the files that will be
transferred, the translation tables to use, and the transfer
technique

VERSION 7 COMPATIBILITY WITH VERSION 6
If your organization will be running Version 7 concurrently with
Version 6, you should be aware of compatibility issues
between the two versions. For example:

• Version 7 can read and write Version 6 files but the
opposite is not true

• Features new to Version 7 are not available in Version 6
files

• Long variable names included in Version 7 files will be
truncated if the files are converted to Version 6

• Some features in Version 7 files cannot be converted to
Version 6 and any attempt to convert the files will fail

We strongly recommend that you refer to the Version 7
documentation before using SAS/CONNECT in a mixed
environment.

CONCLUSION
The SAS System provides a complete and flexible set of tools
to implement a client/server based application. There are a
number of issues to consider when selecting an appropriate
client/server architecture. These include amount of data to be
accessed or processed; location of data; number of users; type
of processing; patterns of usage; location of hardware and
software resources; business strategic planning, potential
growth on the number of applications, cost, and the current
and future computational environment.

8 You can use the SAS proprietary encryption services on all
platforms; they are provided by SAS, are free of charge, and
require no additional software license. You must license
SAS/SECURE software in order to use the encryption services
RSA BSAFE Toolkit or the Microsoft CryptoAPI. In additon, to
use the Microsoft CryptoAPI you must install either Microsoft
Base Cryptographic Service Provider, which supports weak
encryption, or the Microsoft Enhanced Cryptographic Service
Provider, which supports strong encryption.

Advanced Tutorials

ACKNOWLEDGMENTS
We would like to acknowledge the assistance of RAND for providing
us the resources and time to develop this paper. We would also like
to thank Eric Nilson for his insightful comments on client/server
architecture, and Christine Taylor for her editing assistance.

REFERENCES

SAS Institute Inc. (1994), SAS/CONNECT Software, Usage and

Reference, Version 6, Second Edition, Cary, NC:SAS Institute Inc.

Edelstein, Herb,(1994), Unraveling Client/Server Architecture. DBMS
7, 34(7).

SAS Institute Inc. (1996), Changes and Enhancements for

SAS/CONNECT and SAS/SHARE Software, Preliminary

Documentation Release 6.11, TS040, pp. 13-17, Cary, NC:SAS

Institute, Inc.

SAS Institute Inc. (1997), Communications Access Methods for

SAS/CONNECT and SAS/SHARE Software, Version 6, First Edition,

Cary, NC:SAS Institute, Inc.

Beatrous, Steve and Clifford, Billy (1998), “Sometimes You Get What

You Want: SAS I/O Enhancements for Version 7,” Proceedings of the

Twenty-third Annual SAS Users Group International Conference

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the authors at:

Cyndie Gareleck
RAND
1700 Main Street, PO Box 2138
Santa Monica, CA 90401-2138
310 393-0411, x7815
cyndie@rand.org

Rodger Madison
RAND
1700 Main Street, PO Box 2138
Santa Monica, CA 90401-2138
310 393-0411, x7616
rodger@rand.org

SAS, SAS/AF, SAS/CONNECT, and SAS/SHARE are registered
trademarks or trademarks of SAS Institute, Inc, Cary, NC, in the USA
and other countries. ® indicates USA registration.

Advanced Tutorials

	Main TOC
	Section Contents

	p: Paper 43

