Proc Tabulate using a Categorical and Numerical Variable
Julie W. Pepe, University of Central Florida, Orlando

Abstract

Variables are usually categorical or numerical, yet in this example, a variable is both. Likert scale data from faculty evaluation surveys is recorded for each student in every class at our university. PROC Tabulate is used to produce a report that includes:

- class identification information
- enrollment data for each class
- percent of students responding per class
- percent of students responding in each category (1 to 5) based on a Likert scale
- calculation of means based on a 1 to 5 scale

The Likert scale values must be used as categorical and numeric in order to compute the required information. The response variable is duplicated (with a new name), then defined as categorical on the CLASS statement and as numeric on the VAR statement.

Methods

The two data files used are: enrollment data (enroll) containing class name, section and student enrollment. The Enroll file setup is one input line per class. The other data file (resp) has a header record for each class followed by records containing student responses. The header records contain information on college, department, course, section and instructor. The header record separates classes. Each student record contains a value for each of 16 questions. There is one record for each student that filled out a survey.

resp.dat (partial listing)

Business Administration Accounting ADAMS
ACG2021 0001
2434543354.5554
2211122222111121
12111222221222
11222232322232

Business Administration Accounting BRIDELL
ACG2021 0002
4422135343534444
1111111111111111
122311111113311
221112211221221
44333343353345355

Business Administration Accounting TRAINOR
ACG2021 0003
334124332322433
113334223111311
22221222232322
453345543544555
Enroll.csv (partial listing)

ACG,2021,001,40
ACG,2021,002,41
ACG,2021,003,47

The program splits the raw data into header and response data sets. Variables in the header record are combined so the key information can be printed by specifying one variable name. Incorrect scanner values in the response data set are coded to missing. The response values for each question are assigned variable names \texttt{ans1} to \texttt{ans16}.

To calculate percent responding the data is sorted by classes. \texttt{First.var} and \texttt{last.var} are used to count the number of students responding per class. Percent responding is rounded to the nearest integer value and merged with all other information.

The data structure needs to be modified so each question’s score has a variable identification (\texttt{Question}) and score value (\texttt{Score}). The value \texttt{Score} must be categorical in order to print summary output for each value 1 to 5. A categorical variable is defined using the class statement. The value also must be numerical so that means and standard deviations can be printed for each question. The variable statement is used to identify these variables. The variable \texttt{Score} is copied and called \texttt{Avg} so all required information can be requested in one Table statement.

Labels for score and question are added to enhance table appearance and readability. The scale is inverted, due to administrative preferences, so that larger values would indicate a better score. PROC Tabulate is then used to produce a one page synopsis of the class results. Formatting the variables to take up a minimum amount of space completed the program. An attached example of the program and output follows.

\begin{verbatim}
options ls= 90 ps=90 nodate nonumber;
filename sample 'a:RESP.dat';

data header (keep=dept college inst course classes lineinfo keyinfo)
 response (keep=classes ans1-ans16 keyinfo);
 retain course sect classes keyinfo;

INFILER sample;
/* Identify header variables */
length type $ 1;
length dept $ 34;
length college $ 23;
length inst $ 15;
\end{verbatim}

References

The author may be contacted at:
University of Central Florida
Department of Statistics
Post Office Box 162370
Orlando, Florida 32816-2370
or pepe@pegasus.cc.ucf.edu
length course $ 8; /******************************/
length sect $ 4; /*Identify response variables*/
length classes $ 12; /******************************/
length lineinfo $ 90;
length keyinfo $ 27;

INPUT
@1 type $ @;
select;
when (type in ('A','B','C','E','H','I','J','M'))
do;
 input @1 college $ 1-23 dept $ 25-34 inst $ course $ sect $;
 classes = course||sect;
 lineinfo = 'CLASS:'||classes||' INST:' ||inst;
 keyinfo =classes||inst;
 output header;
end;
otherwise
do;
 input @1 ans1 1. ans2 1. ans3 1. ans4 1. ans5 1. ans6 1. ans7 1.
 ans8 1. ans9 1. ans10 1. ans11 1. ans12 1. ans13 1.
 ans14 1. ans15 1. ans16 1.;
 if ans1 > 5 then ans1 = .;
 if ans2 > 5 then ans2 = .;
 if ans3 > 5 then ans3 = .;
 if ans4 > 5 then ans4 = .;
 if ans5 > 5 then ans5 = .;
 if ans6 > 5 then ans6 = .;
 if ans7 > 5 then ans7 = .;
 if ans8 > 5 then ans8 = .;
 if ans9 > 5 then ans9 = .;
 if ans10 > 5 then ans10 = .;
 if ans11 > 5 then ans11 = .;
 if ans12 > 5 then ans12 = .;
 if ans13 > 5 then ans13 = .;
 if ans14 > 5 then ans14 = .;
 if ans15 > 5 then ans15 = .;
 if ans16 > 5 then ans16 = .;
 output response;
end;
end;

data enroll;
infile a:ENROLL.csv delimiter=',';
length prefix $ 3;
length number $ 4; /*****************************/
length section $ 4; /* Identify enrollment */
length course $ 8; /* variables */
length classes $ 12; /**************************/
length $ 4;
input prefix $ number $ section $ roll;
enrolled = roll;
sect = '0'||section;
course = prefix||number;
classes = course||sect;
drop prefix number section course;
proc sort data=header; by classes;
proc sort data=enroll; by classes;

data newhead;
merge header enroll;
by classes;
proc sort data=newhead; by keyinfo;
proc sort data=response; by keyinfo;

Data classp; /******************************/
merge newhead response; /* Produce percent responding */
by keyinfo; /* for each class */
length pctresp $ 3; /******************************/
if first.keyinfo then do;
n = 0;
end;
n + 1;
if last.keyinfo then do;
maxn=n;
pctresp = round(100*(maxn /roll),1);
output;
end;
keep dept keyinfo roll enrolled maxn pctresp;
proc sort data=classp; by keyinfo;
proc sort data=newhead; by keyinfo;

Data allclass;
merge newhead classp;
by keyinfo;
proc sort data=allclass; by keyinfo;

Data combined;
merge allclass response;
by keyinfo;
length compinfo $ 132;
compinfo= lineinfo||' ENROLLED: '||enrolled||'
Percent Responding: '||pctresp;
proc sort data=combined;
by college dept keyinfo lineinfo;
data last;
set combined;
 score=ans1; question=1; output;
 score=ans2; question=2; output;
 score=ans3; question=3; output;
 score=ans4; question=4; output;
 score=ans5; question=5; output;
 score=ans6; question=6; output;
 score=ans7; question=7; output;
 score=ans8; question=8; output;
 score=ans9; question=9; output;
 score=ans10; question=10; output;
 score=ans11; question=11; output;
 score=ans12; question=12; output;
 score=ans13; question=13; output;
 score=ans14; question=14; output;
 score=ans15; question=15; output;
 score=ans16; question=16; output;
 keep score question keyinfo college dept inst lineinfo compinfo;

data convert; /***/
 set last; /*Scores are flipped so*/
 conscore = score*6; /* a 5 is excellent */
 if conscore = 6 then score = 5; /***/
 else if conscore = 12 then score = 4;
 else if conscore = 18 then score = 3;
 else if conscore = 24 then score = 2;
 else if conscore = 30 then score = 1;
 drop conscore;
 avg = score;

proc format;
value respfmt 5='Excellent'
 4='Very Good'
 3='Good'
 2='Fair'
 1='Poor';
value questfmt 1='Feedback to student for performance in course'
 2='Instructor interested in your learning'
 3='Use of class time'
 4='Instructor overall organization of course'
 5='Continuity between lectures'
 6='Pace of course'
 7='Instructor assessment of your progress in the class'
 8='Text and related materials used'
 9='Descr. of course objectives and assignments'
10='Communication of ideas and information'
11='Expression of expectations for performance'
12='Available to assist students outside class'
13='Respect and concern for students'
14='Stimulation of interest'
15='Facilitation of learning'
16='Overall assessment of instructor';

run;

/*/-------Class Report--*/
proc tabulate data=convert format=4.2;
class compinfo question score;
var avg;
table compinfo=' ',question='ITEM',
 score='*(n*F=3.0 pctn<score all>= '% '*F=4.1)
 (avg='SUMMARY'*(mean std n*F=3.0))
 /misstext = '0' printmiss condense rts=25;
format score respfmt. question questfmt. ;
Title1 'Student Perception of Instruction';
Title2 'Fall 1996 Semester: Individual Course Report';
run;