
1

Creating a Flexible Parameter Driven Reporting Program Using Global Variables

Karen Dudley, Blue Cross Blue Shield New Mexico, Albuquerque, NM

Abstract

By using global variables as parameters, a program can be
created which will produce an infinite number of information
variations from a single program. The parameters can be
toggled on and off by setting up a test flag variable. The
parameters may be a single value, a range of values, or a
combination of values.

This approach requires only a single entry of the parameters
for multiple usage. The global variables can be used to subset
the data, create flexible merge statements, and generate
meaningful report titles. Additionally, the values can be held in
a permanent file to be used by other related programs.

Programs developed using this flexible structure can easily be
used by business analysts and other non-programming users
to create reports to meet their particular business
requirements.

Introduction

This paper presents various parameter types and assorted
usages of these parameters. The types of parameters
described are: numeric, date, and character. The parameters
are set up using %LET and PROC FORMAT. They can be
used as a print flag, to subset data, and to create selective
MERGE statements. Using PUT statements, CALL SYMPUT,
and permanent files the parameters can also be used to set up
report titles. Following are examples and suggested usage for
various types of parameters.

Examples

Print Flag

A simple yet powerful way to use a parameter is to set a flag
that determines if a report should be printed. This is helpful in
a program that produces both detail and summary reports.
Often times the detail report can be very lengthy and is not
always needed. This parameter can be used to specify if the
detail report should or should not be printed.

Create the parameter at the top of the program:

/* SET UP PRINT PARAMETER */
%LET PRNTDTL = ‘N’;

Use parameter in a WHERE statement:

/* PRINT DETAIL REPORT */
PROC REPORT;

WHERE &PRNTDTL = ‘Y’;
COLUMN.....

Setting the parameter to ‘Y’ will print the report. Setting the
parameter to any other value (I prefer ‘N’ to be clear) will NOT
produce the report. You will find this much easier than
commenting the reporting section on or off.

Numeric

One usage of a numeric parameter is to subset data based on
an amount. A common health care usage is to find claims that
are over a specified amount, for example, claims with paid
charges over $20,000. This parameter should also be used
in the report title so that it is clear what the designated amount
was.

Create the parameter at the top of the program:

/* SET UP PARAMETER */
%LET AMTPD = 20000;

Use parameter in a subsetting IF:

/* GET CLAIMS HISTORY INFO */
DATA CLAIMS;
INFILE HISTORY;
INPUT

@105 PAIDAMT 7.2 @;
IF PAIDANT GE &AMTPD;
INPUT....

Create a formatted numeric variable to print in the report title:

DATA _NULL_;
CALL SYMPUT (‘AMT_PD’,PUT

(&AMTPD,DOLLAR7.2));
RUN;

Use the formatted variable in the report title:

PROC REPORT;
TITLE1 ‘REPORT TITLE’;
TITLE2 “PAID CLAIMS OVER &AMT_PD”;
COLUMN.....

Dates

Date parameters can also be used to subset data. A common
health care usage is to find claims that were paid during a
designated period of time. The dates should also be listed in

the report titles so that the reporting time frame is specified.

First set up the date parameters at the top of the program:

/* SET UP PARAMETERS */

Coders' CornerCoders' Corner

2

%LET PAID_BEG = ‘01JAN97'D;
%LET PAID_END = ‘31JAN97'D; This is accomplished by creating a testing variable using a

Subset the data: format. In this example, if the current value of PROVID

/* GET CLAIMS HISTORY INFO */ and 2229) then GOODPROV will be ‘Y’. Otherwise
DATA CLAIMS; GOODPROV will be ‘N’. GOODPROV is then used in the
INFILE HISTORY; subsetting IF statement. If GOODPROV is ‘Y’ the record will
INPUT be written to TEMPPROV.

@23 PAIDDTE YYMMDD6. @;
IF PAIDDTE GE &PAID_BEG

AND PAIDDTE LE &PAID_END;
INPUT....

Create formatted date variables to be printed in the report title:

DATA _NULL_;
CALL SYMPUT(‘STDATE’,

PUT(&PAID_BEG,MMDDYY10.));
CALL SYMPUT(‘EDDATE’,

PUT(&PAID_END,MMDDYY10.));
RUN;

Use the formatted date variables in the report title:

PROC REPORT;
TITLE1 ‘REPORT TITLE’;
TITLE2 “PAID DATES &STDATE TO

&EDDATE”;
COLUMN.....

Combination Character Values

Character parameters may be used in a number of ways.
They can be used to test a single value, a range of values or /* READ PROVIDER INFO */
a combination of values. A common health care usage is to DATA TEMPPROV;
look at a specific provider or a range of providers based on INFILE PROVIDER;
their provider identification numbers. This example uses a @10 PROVID $CHAR4. @;
combination of values. Being able to subset data based on a GOODPROV = PUT(PROVID,$PROV.);
combination of values is very dynamic. The testing parameter IF (TESTPROV = ‘Y’
is created using PROC FORMAT. AND GOODPROV = ‘Y’)

Create a parameter at the top of program: INPUT.....

&LET PROV_NUM = In the above example, if the value of PROVID is K123 or K456
‘K123',’K456',’2220'-’2229'; or between 2220 and 2229 then the record would be written

Create testing values using PROC FORMAT: is ‘Y’.

PROC FORMAT; If TESTPROV is set to ‘N’ then value of PROVID would not
VALUE $PROVOK matter and all records would be written to TEMPPROV.
&PROV_NUM = ‘Y’ Having the test flag creates more initial code but eliminates
OTHER = ‘N’; maintenance work.

RUN;

Create a subsetting variable by “formatting” the input variable:

/* READ PROVIDER INFO */
DATA TEMPPROV;
INFILE PROVIDER;

@10 PROVID $CHAR4. @;
GOODPROV = PUT(PROVID,$PROVOK.);
IF GOODPROV = ‘Y’;
INPUT.....

PUT statement with the input variable and the user defined

matches the format (e.g. it is K123 or K456 or between 2220

Test Flags

The above example can be made more powerful by combining
it with a test flag which allows you to toggle the parameter
testing on or off. This enables you to turn the test on and off
simply by changing the testing flag.

Create variables at the top of program and include the test
flag:

%LET TESTPROV = ‘Y’;
%LET PROV_NUM =

‘K123',’K456',’2220'-’2229';

Create testing values using PROC FORMAT:

PROC FORMAT;
VALUE $PROV
&PROV_NUM = ‘Y’
OTHER = ‘N’;

RUN;

Test input values:

OR TESTPROV = ‘N’;

to TEMPPROV because TESTPROV is ‘Y’ and GOODPROV

Selective MERGE

If you have multiple test flags and parameters in your program
the test flags can be used in MERGE statements.

Create variables at top of program:

%LET TESTSPEC = ‘Y’;
%LET SPEC_NUM = ‘55';

Coders' CornerCoders' Corner

3

%LET TESTPROV = ‘N’; example shows how to set up a parameter with a combination
%LET PROV_NUM = ‘K1234'; of single values and a range of values. This parameter is used

Use test flags to determine MERGE: combination value example to illustrate how a test flag can be

DATA HOLD; flag’s value.
MERGE TEMPPROV(IN=FILEA)

TEMPSPEC(IN=FILEB); Parameters can even be used in MERGE statements. This is
BY PROVID; another usage of a test flag parameter. The final example
IF TESTSPEC = ‘Y’ AND TESTPROV = ‘N’ describes how parameters can be written to a permanent file

THEN IF FILEA; so the parameters can be used by another program. This is
ELSE IF TESTSPEC = ‘N’ just a starting point for creating inventive and imaginative

AND TESTPROV = ‘Y’ reports to suit your business needs.
THEN IF FILEB;

ELSE IF TESTSPEC = ‘Y’ For more information contact:
AND TESTPROV = ‘Y’

THEN IF FILEA AND FILEB; Karen Dudley
RUN; Blue Cross Blue Shield of New Mexico

Write Parameters to a Permanent File

If the parameters are going to be used in a series of programs
they can be written to a permanent file to be read by the other
programs.

Write parameters to a perm file:

DATA PERM.PARMS(KEEP=LINE2 AMTPD);
AMT_PD = &AMTPD;

STDATE = (PUT,&PAID_BEG,MMDDYY10.);
EDDATE = (PUT,&PAID_END,MMDDYY10.);
LINE2 = ‘PAID DATES ’||STDATE||

’ TO ‘||EDDATE;
RUN;

To retrieve and use parameters in another program:

DATA _NULL_;
SET PERM.PARMS;
CALL SYMPUT(‘RTITLE2',

PUT(LINE2,$35.));
CALL SYMPUT(‘AMTPAID’,

PUT(AMT_PD,2.0));
RUN;

To use parameters:

PROC REPORT;
TITLE1 ‘ REPORT TITLE’;
TITLE2 “&RTITLE2";
TITLE3 “PAID OVER &AMTPAID”;
COLUMN....

Conclusion

These examples illustrate a variety of uses for parameter
variables. The examples have included selectively printing a
report using a parameter, using a numeric parameter to
subset data and include that parameter in the report title, and
using dates to subset data and include the date parameters in
the report title.

Character parameters can be used in a number of ways. An

to subset data. The test flag example builds on the

used to toggle the parameter testing on or off by using the test

505-237-5196
E-mail: kkdudle@bluemail.com

References

SAS Institute Inc. (1990), “SAS Language Reference, Version
6, First Edition,” Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1990), “SAS Procedures Guide, Version 6,
Third Edition,” Cary, NC: SAS Institute Inc.

Coders' CornerCoders' Corner

	Main TOC

