
Managing Disk Space With SAS 

Greg Mast, HealthCare COMPARE Corp.

Abstract

I have been involved with managing a growing number of
SAS users in a VMS environment. While the number of
users has increased, the amount of available disk space
has not increased proportionally. I created a BASE SAS
reporting tool which has helped me monitor disk space
utilization by user and by the type of file. The code is not
very sophisticated, but has helped avoid numerous
frustrations and delays due to full drives.

Introduction

I manage a group of 6 programmer analysts and provide
SAS operational support for roughly 40 others. Two
years ago, this number was only 20. As the number of
SAS users has continued to grow, so has the demand for
disk space. There were a few other aspects which
served to make effective space management more
challenging:

1. Our department implemented data warehousing on
some of the same disk drives. While this served to
reduce the propagation of duplicate copies of various files
across the disks, the net impact was the addition of
many new files.

2. Some of the disk drives were shared with SAS users in
other departments. Obviously, these colleagues were
busy with their own projects, and we began to find
ourselves in situations where multiple projects were
competing for the same disk space.

3. Although disk space has been decreasing in cost over
time, additional drives were difficult to obtain. Further,
one of the key factors in justifying additional space has
been the department's track record in effectively
managing the storage resources it already had.

Clearly, the stage had been set for disk space shortages,
competing priorities, and frustrated users.

After reviewing several alternatives, a SAS routine which
used embedded DCL (Digital Control Language)
commands was developed. When paired with an existing
DCL routine described below, the results were most
effective.

The DCL routine was a command file which gave users
an instant summary of disk space usage across several
drives. This routine was written by another department,
and was shared with other SAS users. This will be
elaborated upon a bit later on.

The SAS program was designed as a series of macros
which contained embedded DCL directory commands.

The output from these commands was then parsed into a
SAS data set. A series of short reports were generated.

When the DCL command shows disk space is dropping
on one or more drive, I submit the SAS program, which
quickly tells me which users are accountable for using
most of the space. A phone call or e-mail message to
the users is usually sufficient to resolve the problem
before it causes the drive to fill up and jobs to crash.

This approach has proved to be quite simple, effective,
and has required very little time. By averting numerous
potential space problems, the productivity of several
departments in addition to my own has been enhanced.

The DCL Routine

Again, this command was written in another department
of the company. Typing the word “space” on the
command line resulted in the following display:

The name of the disk drive has been shown on the
leftmost column. The total space in blocks, the number
of blocks used, the number of free blocks, and the
percentage of free blocks have also been displayed (1
block equals 512 bytes in the VMS environment).

Note the boldfaced line. When free space on any drive
dips below 10%, the command file has been designed to
display the line in boldface. Due to the way I have
configured my terminal session, the boldfaced line would
be red, and the other lines yellow against a black
background. This arrangement ensured that a
problematic drive would stand out very clearly on the
display.

[The DCL code for this command file is quite lengthy,
and rather unwieldy for inclusion into this paper.
Interested readers may obtain it upon request from the
author.]

 Utilization as of 20-SEP-1996 18:25
--
 Disk Total Space Used Free % Free
--
 ASRESTEMP 11808768 6094514 5714254 48%
 ASRESSCR 11808768 5159744 6649024 56%
 OTHSAS 4178385 3708865 469520 11%
 OTHSAS2 12328410 10870098 1458312 11%
 OTHSAS3 5904423 5674623 229800 3%
 OTHSASO1 4109470 3226438 883032 21%
--
 OTH 26520688 23480024 3040664 11%
 TOTAL 50138224 34734282 15403942 30%

The SAS Routine

When space is getting tight, I submit a SAS program
simply called “disk-space.sas” to one of our batch
queues. The logic has in this program been constructed
out of a series of macros which run in sequence several
times.

The first macro was designed to run the “space”
command to make its output available for the program
to use:

*-routine to check global disk space--;
*this calls the space command and outputs it to
a flat file which SAS can read.;

%macro foxinsox(drive);
x "@othsas:[mastgr]space.com /
out=asresscr:[mastgr]temp.asc";

data space1 ;
 infile "asresscr:[mastgr]temp.asc"

missover;
*lrecl=86, variable length;

 input drive $7-15 maximum 22-29
used 38-45 free 53-60;

run;

The routine continued by creating a series of macro
variables:

*---here is a routine which writes the code to
call the macros which are defined later on in
this program. After much experimentation with
symput statements and the like, this routine
works best.;

data _null_;
 file 'asresscr:[mastgr]macro.sas' noprint;
 set space1;
 if drive="&drive";
 x = length(drive) + 11;
 xx = x-3;
 put@1 '%catinhat(' @11 drive $9.

@x ');'
 / @1 '%seuss(' @8 drive $9. @xx ','

@xx+1 maximum 8. @xx+9 ','
@xx+10 used 8. @xx+19 ');' ;

run;
%mend foxinsox;

The point of the macro was to get the total amount of
space available on each drive, key information which was
used later on in the program for calculations.

The next macro was run once for each of the drives
shown by the “space” command.

%MACRO CATINHAT(DRIVE);
x "dir/size=allocation/date/own/nohead/
 notrail/width=(filename=100,
 display=195,size=10)
 /out=asresscr:[mastgr]&DRIVE..asc
 &DRIVE.:[000000...]";
%MEND CATINHAT;

Sample output from the “catinhat” macro has been
shown below:

DRIVE:[DIRECTORY]SAMPLE.SAS;9 20
24-MAR-1994 15:33:00.41 [USERGROUP,USERID]

The full name of the file, including the drive and directory
where it has been written, was obtained. The number of
blocks, file creation date and time, as well as the userid
and the user’s group were also obtained. The numeral
“9” just to the right of the semicolon was the version of
the file, discussed below. By running this file through an
input statement, a great deal of useful information could
be generated.

A final macro follows which, due to its length, has been
placed at the end of this document. It has been
summarized as follows:

1. An input statement created a SAS data set from the
output of the “catinhat” macro.

2. Additional data step logic created variables which
depicted the name of the file, its size, who created it, and
when it was created.

3. Array logic then created “buckets” for the number of
files and the space they consumed based upon several
age ranges: files 48 hours old or less, files up to 3
months old, and files over 3 months old. These
categories were designed to be mutually exclusive.
There was nothing magic about the boundaries of these
categories.

It would be very easy, for example, to adjust one of these
categories to reflect files written within the last few hours.
With some additional reworking of the code, one could
quickly develop a version of this program which could be
run interactively against a specified drive. For my own
situation, however, I have found that looking at the total
usage of the drive helps me manage the drives a bit more
proactively.

4. The data set was then fed to routines consisting of
PROC SUMMARY, data steps, PROC SORT, and
PROC PRINT. The macro variables created in the first
macro were employed in these reports by calculating the
difference between the space usage as measured by SAS
and usage as measured by the DCL “space” command.
The difference between them furnished an estimate of
how much space was being used by various system files
which the program does not have the security clearance
(known in the DEC world as “privileges”) to read.

The results were tabled in a series of 3 reports. A brief
discussion of each of the reports follows; since each
report has a linesize of 180, it was not practical to paste
report images into this paper. Please refer to the
handout.

Report 1
Report 1 was developed to list disk space utilization by
user . A PROC FORMAT routine was used to take the
userid and display their name and phone number on the
report.

I have found that one of the most important uses of this
report relates to purging. In the VMS environment, a
new file will not overwrite an old one bearing the same

name. Instead, a new version is created. DEC has
provided a feature which limits the number of file versions
retained to a user-specified value, but for several
reasons, our user group has opted not to use this feature.
Most veteran DEC users in my group have long known to
purge rigorously and regularly, but the same is not true
for DEC novices or sporadic users. Left unmanaged,
multiple copies of old versions of files can seriously
interfere with the productivity of an entire department
Fortunately, it is also one of the simplest issues to
resolve, by using the DCL “purge” command.

Among other useful information, the first report has also
been invaluable by showing who has been hoarding a
“museum” of old reports and SAS logs in their home
directory.

Report 2
The second report has been designed to list files with
over 50,000 blocks and all SAS work directories,
regardless of their size. Our group’s SAS.CFG files have
been set to point work files to a “scratch” drive, where
files are automatically deleted after 48 hours.
Sometimes, however, a new user’s account may not have
been set up appropriately, or an experienced user may
have decided to end run normal routines due to pressing
circumstances. By watching SAS work directories,
these situations have been much easier to identify and
correct.

Report 3
The third report has been set up to profile disk space by
file type across all directories. Our group has designated
certain drives for holding either SAS data sets and
indexes, or for SAS code, logs, reports, DCL command
files, and the like. As such, the final report has been
instrumental in systematically spotting files written to the
wrong place.

Invoking the Macros

Once all the macros have been compiled, the code below
has been used to execute them:

%foxinsox(OTHSAS);
%include 'asresscr:[mastgr]macro.sas';
x 'del asresscr:[mastgr]OTHSAS.ASC;*';

Again, while there are more elegant ways to approach
this, the code above has run reliably for over 2 years.

Conclusions

One side benefit from this approach to disk management
has been what one might call the sentinel effect. Once
users realized they were being watched, several of the
largest space users began to police their own work.

The program has also pointed out users who needed
coaching in their use of disk space. Since sloppy disk
space use has frequently been the result of excessive

sorting and other inefficient coding practices, we have
seen opportunities to help these colleagues develop
sounder approaches to writing good SAS code.

Finally, this basic approach to managing disk space with
SAS could be applied to numerous computing platforms
by altering the embedded operating system commands,
file references, and so on. The unit of measure could be
changed from blocks to bytes, cylinders, or some other
appropriate unit. A variation of this code, for example
has also been run on one of our company’s local area
networks (LAN). The LAN version, however, was
modified to read an extract from a Microsoft Access
database maintained by the LAN manager instead of
issuing DOS subroutines to gather the data.

Future steps for this code could include writing a window
with DATA _NULL_ which would query the user for the
disk drives they were interested in. If one had a large
number of disk drives to manage, this could save a lot of
time. Another idea would be to add a new routine which
would issue a list of files, per user, which have exceeded
a certain age threshold. Since many of the older files
could be from completed projects, a routine like this could
serve as a follow-up mechanism reminding users to
archive aging data or code. One could even embed DCL
commands to automatically send a Vaxmail message
containing a list of the old files to the user. One final
possibility might be to edit the DCL "space" command to
automatically launch the SAS "disk-space" program if any
drive were to dip below a specified space threshold. The
SAS code could then provide reports only for the drives
needing attention.

Effective disk space management needs to answer the
same basic questions as any well-written newspaper
article: it must answer who, what, when, where, why and
how. The solution discussed above answers the first
four of these questions, and good, routine communication
with the SAS users in my group answers the last two.

References

Anagnostopoulos, Paul C. (1989), Writing Real Programs
in DCL. Burlington, MA: Digital Press.

Digital Press (1989), VMS User’s Manual. Burlington,
MA: Digital Press.

SAS Institute Inc. (1990), SAS Companion for the VMS
Environment, Version 6, First Edition. Cary, NC: SAS
Institute, Inc.

Acknowledgments

I would like to thank Martin Haase for his feedback and
suggestions in developing this article. I would also like to
acknowledge Karsten Self for all of his great work on
developing the initial “space” command.

The author may be reached at :

Greg Mast
Manager Data Analysis & Reporting
HealthCare COMPARE Corp.
750 Riverpoint Drive
West Sacramento, CA 95605
Greg_Mast@hccompare.com
(916) 374-4757

The Final Macro

The code below was the final macro referred to in the
“SAS Routine” section.

%MACRO SEUSS(DRIVE,BIG,USED);
data a;
 infile "asresscr:[mastgr]&DRIVE..asc"

lrecl=195 missover;
 input blob $ 1-100 size 103-112

@115 L date11. @115 dd 2. @118 mmyy $8.;

*---count files where users have implemented
tight file protection. A high number of them
warrants inquiry. ;

 if size=. then protectd=1; else protectd=0;

*--identify the directory and the user--;
length dir $ 50 userid $ 8 filetype $ 10;

*first, get the directory;

a = index(blob,"[") + 1;
b = index(blob,"]") - 1;
c = (b-a)+1;
dir = substr(blob,a,c);

*--now we can identify the userid--;
d = index(dir,".") - 1;
if d > 1 then userid = substr(dir,1,d);
else userid = dir;

*----identify the file name and extension---;
e = length(blob);
h = index(blob,";") - 1;

filename = substr(blob,(b+2),(e-(b+1)));
dot = index(filename,".");
fun = length(filename);

nuf = substr(filename,(dot+1),(fun-dot));
*this is the extension + version number;

ufn = index(nuf,";") - 1;
*this is the byte where extension ends;

fufu = length(nuf);
filetype = substr(nuf,1,ufn);

if filetype='SYS' then userid='SYSTEM';

*--identify the version for need-to-purge
detection--;

i = e - (h+1);
*h+1 is where the semicolon is in the filename;

version = input(substr(blob,(h+2),4),5.);
blob2 = substr(blob,1,h);
*this is the filename without the version
number;

*keep the filesize data of files we could purge;
if lag(blob2) = blob2
 then purge = lag(size);
else purge=0;

*--edit an artifact from incomplete journal
files;

if purge > (size*5000) then purge = size;
*[potential underreporting or other minor
inaccuracy may result, but this is better than
an occassional wildly high number];

*-----flag old files----------------;
*create current date;
 ahora=today();

*measure the age of the file in days;
age = ahora - l;

*--now do age buckets - 1 for space and 1 for
the number of files. create one set of vars
for: 2 days, 3-90 days, and over 90 days;

array ned{6} mo6_cnt mo6_sp mo3_cnt mo3_sp
x48_cnt x48_sp;

 do n=1 to 8;
 ned{n}=0;
 end;

 if age le 2 then do;
 x48_cnt = 1;
 x48_sp = size;
 end;

 else if (2 < age < 91) then do;
 mo3_cnt = 1;
 mo3_sp = size;
 end;

 else if age > 90 then do;
 mo6_cnt = 1;
 mo6_sp = size;
 end;

keep dir freq size protectd purge userid
filetype mmyy mo6_cnt mo6_sp mo3_cnt mo3_sp
x48_cnt x48_sp;

run;

*---calculate the size of system files;
proc summary data=a nway;
 var size;
 output out=xxx(drop=_type_) sum=sizex;
run;

data marvin;
 set xxx;
 sizez = (&used - sizex);
*total used space minus all space SAS can
account for due to priveleges;
 call symput("SYSX",sizez);
run;

*-------now apply the calculated system file
space, being careful not to doublecount;

proc sort data=a;
 by userid;
run;

data marco;
 set a;
 by userid;
 length freq size mo6_cnt mo6_sp 8;
 if first.userid and userid='SYSTEM' then do;
 size = (&SYSX / 1);
 mo6_sp = size;
 freq = 1;
 mo6_cnt = 1;
 end;

 else if userid='SYSTEM' then do;
 size=0;
 mo6_sp=0;
 freq=1;
 mo6_cnt=1;
 end;

 else freq = 1;
run;

*----summarize-----------;
proc summary data=marco missing;
 class userid filetype dir;
 var freq size protectd purge mo6_cnt mo6_sp

mo3_cnt mo3_sp x48_sp x48_cnt;
 output out=b sum=;
run;

*----create report---;
data c;
 set b;

 if _type_=0 then do;
 userid='ZZZZZZZZ';
 filetype='ZZZ';
 dir='ZZZ';
 end;

 if _type_=1 then do;
 userid='ZZZZZZZZ';
 filetype='ZZZ';
 end;

 if _type_=2 then do;
 userid='ZZZZZZZZ';
 dir = 'ZZZ';
 end;

 if _type_=3 then userid='ZZZZZZZZ';

 if _type_=4 then do;
 filetype='ZZZ';
 dir = 'ZZZ';
 end;

 if _type_=5 then filetype='ZZZ';
 if _type_=6 then dir='ZZZ';

 pct = (size / &big) * 100;
 pct2= (purge / size) * 100;

 length whom $ 8;
 whom = userid;
run;

*-----userid level summary-------------;
proc sort data=c out=d;
 by descending _type_ descending size;
 where _type_=0 or _type_=4;
run;

proc print data=d noobs split="*";
 var userid whom freq protectd size pct purge

pct2 x48_cnt x48_sp mo3_cnt mo3_sp
mo6_cnt mo6_sp;

 format size comma10.
 purge mo6_sp mo3_sp x48_sp comma9.
 freq comma6.
 mo6_cnt mo3_cnt x48_cnt comma5.
 pct pct2 protectd 3.
 whom $whom. ;

*($whom is a format which takes a userid and
returns the user name and telephone extension);

 label userid = 'User Id'
 whom = 'Name & Phone Extension'
 freq = '# Files'
 protectd= 'Pro-*tected'
 size = 'Blocks'
 pct = 'Pct'
 purge = 'Blocks*To*Purge'
 pct2 = 'Pct'
 mo6_cnt = 'Files*Over 3*Mos'
 mo6_sp = 'Space*Over 3*Mos'
 mo3_cnt = 'Files*Up To 3*Mos'
 mo3_sp = 'Space*Up To 3*Mos'
 x48_cnt = 'Files*2 Days'
 x48_sp = 'Space*2 Days' ;
 title "&DRIVE SPACE USAGE REPORT BY USER ID";
run;

*------------summary by directory--------------;
*screen out little stuff...look for large files
and sas work directories;

data xx;
 set c;
 if _type_=1;
 if (size > 49999)
 or (index(dir,"SAS$WORK") > 0);
 pct = (size / &big) * 100;
 pct2= (purge / size) * 100;
run;

proc sort data=xx;
 by dir;
run;

proc print data=xx noobs split="*";
 var dir freq protectd size pct purge pct2

x48_cnt x48_sp mo3_cnt mo3_sp mo6_cnt
mo6_sp;

 format size comma10.
 purge mo6_sp mo3_sp x48_sp comma9.
 freq comma6.
 mo6_cnt mo3_cnt x48_cnt comma4.
 pct pct2 protectd 3.
 whom $whom. ;

 label dir = 'Directory'
 freq = '# Files'
 protectd= 'Pro-*tected'
 size = 'Blocks'
 pct = 'Pct'
 purge = 'Blocks*To*Purge'
 pct2 = 'Pct'
 mo6_cnt = 'Files*Over 3*Mos'
 mo6_sp = 'Space*Over 3*Mos'
 mo3_cnt = 'Files*Up To 3*Mos'
 mo3_sp = 'Space*Up To 3*Mos'
 x48_cnt = 'Files*2 Days'
 x48_sp = 'Space*2 Days' ;

 title "&DRIVE SPACE USAGE REPORT BY DIRECTORY
- SAS$WORK DIRECTORIES OR OTHER FILES OVER
49,999 BLOCKS";
run;

*------------summary by file type--------------;

*summarize again, and recode to simplify
results.;

proc summary data=marco missing nway;
 class filetype;
 var size protectd purge mo6_cnt mo6_sp mo3_cnt

mo3_sp x48_sp x48_cnt;
 output out=bb sum=;
run;

data xxx;
 set bb;
 if filetype in
('JOU','SAS','DAT','LIS','LOG','TXT','TDS',
 'SSD','COM','MAI','SASEB$DATA','SASEB$CATA',
 'SASEB$VIEW','SYS','TPU$JOURNAL') then do;
 *absolutely nothing;
 end;
 else filetype='ALL OTHERS';
 rename _freq_ = freq;
run;

proc summary data=xxx MISSING nway;
 class filetype;
 var size protectd purge mo6_cnt mo6_sp mo3_cnt

mo3_sp x48_sp x48_cnt freq;
 output out=bb sum=;
run;

proc sort data=bb;
 by descending _type_ filetype;
run;

data cc;
 set bb;
 by descending _type_ filetype;
 if _type_=0 then
 filetype='*** GRAND TOTAL ***';

 pct = (size / &big) * 100;
 pct2= (purge / size) * 100;
run;

proc print data=cc noobs split="*";
 var filetype freq protectd size pct purge pct2

x48_cnt x48_sp mo3_cnt mo3_sp mo6_cnt
mo6_sp;

format size comma10.
 purge yr_sp mo6_sp mo3_sp x48_sp comma9.
 freq comma6.
 mo6_cnt mo3_cnt x48_cnt comma4.
 pct pct2 protectd 3.
 whom $whom. ;

 label filetype= 'File*Type'
 freq = '# Files'
 protectd= 'Pro-*tected'
 size = 'Blocks'
 pct = 'Pct'
 purge = 'Blocks*To*Purge'
 pct2 = 'Pct'
 mo6_cnt = 'Files*Over 3*Mos'
 mo6_sp = 'Space*Over 3*Mos'
 mo3_cnt = 'Files*Up To 3*Mos'
 mo3_sp = 'Space*Up To 3*Mos'
 x48_cnt = 'Files*2 Days'
 x48_sp = 'Space*2 Days' ;
 title "&DRIVE SPACE USAGE REPORT BY FILETYPE";
run;

proc datasets library=work nolist;
 delete a b c d bb cc xx;
run;
%MEND SEUSS;

	Main TOC

