
1

Unix Large File Processing Secrets

.DUVWHQ 6HOI

30 6TXDUHG ,QF�� 6DQ)UDQFLVFR� &$

ABSTRACT
To most SAS programmers working in the UNIX environment, large file processing is synonymous with the historical maximum file size
limit of 2 gigabytes. Though this is a significant concern, there are additional dimensions to managing and working with large quantities of
data. Large file processing is any job large enough that you think twice before typing submit. The term is applied here to any situation
where a task is constrained by physical resources, including: system file size limits, system storage or workspace limits, total processing
time, CPU availability, and process contention with other users.

The weapons which can be applied to these are programmer time and skill. Ultimately, pushing the limits of the envelope is a question of
balancing these factors. This paper identifies several techniques for large file processing on Unix, including:

• Recent SAS and OS large file support enhancements.
• Efficiency techniques.
• Sorting data.
• Working to and from tape
• Advanced data coding methods

LARGE FILE SUPPORT
SAS and OS Enhancements

The Unix maximum file size limit exists because of the limited
file addressing space allowed by a 32 bit integer. Methods for
overcoming this limit are described in Tom Truscott’s 1996
SUGI paper “Open Systems Solutions to Large File
Requirements”.

Providing system large file support requires changes to both the
OS and SAS – if your current environment does not provide
large dataset support, an upgrade to your operating system, your
version of SAS, or both, will be required. Currently, support is
native to 64 bit environments,1 and through the partitioned
dataset method in SAS 6.12.

If these methods are available at your site, by all means use
them – through them you overcome one of the largest and most
frustrating obstacles to large file processing. This paper does
not discuss these developments.

Users lacking one of these extensions are left to tried-and-true
techniques for working around the limit.

WORK SMARTER
Smart Human Tricks #1

This is a grab-bag of techniques learned, developed, or
acquired through the years. An excellent starting point is the
SAS Institute’s own SAS Programming Tips: A Guide to
Efficient SAS Processing.

General Programming Strategies

The secret to success is to get as much done as you can while
doing as little as possible. This may not be the tip you want to
take to the boss from SUGI, but isn’t efficiency is all about
increasing the product to inputs balance? Unfortunately, most

1 Digital Electronic Corporation (DEC) is the only current provider of 64
bit UNIX architecture I am aware of.

of the world still focuses on measuring inputs, and not product.
Think about your program and what you need out of it. Figure
out, within reason, the best way to accomplish this. Remember
that there are usually several equivalent methods available.

After a reasonable enhancement in program efficiency has been
achieved, it’s generally best to forego further improvements.
Remember: efficiency improvements only go so far.
Development time is itself a cost.

Eliminate Unnecessary Processing

Be especially wary of code which does nothing, or very little,
but requires heavy resources. Notorious suspects are routines
which empty or delete datasets, which modify labels on
variables or datasets, or which duplicate data structures.

I once saw the following code written to produce an empty
dataset with the same field structure as an existing one. The
input file ranged from tens to hundreds of thousands of records:

data mydata;
 set mydata;
 delete;
 run;

This is an example of a lot of work to do nothing – the code
reads every input value, only to discard it. A lazier (and
preferable) method might be:

data mydata;
 set mydata;
 stop;
 run;

The STOP statement in SAS halts processing of the current
data step, in this case, on the first observation. It could even be
moved before the SET statement – output data structure is
defined at SAS compile time, not at execution.

Eliminate Unnecessary Data

This applies to eliminating both fields and records from
processing. You’ve heard it before, you’ll hear it again: DROP,
KEEP, and WHERE= can be your best friends. In general,
subset or summarize data before applying wholesale processing
or sorting it.

2

Minimize Field Storage Requirements

A strength of SAS is the simplicity of its data structures –
character and numeric. On the other hand, this doesn’t make
for particularly compact datasets. Still, there are alternatives
available.

Field Widths: LENGTH or ATTRIB statements can be used
to specify variable lengths. Remember that the default numeric
field-width is 8. On UNIX platforms, the minimum numeric is
three.2 Character fields default to the width of the first value
encountered.

Formats for Standard Values: Where other procedural
languages offer enumerated data types, and RDBMSs have
joins, SAS has formats. Instead of storing the days of the week
as 9 byte character fields, you can use a 3 byte numeric and a
format – or a one byte character for greater savings. Additional
alternatives are discussed later in this paper. Formats can be
used for anything from short lists, as above, to code values and
definitions containing tens of thousands of values, limited by
available memory.

You should consider substituting a format for any variable
whose values derive from a known list. The disadvantage of
custom formats is that the format must be defined prior to
accessing data in order for the data to be properly interpreted.

Use indexes for subsetting or look-up tables

When a large dataset is used primarily to create subsets or as a
lookup reference, indexing will speed processing tremendously.
Multiple datasets can be indexed individually and searched as
one through an SQL view.

Indexes can be utilized when using larger portions (over 10%)
of the data, but generally result in reduced efficiency compared
to sequential access to sorted data.

Automate data management with DATASETS

PROC DATASETS is used primarily for deleting unnecessary
datasets, a useful practice to include in large file processing.
Although this and the alternatives (SQL’s DROP TABLE , and
the undocumented but ever popular PROC DELETE) are
useful, there are other tasks it can perform, including:

• Assigning or changing variable labels

• Renaming datasets

• Assigning or changing dataset labels

• Adding or removing formats and informats

• Adding or removing indexes

With the exception of indexing, these tasks are performed on
data header information, not the data itself, and are far more
efficient than achieving the same result through data step
processing. This is overhead well avoided.

2 Both the minimum field size and representable values
vary across operating systems. The minimum numeric
width 3 is defined by IEEE standards, and is common to all
UNIX platforms. Page 196 of the UNIX Companion
(Version 6, 1st Edition) is a table of maximum exact and
exponential value representations for all numeric variable
sizes.

Don’t Overlook the Obvious (and Not-So-Obvious)
Fundamentals

These are some general tips and principles for working with
large datasets outside the programming realm.

Workspace: Ensure your WORK directory is big enough for
your needs. Know the location and size of your workspace,
negotiate for more space if necessary. The SAS session option
WORK specifies the WORK library path. In SAS 6.12,
partitioned WORK libraries may be specified.

FULLSTIMER: Full system resource utilization reporting
allows you to identify and tune ‘hot spots’ in your programs.
The STIMEFMT= Z simplifies automated log analysis by
presenting time statistics uniformly.

Metrics: Measurements of programs performance
characteristics provide an understanding of program needs,
possible improvement, and confirm successful improvement
techniques. Compiling (and reviewing) log statistics is a start.
Creating automated tools tracking CPU, memory, and disk
utilization is a useful extension, and enables benchmarking.

Plan, test, and time: Know the time and space requirements
of the work you are doing. Large scale processing on an
overextended system can take hours or days. Scale up to your
full runs on test, sample, or subset data, increasing input data
by powers of two or ten. Watch for processing rates which
degrade non-linearly as data volume increases. Experiment
with new methods.

Use /dev/null: UNIX’s write-only “bit bucket” can be used as
an output location when testing large jobs – so long as you
don’t need the data back.3 A libref assigned to /dev/null is
treated as a tape device.

Know your algorithms: Computationally intense programs
can often be expedited by refining algorithms. Complex
functions are generally more CPU intensive than simpler ones –
exponentiation is slower than addition. Missing value and
divide-by-zero operations can be spectacularly inefficient on
some systems and should be captured by program logic.

System load: Plan your job for off-peak hours, generally 10
p.m. to 10 a.m. on interactive systems. Use job control
utilities, the UNIX at, cron, and nice commands, to schedule
and prioritize jobs. Be considerate. Tell users on a shared
system when you will be running particularly large jobs.

Don’t surprise your system administrator: She or he is
working hard to please a lot of people. Provide advance notice
of special requirements, data arrivals, and hardware and
software requests.

SAS system tuning: The BUFNO, BUFSIZE, and MEMSIZE
system options (or dataset counterparts) can have a significant
impact on system performance.

UNIX system tuning: The operating system also presents a
number of tunable options effecting processor, memory, and
disk operations. You should explore these alternatives with
your system administrator.

3 /dev/null is the null device (or file) in UNIX. Output directed to /dev/null
is not written to disk or saved anywhere, it simply disappears. When read,
/dev/null returns end-of-file (EOF). It is similar in concept to the _NULL_
reserved dataset name in SAS. Like the Arabic zero, nothing can be
incredibly useful.

3

Know when to say when

You may be asked to perform miracles of processing or analysis
with resources inadequate to the task. Though such projects
can be technically challenging, foster strong team identity, and
create the impression of much sweat and labor, they are often
only exercises in bravado or worse. Frequently, reductions in
scope or additions to capacity will greatly improve the inputs-
to-results ratio. Simple back-of-the-envelope calculations of
process rate or resource requirements to availability are usually
enough to reveal a serious mismatch.

OUT OF SORTS(pace)
Workarounds and Avoidance Techniques

If a job is going to break for want of space, it will break on a
sort.

As one of the most common, and most intensive, processing
activities involved in data analysis, sorting plays a crucial role.
Methods for increasing the efficiency of a sort, for increasing
uses of a particular collation sequence in code, decreasing the
resource utilization, or eliminating the need for sorts altogether,
are often critical to successful large file processing.

Solution Strategies

Sorting is an intensive activity. Disk I/O, CPU, real time, and
memory are the coins of the realm – though you don't always
have to pay. The general strategies of sorting large files are:

Find more space. Is there a larger filesystem available, or is it
possible to clear more space on the filesystem you are using?

Purchase a more efficient algorithm. There are several
efficient sort programs on the market which may be purchased.
SYNCSORT, produced by the company of the same name, is
popular. A SAS-specific PROC SYNCSORT was recently
released; information is available from the vendor. I have no
experience or affiliation with these products.

Increase or tune available resources. If processing is
possible, but performance is inadequate, tuning the SAS and
OS as mentioned above may provide improved performance of
your process. Try benchmarks with different settings of SAS
options.

Use an alternative collating method. This falls into several
categories, described below.

Use an avoidance method. Also effective, described below.

Play the breakup game. Popular in the ‘70s, this is still
common practice among SAS programmers in the UNIX
environment.

Constraints of SAS Sorts

There are three primary limitations of sorts in SAS processing.

• SAS sorts require additional space of approximately 2.5
times the size of the input file. If you are constrained to
using the same filesystem for data storage and sort space,
as is the case for temporary files in UNIX, the sort-space
penalty is added to file size.

• A given collation sequence applies to only one variable at
a time. If your program requires that MYVAR be sorted

for one procedure, and YOURVAR for the next, then two
sorts are required.

• Much of SAS analysis relies on collated data. Bypassing
this requirement eliminates the need, and resource
requirements, of sorting.

Alternative Methods

If sorted output is required, there are several routes to the
destination.

PROC SORT

With version 6.09, PROC SORT offers the TAGSORT option.
Though this can take much more time, both real and CPU, the
space requirement is much reduced.

The graph below compares disk utilization and process time for
these operations on a 10,000,000 observation, 1 Gig dataset. A
standard PROC SORT runs first, requires 2.4 times the input
file size for sort space, and completes in 29 minutes. Tagsort
begins about ten minutes later; the first three hours of a 29 hour
aborted run are shown. Maximum space requirement is about
1 times input file.

On smaller datasets, TAGSORT typically requires five to ten
times more execution time.

PROC SQL

PROC SQL can produce ordered output. It has its own sort and
may or may not offer better performance.

SQL’s real strength is in a number of other abilities, the most
powerful being the ability to define ordered views of data from
which sorted data may be obtained. Efficiencies on indexed
data may approach the speed of a sort. Simple index storage
overhead is typically about 10% of dataset size.

Because multiple indexes on data can be defined, and
subsetting of data is especially amenable to SQL, this is a good
solution to the problem of accessing small quantities of sorted
data from a large dataset.

SET with BY

Data must be indexed, and this may not be particularly efficient
– it is very inefficient on non-local or networked drives.

This method provides a ‘one size fits all’ solution when dealing
with large numbers of datasets of varying sizes, some of which

Figure 1 -- SORT Disk Utilization

Default
PROC SORT

TAGSORT
Option

4

are known or suspected to exceed maximum sortable size.
Case-by-case data management is eliminated.

Avoidance

Sometimes the best way to do get something done is to avoid it
all together. This may apply either in whole or part.

Are the sorts necessary?

• Look at your program flow-of-control and identify areas
where you either do not need to sort or can utilize a sort
order several times before changing it.

• PROC SQL can access, process, and summarize unsorted
data. Though this may necessitate an internal sort, it may
still be more efficient than running a PROC SORT on the
entire dataset. The undocumented _METHOD option to
SQL may be used to identify SQLs internal processing.4

proc sql _method;

• Summarization statistics can often be obtained by the use
of a CLASS rather than a BY variable. A class statement
can utilize unsorted inputs, though the number of distinct
values is restricted by available memory.

• Using the NOTSORTED option with a BY statement
eliminates the requirement that variables are sorted,
though analysis results may differ with data order.

• The SORTEDBY= dataset option can be used to indicate
data are already ordered, avoiding unnecessary sorts.

• Do the data come from a system with a different collate
sequence? The SORTSEQ option can be used to specify
an alternate to the default collate sequence of your system.

• Is the data from an RDBMS? Utilize SQL passthrough to
specify the server sort your results.

Is all the data necessary?

• Can fields be dropped from the input data? Use KEEP or
DROP statements or dataset options to specify the
variables you need for processing.

• Can you subset your dataset prior to sorting it? Use a
WHERE clause or dataset option to specify the
observations you need for processing.

• Can you consolidate it prior to sorting it? This is another
use for CLASS statements in a SUMMARY or MEANS
procedure.

Manual Partitions

The last resort is to make little ones out of big ones – divide a
large dataset into manageable smaller partitions. There are
usually one or more logical orderings for the data, whether by
geographic region, time, or other principle characteristics. In
particular, there is no reason to build your partitions along your
primary sort sequence. If your analysis is based on Social
Security Number, but data arrives annually, partition the data
by year, and sort each partition by SSN.

Sorted or indexed data can be read by specifying multiple
datasets on a SET statement with BY processing:

4 Described in Paul Kent’s 1995 SUGI paper “SQL Joins – The Long and
The Short of It”, cited in References. Interpretations for values returned by
the _METHOD option are provided in the paper.

data tape.bigfile;
* small1 - small2 are sorted or indexed by
* sortvar;
set

small1
small2
small3
small4
small5
;

by sortvar;
run;

You can also create a single virtual dataset by combining the
files in an SQL view. This allows a single point of access to all
the datafiles, for simplified processing. Remember, however,
that SAS views are read-only. It is not possible to update the
underlying data through the view.

ROLL TAPE
Challenges and opportunities of sequential media

Because tape allows only sequential, and not random, access,
arbitrary size limits do not apply. On the other hand, this
means that:

• You must access data in a tape dataset sequentially – there
is no way to shortcut to a particular record or past an
arbitrary number of records.

• There is no way to know ahead of time the total number of
records in a dataset. Tools such as the SET NOBS=
option are not available.

• It is not possible to index tape datasets. You can,
however, sort the data.

• Tape is much slower than disk. Sustained transfer rates
are on the order of 0.25 - 1 MB/second.

Despite these limitations, there are times when working with
tape is appropriate, in particular, when reading data from tape
or when creating an archive to be maintained off-line.

The two most common UNIX tape formats, 4mm and 8mm
cassette, allow for about 2 Gig and 5 Gig storage, respectively,
without compression, and approximately double the amount
compressed. Compression on UNIX is typically specified in
the tape device-driver specification. This is discussed later.

As of release 6.09, SAS can read and write both raw and SAS
data to tape. SAS datasets are accessed through the TAPE
keyword in a libname statement:

libname mylib tape ”/dev/rmt/0m”

Tape Paradigms

When working with tape, there are four typical task
configurations

Tape to multiple disk files: Done when data on tape needs to
be subset in order to be stored on disk. If necessary, the
partitioned disk files may be combined in a view as described
above, in order to be analyzed as a single unit.

Tape subset to disk: Performed when an analytic or
processing archive has been created and is maintained off-line.
Data meeting specified criteria are extracted from tape and
processed from disk.

Tape-to-tape: In some instances, a single level of processing
is required of tape data, and the results may be stored to tape.

5

The most common situation would be simple data conversions,
or conversion of raw data to SAS datasets.

Multiple disk files to tape: An alternative when partitioned
disk data needs to be placed in an off-line archive. Multiple
files may be read in a single data step. If the source data are
sorted or indexed, the tape dataset may be written in sort order
using BY processing.

The Last Reel – Processing Tips

Tape processing introduces its own challenges. Here are some
miscellaneous suggestions and hints.

Compression, density, and device specification: Most tape
devices support hardware compression of data. This is
typically specified in the device call itself, e.g.:

/dev/rmt/Om.

Refer to your site documentation for specific options available.

SAS tape disposition: The TAPECLOSE= system and
FILECLOSE= dataset option specifies what to do with the
tape drive when processing is completed. Options are
REREAD, REWIND, LEAVE, and DISP. The mt UNIX
command can also be used for positioning, rewinding, or
unmounting tapes.

Readiness testing: Because tape is not constantly in a ‘ready’
mode, your job needs to be either manually or automatically
staged to execute when the appropriate tape drive and media
are ready to accept input. On most UNIX systems, the mt
command can be used to query a device for status.

This can be incorporated into SAS code or a macro which tests
the return value, %SYSRC, of the command, and delays
program execution until the drive is available. For example:

%sysexec mt -f &Drive status;
%if &sysrc ge 1 %then
 /* failure processing */
%else
 /* success processing */

IN THE RAW
Reading, Writing, and Getting Piped

One of the most flexible features of UNIX is the ability of
programs to receive or send output to other programs through
stdin, or standard input, and stdout, or standard output. This is
known as piped output, piping, and is accomplished by a pipe,
‘|’. There is also a stderr. You might guess at what it means,
it will appear later.

Pipes can be useful for simple tasks like paging through screen
output so that you can read it:

ls -l | more

Multiple commands can be piped together, though this
sometimes makes for difficult reading:5

descr=`ps -fp $job | grep $user | \
 sed -n "/.\{24\}\(.*$\)/s//\\1/p"`

Pipes can also be used directly by SAS for reading and writing
output to the operating system. The SORT disk utilization

5 For the curious, this expression extracts process description from the ps
(process information) command, after filtering for the user id, and striping
away the first 24 characters. It is used to identify processes which have
terminated (in which case, no description exists), within a UNIX script.

chart presented earlier is produced from a program which reads
input directly from the UNIX bdf disk utilization command, via
a FILENAME PIPE: 6

filename bdf pipe ’bdf’;

This is read in a data step as with any other infile:
data bdf;
 infile bdf;
 input /* etc. */

The fact that this is a pipe is acknowledged by SAS:
NOTE: The infile BDF is:
 Pipe command="bdf"

NOTE: 23 records were read from the infile
BDF.

 The minimum record length was 50.
 The maximum record length was 67.

Pipes are most useful in large file processing in allowing direct
access to and from compressed data.

Working With Compressed Raw Data

File compression is an attractive built-in utility to UNIX –
compression rations of 80-90% are readily attainable.
Although SAS cannot access datasets which have been
compressed through the operating system, raw data may be
piped through a compression or decompression program as it is
written to or read from disk.

When reading large quantities of raw data, it is possible to
perform decompression ‘on the fly’ by passing the file through
a FILENAME PIPE with the uncompress, zcat, or gunzip
commands:

filename rawcompr pipe ”zcat /mypath/mydata”;

Piped input or output may include error messages.7 Typically,
you avoid introducing these to your data stream by redirecting
stderr to a null device, called output redirection.
Implementation varies according to your UNIX shell and
system; you are referred to system documentation for details.

Compressing SAS Data

Although SAS does not support direct access to datasets which
have been compressed by UNIX utilities, it is possible to proxy
this by creating special support for writing to and reading from
a compressed flatfile. Alternately, SAS datasets can be
scheduled for compression and decompression according to
processing needs.

Accessing compressed data through SAS

This method has the benefit of not requiring storage for the
entire decompressed contents of a file by accessing it via pipes.

Writing to the file might be through a macro of the form:

%macro writcmpr(
 indata= , /* input dataset */
 cmprfile= , /* compressed output

 /* flatfile */

6 FILENAME PIPE is documented in SAS Companion for UNIX
Environments: Language, Version 6, First Edition, p 176. See
References.
7 This includes the somewhat cryptic “mesg: cannot stat”, along with more
recognizable error output.

6

);
 filename writcmpr pipe

 "compress > &cmprfile";
 data _null_;
 file writcmpr;
 set &indata.;
 put a best. +1
 b best. +1
 c best. +1
 x;
 run;
 %mend;

In this example, data cannot be appended to the file once it is
written.8 The program is specific to the structure of the file
being compressed, though a utility such as the %FLATFILE
macro could be extended to write generalized compressed
output.9

Read access could be accomplished through a data step view
for direct access to compressed data. This method may be used
to treat any compressed flatfile as a SAS dataset when reading
to a procedure or DATA step.

The drawbacks of this method are several:

• It is code intensive. Each dataset requires creation and
extraction programs. The natural elegance of SAS not
needing specific access programs for data is violated.

• Appending new records to compressed data is non-trivial.

• A significant processing overhead is incurred for
compressing, decompressing, and converting data from
raw to SAS form.

• Features available for use with SAS datasets (POINT=
processing, indexing, etc.) are not available.

Nonetheless, if direct access to large quantities of data from
disk are required, this is one solution.

Using compressed SAS data

A related method was employed at a site with limited disk
storage and large quantities of data arriving on tape.

SAS datasets were compressed or uncompressed during
processing as a macro loop cycled through a sequence of
datasets. Input data were uncompressed in background one
cycle prior to use, minimizing process interruption. Output was
compressed in background immediately on completion. The
nature of the task – repetitive cycling, large quantities of data,
and several years of application, justified the development
effort.

8 Redirection (‘>’) is specified as overwrite only in the macro, attempting
to add data to the file would replace it. More critically, simply appending
output to an existing compressed file will corrupt the file.

Conceptually, the macro could be extended to move the original
compressed data file to a temporary location, read from this file to the new
output through FILENAME PIPEs, and append new data to the output file.
However, my experiments with multiple FILENAME PIPEs in a single
DATA step inevitably aborts the SAS session.
9 The %FLATFILE macro produces text output from a SAS
dataset without requiring specialized programming. It was
described by M. Michelle Buchecker of the SAS Institute in
the paper ‘%FLATFILE and Make Your Life Easier’, SAS
Institute, Inc., Proceedings of the Twenty-First Annual SAS
Users Group International Conference, Cary, NC: SAS
Institute Inc., 1996 pp178 - 180. It is available via anonymous
ftp from ftp://ftp.sas.com/pub/sugi21 as “flatfile.sas”.

Creating this system required:

• A process scheduling system. Sequentially numbered
datasets were processed in a macro loop.

• A data uncompression interface. A macro launching the
gunzip command, as a background process, through
%SYSEXEC was used. Files are given temporary names
during uncompression.

• File/data existence testing. Macros to test the existence of
uncompressed files and datasets were required. These
drove sleep/proceed loops in the main code. If data were
not available when needed, the main program would
‘sleep’ up to a specified number of intervals until delivery
(or operator intervention).

ADVANCED VALUE CODING
Smart Human Tricks #2

It is possible to improve greatly on the efficiency of SAS data
storage, if you are willing to tolerate some fairly esoteric
programming and data representation. The following are smart
human tricks – though not necessarily good programming
practice. You should think twice before introducing the
complexity involved to your code in today’s era of cheap
storage.

Bitfields

The most common example of this is a bitfield. The default
numeric variable contains 8 bytes, or 64 bits. The shortest
UNIX numeric variable is 3 bytes, which is still 24 bits. A
Boolean value requires only one bit for representation. In a
bitfield, each bit of a variable is used to represent a single
Boolean value.

It is possible to utilize the full informational capacity of a
character field of length 1 to 25 bytes (or 200 bits – the
maximum length of a SAS character string). For ease of
interpretation, an SQL view of the bitfield can offer a more
conventional view of the data. A format can be assigned to
these values for straightforward interpretation.

This is illustrated in Figure 2, the equivalent of eight character
fields of five bytes each are represented with a single byte of
disk storage.

CharHex encoded character data

Character hexadecimal, or CharHex coding is a related
technique. It encodes integer values on character fields based
on the underlying hexadecimal code. As with bitfields, it
makes available the full informational capacity of the data
space.

SAS formats may be used to create presentable a data field by
coding directly against the hexadecimal value of the field data
values from CharHex fields.

This is a possible solution when presented with stable data
structures consisting largely of categorical field with relatively
small code schemas, and when storage is at a premium.

CharHex derives its storage efficiencies from the fact that
integers can be far more efficiently represented in hex space
than as floating decimals, and from the ability to define
character variables as small as a single byte.

7

The number of representable values for fields of
one to eight bytes (limits imposed by formats
used in the method) are given in Table 1

The utility of this method is in smaller fields –
it’s been a while since I needed a hundred
million million of anything. Many categorical
coding schemes can be coded into 256 or fewer
values – gender, states of the Union, and so
forth. Two to four bytes could handle
applications such as medical billing codes to
national registries – tens of thousands to
billions of values.

Modeling a typical application, CharHex coding
results in a dataset about 50% the size of
conventional usage, the majority of this savings
coming from encoding small schema sets.

Assuming that values are used to specify
display formats, implementing this scheme
requires:

• A method of generating sequential lists of
character hex values. These become the
FORMAT internal values.
The can be done by translating a decimal
value to the appropriate hex value through
PUT and INPUT functions, as here:

x = input(put(y, binary2.),
$binary2.);

…or by incrementing an existing CharHex
value, as here. Note that this macro is
sensitive to the size of the storage field.

%macro CBitAdd(arg, incr= 1);

 input(put(
 input(&arg, pib2.) + &incr,
 binary16.), $binary16.)
 %mend;

data _null_;
 x= ’0001’x;
 x= %CBitAdd(x);
 put x $hex4.;
 run;

0001 0002
NOTE: DATA statement used:
 real time 0:00:00.11
 user cpu time 0:00:00.02
 system cpu time 0:00:00.02
 memory 41 K

• A method of translating the semantic value (display value)
to the appropriate hex values. This can be done through a

format which reverses the display assignment, or through
an SQL join to an appropriate lookup table.

• A method of displaying the encoded data in the display
format. Though this could be accomplished by defining
the display formats on the underlying data, the preferred
method is to define an SQL view displaying the
interpreted (not raw storage) values. This allows
searching or manipulating the data in terms of the display
values in a more consistent manner for the user.

BEEN THERE, DONE THAT
Further Information

The following sources provide additional information on large
file processing and general programming techniques, by
persons with experience with the issues.

From SAS Institute, Inc., Proceedings of the Twenty-First
Annual SAS® Users Group International Conference, Cary, NC:
SAS Institute Inc., 1996.

• Truscott, Tom, Open Systems Solutions to Large File
Requirements
In-depth discussion of UNIX large-file limitations and solutions
developed or under development by the SAS Institute.

Figure 2 -- Bitfield Example

proc format;
 value truth 0 = 'false' 1 = 'true' other= 'ERROR';
 run;

data bitty;
 attrib bitfield length= $1 format= $binary. label= 'Bitfield for sas--dog';
 string= '00000000';
 sas = 1;
 love = 1;
 gop = 0;
 taxes = 1;
 death = 1;
 lottery= 0;
 cat = 1;
 dog = 0;
 array bits{*} sas -- dog;
 do i = 1 to dim(bits);
 if bits{i} then substr(string, i, 1) = '1';
 end; * do i processing;
 bitfield = input(string, $binary8.);
 keep bitfield;
 run;

proc sql;
 create view bitview as
 select
 input(substr(put(bitfield, $binary8.), 1, 1), 1.) as sas format= truth.,
 input(substr(put(bitfield, $binary8.), 2, 1), 1.) as love format= truth.,
 input(substr(put(bitfield, $binary8.), 3, 1), 1.) as gop format= truth.,
 input(substr(put(bitfield, $binary8.), 4, 1), 1.) as taxes format= truth.,
 input(substr(put(bitfield, $binary8.), 5, 1), 1.) as death format= truth.,
 input(substr(put(bitfield, $binary8.), 6, 1), 1.) as lottery format= truth.,
 input(substr(put(bitfield, $binary8.), 7, 1), 1.) as cat format= truth.,
 input(substr(put(bitfield, $binary8.), 8, 1), 1.) as dog format= truth.
 from bitty
 ;
 quit;

This creates the following output for BITTY and BITVIEW respectively.

.

OBS BITFIELD

 1 11011010

OBS SAS LOVE GOP TAXES DEATH LOTTERY CAT DOG

 1 true true false true true false true false

Table 1 – Character Hex Coding

Bytes Values Conventional SAS Numeric

1 256 N/A

2 65,536 N/A

3 16,777,216 8,192

4 4,294,967,296 2,097,152

5 1,099,511,627,776 536,870,912

6 281,474,976,710,656 137,438,953,472

7 72,057,594,037,927,900 35,184,372,088,832

8 18,446,744,073,709,600,000 9,007,119,254,740,992

8

• Raithel, Michael A., Power Techniques for Processing Large
Tape Data Sets Using the SAS System in the MVS Environment.
Specific to MVS, but strategies apply to any tape processing.

• Lafler, Kirk Paul, “Gaining efficiency with SAS software” pp.
1577 - 1581
Discusses standard methods for improving SAS program efficiency.

• Hardy, Ken, Sally Muller, and Arturo Barrios, “ You Want Me
to Move How Many thousand Files from MVS to UNIX?” pp.
1611 - 1619
Nuts and bolts issues involved in wholesale conversion from
mainframe to UNIX systems by both direct connection and tape
transfer.

The books listed below provide programming and computer-
science insight to technical challenges.

• Aster, Rick Professional SAS Programming Secrets,
Windcrest/McGraw-Hill, Inc. New York, © 1991.
One of the few SAS books written from the perspective of a
programmer, with focus on applying classic computer science
techniques and algorithms to SAS. Aster provides one of the better
examples of bitfield coding in the SAS literature.

• McConnell, Steve Code Complete: a practical handbook of
software construction, Microsoft Press, Redmond, WA, © 1993.
A wealth of information on all aspects of programming design and
style, written for 3GL languages such as C++ and Pascal, but
applicable to SAS. Includes useful tips on software tuning.

General UNIX references.

• Gilly, Daniel et al, UNIX in a Nutshell: a Desktop Quick
Reference for System V & Solaris 2.0, O’Reilly & Associates,
Inc., Sebastopol, CA, © 1992.
General reference to UNIX commands and features.

• Peek, Jerry, Tim O’Reilly, and Mike Loukides, UNIX Power
Tools, O’Reilly & Associates, Inc., Sebastopol, CA © 1993.
A very humanly annotated how to guide for non-trivial UNIX tasks.

REFERENCES
Buchecker, Michelle “%FLATFILE and Make Your Life Easier”, SAS

Institute, Inc., Proceedings of the Twentieth Annual SAS Users
Group International Conference, Cary, NC: SAS Institute Inc.,
1995, p 178.

Kent, Paul “SQL Joins – The Long and The Short of IT”, SAS Institute,
Inc., Proceedings of the Twentieth Annual SAS Users Group
International Conference, Cary, NC: SAS Institute Inc., 1995, p
206-215.

SAS Institute Inc., Companion for UNIX Environments: Language,
Version 6, First Edition, Cary, NC: SAS Institute Inc., 1993

Truscott, Tom “Open Systems Solutions to Large File Requirements”,
SAS Institute, Inc., Proceedings of the Twenty-First Annual SAS
Users Group International Conference, Cary, NC: SAS Institute
Inc., 1996, pp. 1437-1440.

CONTACT INFORMATION
The author may be contacted at:

Karsten M. Self
PM Squared, Inc.
250 Montgomery St., Suite. 810
San Francisco, CA 94104
(415) 283-2437
kmself@pmsquared.com

NOTICES
SAS is a registered trademark or trademarks of SAS Institute
Inc. in the USA and other countries. IBM and OS/2 are

registered trademarks of International Business Machines
Corporation.  indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

	Main TOC

