
Copyright 1996 Merrill Consultants Dallas, TEXAS, USA
First published in Technical Newsletter 30, September 1996
Permission is hereby granted to the Computer Measurement Group and the SAS Users Group to republish this paper

 Data Mining the Original Data Warehouse:
 Twenty-Five Years and a Million Lines of SAS Later

 H. W. "Barry" Merrill, PhD
 President-Programmer

 Merrill Consultants
 Dallas, TEXAS, USA

The author of MXG Software provides a historical perspective of how and why
the SAS System became the pervasive tool for managing and mining of the
original data warehouse, the Performance Data Base built from SMF data. The
architecture of the MXG implementation is described to show how MXG,
currently 911,749 lines of SAS code in 3,011 files (members), executes under
MVS, VM, UNIX, OS/2, Windows 95 or Windows NT to create 1,908 SAS tables
(datasets) with 78,278 columns (variables) from the raw data records produced
by 268 products, where the input volume ranges from only hundreds of
megabytes to fifteen gigabytes per day; some CICS tables contain in excess of
130 million rows (observations).

Contents 1. Notre Dame - 1959 - WOW! from an IBM 610
1. Notre Dame - 1959 - WOW! from an IBM 610

digital computer.

2. Purdue, 1964-1967 - IBM 7090/7094 and IBM
360/44.

3. State Farm Mutual Automobile Insurance
Company, 1972-1976.

4. Sun Oil Company, 1976-1984.

5. Architecture of MXG Software
SMF Processing - Single Record

6. Architecture of Building the Performance Data
Base - BUILDPDB

7. Mining costs and tons of warehouse data dug
up and delivered:

8. Growth of the MXG Source Library

9. SAS does not stand for Single
Authored Software: Acknowledgements

digital computer.
As a Notre Dame sophomore in EE in September,
1959, my first EE lab experiment was to calculate the
determinant of a 4x4 matrix. As the ancient Lab
Instructor finished his instructions he said, "I have to
read this. The IBM corporation has donated a Model
610 dig-it-al computer, located in room 240, and
students can sign up for hour-long blocks." Putting
down the sheet of paper, he said "those digital things
will never last, but next year, as juniors, you can learn to
use the Bendix G15 Analog Computer - that's how
engineers solve real problems!"

I went to room 240, looked through the peep hole and
saw a large grey box, a table with typewriter, and what I
assumed to be a senior, and opened the door to enter.
As the door unhinged, so did the student, shouting
"Shut that door!" as he strode across the room to the
door, flailing his arms. As he stepped out into the hall
shouting "Didn't you read the damn sign?", he
discovered his sign had fallen face down on the floor.
Calming, he informed me that you must get the
operator's attention so he could put the machine in
"QUIESCE/STOP" (which took 5-10 seconds), and only
then was it safe to shuffle in -- slowly. The vacuum
tube machine was so heat sensitive that the air currents
would cause computation to fail, requiring a program
restart.

He pointed me to the IBM manuals and I began at page pattern recognition and vector distance could be used
one. Several hours later, I had learned to punch paper to cluster petroleum engineers that found oil from those
tape and print them on the Selectric and decided to that did not, and coded Fortran programs to manipulate
calculate the determinant on my new toy. data to invoke the BIMD statistical subroutines for

By Saturday, I had punched my program, printed it, and 1967, but the Navy needed nuclear submarine drivers,
was now ready to run my first computer program. As I not programmers, so again I set computing aside for a
watched the paper tape whir through the reader, the second masters in Nuclear Propulsion and sightseeing
addresses flickering on the nixie tubes; I crossed my in the Barent’s Sea, until shore duty running the airline
arms and thought, "Wow, it is 1959, I am a sophomore in to Guantanamo Bay, Cuba, where I taught calculus and
college and am running a real program on a digital ran the overseas extension for Old Dominion University.
computer." The paper tape came to the end, the printer
came alive, and I received my first computer output, four 3. State Farm Mutual Automobile Insurance
characters: WOW! Compan y, 1972-1976.

It took until Sunday to find the senior, who found that I working at State Farm Insurance in Bloomington, IL,
had sort of missed the difference between "program" suggested that I might find a home there.
and "data". The first punch in the tape was a control
character that put the 610 in a scan mode, and in the Dave Vitek had gone to the Boole and Babbage User
fifth-from-end position there was a control character to Group (BBUG, the predecessor of CMG) and decided
print the tape as machine instructions. What had been that maybe, instead of trusting the IBM salesman as
printed were the code letters for the last four program your capacity planner, State Farm could measure its
instructions: own computers, and had funded a ten-person

W = Carriage Return
O = Line Feed Steve Cullen had drafted an excellent attack plan to
W = Carriage Return evaluate tools, and in short order we had
! = Print Accumulator! Kommand/PACES for accounting, Software Monitors

(Two Carriage Returns were always used to ensure that Monitors (TESDATA XRAY), and Simulation (SAM).
the very slow print head was all the way left before print.)

I did finally get the determinant computed, and submitted had started to write PL/1 programs to extract fields from
the first EE lab problem that used a digital computer at SMF records, and I had revived an old Plot subroutine
Notre Dame, but I did nothing further with computers from LARS days, when I found this brief announcement
while there. in Datamation:

I dropped out of Notre Dame in 1962, joined the Navy, “The Institute of Statistics at North Carolina State
was in the Cuban blockade on a surface ship, then on a University announces the availability of the Statistical
Diesel submarine, and then won a Navy scholarship that Analysis System, a package of 100,000 lines, one third
sent me back to college in EE at Purdue University in each in Fortran, PL/1 and Assembler, that does
1964. printing, analysis and plotting of data.”

2. Purdue, 1964-1967 - IBM 7090/7094 and IBM
360/44.
At Purdue, I took a one-hour Fortran II course, using a
7090/7094, and was hooked. I worked on Linear
Programs to model power grids, got a job in the Tab
department wiring plug boards for sorters, collators, and
printers, implemented the Fast Fourier Transform from
the original Cooley-Tukey paper, worked for the
Laboratory for Agricultural Remote Sensing (pattern
recognition of crops from spectral data which led to the
Earth Resource Technology Satellite), built the
ground-truth data for LARS agronomists, and set fire to
our 360/44 Serial #2 (twice!) with a tight loop in the
floating point divide unit that lacked a heat sink. I showed
one PhD candidate in Psychology how

another. I finished my BSEE and MSEE in August,

Leaving the Navy in 1972, my Psychologist friend, now

Measurement Unit for a feasibility study.

(SYSTEM LEAP and PROGRAM LEAP), Hardware

Because Kommand was only for billing, Denny Maguire

I wrote for information, and got a typical university
document, with some pages dittoed, some pages
typed, some printed, each on paper of a different color;
but I immediately saw the power and simplicity of the
INPUT statement for SMF data. However, in the list of
supported data formats, there was no reference to
Packed Decimal. You need to get only seven bytes into
an SMF record to encounter a Packed Decimal field, so
I called the Institute and asked Tony Barr, the author of
the SAS compiler, about support.

"Well, we haven't got around to documenting it yet, but
if you type in PD4. it will work jest fine" he said, so

I convinced State Farm to risk the 1972 purchase price That session was split with an IBM presentation on their
of $100 for the SAS package. new Statistics Gathering Package, an FDP that

Starting in 1964, Tony Barr and Dr. Jim Goodnight had spoke first, then I showed what we had done with SAS
collaborated to develop an ANOVA routine for the at State Farm. One attendee stood and asked the IBM
Department of Agriculture. Tony had been an IBM author of SGP, Bill Tetzlaff, "Now that you have seen
developer of the data base for the cold war's Distant SAS, is there any reason why you would still
Early Warning (DEW line) radar system, and Jim was a recommend your SGP product?"
well known statistician.

Both recognized the weakness of the existing stat a result of this SHARE session!
packages. They were only subroutines that had to be
invoked by other programs that had to prepare and In 1974, SAS added File 13, SAS.MERRILL, to their
manage the data to be analyzed. By creating a distribution tape with code examples for reading SMF
language, a database, and the statistics, the Statistical data.
Analysis System expanded well beyond the original
ANOVA routine and had been tested at several 4. Sun Oil Compan y, 1976-1984.
Agricultural Experimental Stations and other universities. In 1976, I completed my course work at the University

The 1972 announcement was the first public release of when State Farm decided not to rapidly migrate to the
the Statistical Analysis System, and in October, 1972, new MVS operating system, I left for Dallas and Sun Oil
State Farm was the first real customer to install the SAS Company, where I demonstrated that the analysis of
package from NCSU's Statistics Department. SMF with SAS was valid for VS2 as well.

Within days of receipt of SAS, we were extracting CPU In 1979 I wrote my dissertation, "A Comprehensive
time and PROGRAM name and K-Core-Hours to Approach to the Measurement of Large Scale
produce reports on resource consumption direct from Computer Systems" and received my PhD in EE from U
SMF records, and, because SAS stores in floating point, of I. In 1979, Jane Helwig, director of publications at
we found that Kommand lost hours of CPU time SAS Institute (which had become an independent
because of truncation. company in 1975, marketing "the SAS System" instead

Presentations on the use of SAS software and the PDB book and SAS code that showed how to measure
were given to the Bloomington and Chicago chapters of computers, so we worked together on what was to be
the ACM and DPMA; the SAS data base was mentioned titled "The Analysis of SMF and RMF Data Using the
in my paper (on the use of the SAS data base to create SAS System".
simulation input for the System Analysis Machine directly
from actual SMF data) presented at the 1973 SSCS Just before printing, Jane called to say that no one liked
(Symposium on the Simulation of Computer Systems) at the name, and asked if my ego could handle the title
NBS, and at a BOF session at the Seventh Annual "Merrill's Guide to Computer Performance Evaluation
Interface Symposium at Iowa State. using the SAS System", which became a 395 page blue

Many XRAY hardware monitor users became aware of $395 in 1980.
State Farm's PDB through the Midwest TESDATA Users
Group, which held its inaugural meeting in 1973 at State By 1983, MVS/XA loomed with radical changes to SMF
Farm. These presentations were only half technical; we data, and many of the book's users were asking for a
also had to convince attendees that staffing of this new real software product, so in 1984, SAS published
measurement concept was cost justified by the real "Merrill's Expanded Guide to Computer Performance
dollar savings. Evaluation Using the SAS System", a 835 page red

John Chapman had used an XRAY at Standard Oil and tape ($700) that was shipped with the then optional
invited me to join SHARE's Computer Measurement and Merrill Consultant's "Support Subscription" agreement
Evaluation (CME) project, and the PDB was described in ($500 annually), and I left Sun Oil.
a closed session of the CME project at SHARE 42 in
Houston in March of 1974. The first open session Judy, who had taught Business College and had been
presentation on the use of the SAS System to process an executive with an apparel firm, said that she would
SMF data was before an audience of over 750 (half of run the business and I would write and support the
the attendees!) at SHARE 43 in August. software; she does and I do.

selected a few fields from a few SMF records. IBM

Several hundred SHARE sites acquired SAS that fall as

of Illinois (65 miles each way on a CB500 Honda), and

of the "Statistical Analysis System") said users wanted a

book, sold by SAS with a tape of sample programs for

book ($50), and SAS distributed the new MXG Software

In 1987, SAS Institute published the 630-page red book Figure 1 - Readin g a Single SMF Record T ype

"Merrill's Expanded Guide Supplement" and in 1991, DATA TYPE0;
Merrill Consultants replaced the old Support INFILE SMF;
Subscription with a License Agreement and took over all LENGTH DEFAULT=4 IPLTIME 8;
distribution of MXG Software and MXG Books. FORMAT DOWNTM SMCAJWTM TIME12.2

MXG Software has been installed at over 5,200 data INPUT @1 MVSXAFLG PIB1.
centers in all states and 49 countries (although there are @2 ID PIB1.
only about 3,000 licenses now, due to data center @3 SMFTIME SMFSTAMP8.
consolidations), and over 15,000 people bought the @11 SYSTEM $EBCDIC4.
books. @;

5. Architecture of MXG Software SMF Processin g - IPLTIME=SMFTIME;
Single Record INPUT @15 SMCAJWTM PIB4. /*SMF0JWT*/
So much for history. The design of MXG Software @19 SMFBUFF PIB4. /*SMF0BUF*/
exploits many features of the SAS System, especially in @23 VIRTSIZE PIB4. /*SMF0VST*/
the DATA steps that are used to convert raw SMF data @27 SMCAOPT PIB1. /*SMF0OPT*/
into SAS tables (aka "datasets") that are stored in SAS @28 REALSIZE PIB4. /*SMF0RST*/
data libraries (aka SAS "databases"). A simple SAS @;
program to read the SMF file and decode type 0 (IPL) SMCAJWTM=60*SMCAJWTM;
records is shown in Figure 1. OUTPUT TYPE0;

But to process more than one SMF record, a separate END;
program for each record type would be needed, and the
SMF file would have to be read once for each SMF
record. Instead, for each record type, MXG creates one
source member, VMAC0, that defines two "old-style"
substitution MACROs, _VAR0 and _CDE0 with the code
segments that are unique to each record:

 MACRO _VAR0 TYPE0 %
 MACRO _CDE0 Figure 1 code from LENGTH through

END; %

and one source member, VMACSMF, for the INFILE
SMF code segment:

 MACRO _SMF INFILE SMF ...; %

so you can construct a SAS program that will read
multiple SMF records in one pass of the SMF data using
simple macro references to create SAS datasets from
type 0, 6, 26, and 30, as shown in figure 2.

These old-style MACRO statements are used simply as
shorthand; SAS will replace the macro name with its
contents as SAS reads the source code. They were not
replaced by the newer %MACRO facility, because
MACRO can handle any text string, whereas %MACRO
has real problems if the text has parentheses, and
because %MACROS must be compiled, while MACROs
are simply read and stored. All MXG substitution
MACRO names start with an underscore.

The actual MACRO definitions for _VAR0 and _CDE0 in
member VMAC0 can now be examined in detail in
Figure 3 to see the SAS features used:

 IPLTIME DATETIME21.2;

IF ID=0 THEN DO;

 RETURN;

Figure 2 - Readin g Multiple SMF Record T ypes

%INCLUDE SOURCLIB(VMAC0,VMAC6,VMAC26,
VMAC30,VMACSMF);

DATA
_VAR0 _VAR6 _VAR26 _VAR30;
_SMF
_CDE0 _CDE6 _CDE26 _CDE30;

Instead of the TYPE0 dataset name, MACRO _VAR0
contains the MACRO name _LTY0, the "Library"
macro, that is defined in IMAC0, the "Installation
Tailoring member" for the VMAC0 member. The
default definition in IMAC0is MACRO _LTY0 TYPE0 %,
to create the WORK.TYPE0 dataset; by using an
externalized macro name in place of a hardcoded
name, you can tailor IMAC0 to send the TYPE0 dataset
to tape for a large dataset to save DASD space, or
could rename TYPE0, without ever modifying the MXG
Source Library. By concatenating a tailoring library that
contains all of your changes ahead of the MXG Source
Library:

//SOURCLIB DD DSN=TAILORNG.SOURCLIB,DISP=SHR
// DD DSN=MXG.SOURCLIB,DISP=SHR

installing a new version of MXG is little more than
four bytes for a DATETIME variable will truncate up to
255 seconds), and some accounting variables (like

replacing the old MXG Version's Source Library with the Service Units) are also kept in 8 bytes (which will store
new MXG Version's Source Library. 16 significant digits and integers as large as

The KEEP= list inside the parentheses names the
variables that are to be kept in dataset TYPE0. Without The FORMAT statement assigns the display format for
the dataset KEEP= operand, all variables defined in the variables, but does not affect the internal value of the
DATA step would be kept. At the end of the KEEP= list SAS variable. Time variables are stored internally as
is the _KTY0 token, defined in IMAC0, which defaults to seconds and fractions; most SMF durations have
null. resolution of .01 second so they are FORMAT as

If you wish to create new variables NEWVAR1 and stored internally as the number of seconds after Jan 1,
NEWVAR2 in dataset TYPE0, you would define 1960, the SAS epoch, and are FORMAT as

MACRO _KTY0 NEWVAR1 NEWVAR2 % DATETIME21.2 (15AUG2019:12:00:00, the startime of
to add those variables to KEEP= list. Moreover, if you the third Woodstock) and display the four-digit year.
want to drop variables that you don't need (to reduce the Date variables are stored internally as the number of
stored size of TYPE0), for example OPTDSETS and days since the SAS epoch and are FORMAT as
OPTVOL, you would define DATE9. (15AUG2019).

MACRO _KTY0 DROP= OPTDSETS OPTVOL %,
and those variables would not be kept in dataset TYPE0, Although FORMATs are assigned during creation of the
because the DROP= list overrides the KEEP= list! You variable, you can always override these formats in your
can also use the KTY0 macro name to add any dataset reports with your own FORMAT statement. This is
option (for example, COMPRESS=YES) for the TYPE0 especially true of the DATETIME format. If you want to
dataset. count IPLs by Date and Hour, you do not have to use

When variables are listed in a KEEP= list but are not variables in a new dataset; instead, you can directly
created, those variables are not kept. This is exploited in process the MXG dataset in your report program and
CICS type 110 processing, where optional segments shorten the format length:
(DL/I, DBCNTL) may or may not exist. MXG names
those variables in the KEEP= list, but the optional PROC FREQ DATA=TYPE0;
processing code (in IMACICDL,IMACICDB) is TABLES IPLTIME;
commented out, so SAS never sees the creation of FORMAT IPLTIME DATETIME10.;
those variables, and they are not kept. In this way, only
one member, the optional IMACs, needs to be tailored to To count by date, use:
create them.

Inside the _VAR0 definition, the dataset LABEL=
operand describes the dataset (that label is visible Because of this SAS feature, MXG datasets always
through PROC CONTENTS), and the KEEP= list is have one DATETIME variable instead of two separate
commented when new variables are added by a new Date and Time variables.
release. Variables in the KEEP= list are listed
alphabetically and aligned for ease in reading, but that Following the FORMAT statement, variables LENGTH
ordering has no actual effect on the built dataset. and OFFSMF are tested to detect invalid type 0 records
Instead, by making the first SAS statement inside (SYSPROGs who create SMF record often have
the_CDE0 macro to be the LABEL statement, and by unexpectedly created a record with ID=0). LENGTH
listing variable names alphabetically, the dataset is and OFFSMF are created in MACRO _SMF, a portion
created with variables in alphabetical order, so PROC of which is shown in Figure 4. The leading semicolon
PRINTs and PROC MEANS will show the variables in before INFILE is needed to terminate the DATA
order, which is very useful when the dataset has statement that will precede it (since the _VARxxxx
hundreds of variables. tokens cannot end with a semicolon).

The LENGTH statement follows the LABEL statement The OFFSMF test is initialization logic; once OFFSMF
and always contains DEFAULT=4, causing SAS to store has been set, the RETAIN statement will keep that
numerics in only 4 floating point bytes (SAS default is 8 value. The JFCB=SMFJFCB operand on the INFILE
bytes) halving the DASD storage required. Four bytes puts the SMF Job File Control Block in variable
floating point will store exact integers up to 16,777,216
and will keep seven significant digits, quite sufficient for
most numerics. However, variables that contain
DATETIME stamps require 8 bytes (using only

72,057,594,037,927,936).

TIME12.2 (999:59:59.99). DATETIME variables are

DATEPART() and HOUR() functions to create new

 FORMAT IPLTIME DATETIME7.;

SMFJFCB; if the fifth bit of the 100th byte of the JFCB is
on, your //SMF DD points to an undumped VSAM SMF file.
SMF records in the VSAM SMF file have four

Figure 3 - VMAC0

%INCLUDE SOURCLIB(IMAC0); /* DEFINES _LTY0 AND _KTY0 */
MACRO _VAR0
_LTY0 /* TYPE0 */

(LABEL='TYPE 0 IPL SMF'
KEEP=DOWNTM IPLTIME OPTDSETS OPTVOL REALSIZE REC SMCAJWTM SMFBUFF SYSTEM VIRTSIZE ZDATE
/* ADDED BY MVS/ESA 5.1 */
PRODUCT SYSNAME SYSPLEX
_KTY0
)

%
MACRO _CDE0
IF ID=0 THEN DO;

LABEL
DOWNTM ='ESTIMATED*SYSTEM*DOWNTIME'
IPLTIME ='SMF*RECORD*TIME STAMP'
OPTDSETS ='CREATE*DATA SET/DASD*RECORDS?'
OPTVOL ='CREATE*VOLUME*RECORDS(19/69)?'
PRODUCT ='MVS*PRODUCT*NAME'
REALSIZE ='REAL*MEMORY*SIZE(KBYTES)'
REC ='TEMPORARY*SCRATCHES*(PERM/ALL)?'
SMCAJWTM ='JOB WAIT*(ABEND 522)*LIMIT'
SMFBUFF ='SMF*BUFFER*SIZE(BYTES)'
SYSNAME ='SYSNAME*PARAMETER*FROM IEASYSXX'
SYSPLEX ='SYSPLEX*NAME FROM*COUPLEXX'
SYSTEM ='SYSTEM*ID'
VIRTSIZE ='VIRTUAL*MEMORY*SIZE'

;
LENGTH DEFAULT=4 IPLTIME 8;
FORMAT DOWNTM SMCAJWTM TIME12.2

 IPLTIME DATETIME21.2
 ZDATE DATE9.

;
IF LENGTH-OFFSMF NE 31 AND LENGTH-OFFSMF NE 56 THEN DO;

NBAD0+1;
IF NBAD0 LE 3 THEN

PUT '***VMAC0.ERROR. INVALID TYPE 0 RECORD DETECTED. ' LENGTH= /
' BUT TRUE IPL RECORD SHOULD BE EITHER 31 OR 56 BYTES '
' RECORD IS DELETED ' _N_= SYSTEM= / +16 SMFTIME=;

 DELETE;
END;
IPLTIME=SMFTIME;
INPUT @15+OFFSMF SMCAJWTM &PIB.4. /*SMF0JWT*/

 @19+OFFSMF SMFBUFF &PIB.4. /*SMF0BUF*/
 @23+OFFSMF VIRTSIZE &PIB.4. /*SMF0VST*/
 @27+OFFSMF SMCAOPT &PIB.1. /*SMF0OPT*/
 @28+OFFSMF REALSIZE &PIB.4. /*SMF0RST*/
 @;

IF LENGTH-OFFSMF GE 56 THEN
INPUT @32+OFFSMF +1 /*RESERVED*/

 @33+OFFSMF PRODUCT $EBCDIC8. /*MVS*PRODUCT*NAME*/
 @41+OFFSMF SYSNAME $EBCDIC8. /*SYSNAME*PARAMETER*FROM IEASYSXX*/

@49+OFFSMF SYSPLEX $EBCDIC8. /*SYSPLEX*NAME FROM*COUPLEXX*/
@;
IF SYSTEM=PREVSYS AND IPLTIME GE PREVTIME THEN DOWNTM=IPLTIME-PREVTIME;
OPTDSETS='NO ';
IF SMCAOPT='...1....'B THEN OPTDSETS='YES';
OPTVOL='NO ';
IF SMCAOPT='...01...'B THEN OPTVOL='YES';
REC='PERM';
IF SMCAOPT='......1.'B THEN REC='ALL';
SMCAJWTM=60*SMCAJWTM;
%%INCLUDE SOURCLIB(EXTY0); /* _LTY0 OUTPUTS TYPE0 */
RETURN;

END; /* END CDE0 */
%

Figure 4 - VMACSMF FORMAT, because a one byte character variable stores

MACRO SMF storage bytes on MVS and three bytes on ASCII
 ;INFILE SMF STOPOVER LENGTH=LENGTH platforms, and a four-byte numeric must be stored in

COL=COL START=BEGINCPY END=EOFSMF five bytes to see all of the bits.
RECFM=VBS LRECL=32760 JFCB=SMFJFCB;

 RETAIN OFFSMF PREVID PREVSYS; MXG detects when IBM has added new data to a
 IF OFFSMF=. THEN DO; record, to make MXG fully backwards compatible with

IF SUBSTR(SMFJFCB,100,1)=’....1...’B all levels of MVS. The test for LENGTH-OFFSMF
THEN OFFSMF=4; detects the new data added by MVS/ESA 5.1. While

ELSE OFFSMF=0; bits in MVSXAFLG might have been used to identify the
%%INCLUDE SOURCLIB(IMACZDAT); MVS version that wrote the record, it is usually safer to

 END; test the record length rather than a version indicator,
 INPUT@1+OFFSMF MVSXAFLG &PIB.1. because developers must set the length correctly, but

@2+OFFSMF ID &PIB.1. do not always update version numbers!
@3+OFFSMF SMFTIME SMFSTAMP8.
@11+OFFSMF SYSTEM $EBCDIC4. Although not shown in the _SMF macro in Figure 4,

@; variables PREVSYS and PREVTIME contain the
 %%INCLUDE SOURCLIB(IMACFILE); SYSTEM and SMFTIME from the immediately
% preceding SMF record, so that variable DOWNTM, an

 TYPE0 (IPL) dataset. Then _CDE0 creates variables,

bytes that are not present in the dumped SMF BSAM
records; by setting OFFSMF=4 for VSAM and using
+OFFSMF in the INPUT statement, those extra bytes
are skipped, so you can transparently read either
dumped BSAM or un-dumped VSAM SMF data.

IMACZDAT externalizes the code to set variable
ZDATE (Zee Date Zee obs was created) so it can be
changed in case of a rerun. The SMF header's four
always-present variables are INPUT, and exit member
IMACFILE is called. IMACFILE can be used to delete
or select SMF records by time, ID, or system, to write
selected raw SMF records to a flat file, etc.

Returning to the _CDE0 section, variable SMFTIME that
was INPUT in the _SMF macro is stored into IPLTIME,
and then the variables unique to the type 0 record are
INPUT. SAS provides a wide range of SMF
INFORMATS (SMFSTAMP, TODSTAMP and
RMFSTAMP) that convert data into SAS datetime
values; these unique INFORMATs work the same on all
SAS platforms. However, INFORMATs IB, PIB, PD, RB,
and NUM under MVS must be changed to S370FIB,
S370FPIB, S370FPD, S370FRB, and S370FF when
SAS is executed on ASCII platforms. For these
INFORMATs, MXG uses a macro variable name (&PIB)
in its source code, and member VMXGINIT (invoked by
the CONFIG member at startup) executes either %LET
PIB=S370FPIB or %LET PIB=PIB, depending on the
execution platform, for transparent execution anywhere!

While numeric variables can be used for fields
containing hex values, using HEX format for display,
MXG now INPUTs hex fields into character variables
with INFORMAT $CHAR and assign a $HEX

in one byte, while a one-byte numeric needs two

estimate of the outage, can be calculated for the

converts SMCAJWTM to seconds, and the TYPE0 Data
Set Exit member EXTY0 is INCLUDEd. That member
contains comments and the SAS statement:
 OUTPUT _LTY0;

to externalize the OUTPUT of the TYPE0 dataset. In
the Data Set Exit you can create new variables to be
output, or you can add logic to conditionally execute the
OUTPUT statement and thereby output only certain
observations. The exit is taken after all variables have
been created, so any criteria can be used for selection.
The Data Set Exit member plus the _L and _K macro
definitions in the IMAC member allow complete user
tailoring of the contents of all MXG datasets.

6. Architecture of Buildin g the Performance Data
Base - BUILDPDB
I coined the term PDB, for the Performance Data Base,
while at State Farm in the fall of 1972, when I began to
regularly use my SAS program to process weekly SMF
data records (from OS/360 MVT Release 20.6!). I
recall a comment that we would need to build a
warehouse to store the SMF data tapes, and a reply
that we would let SAS manage the warehouse! The
original PDB used only type 0, 1, 4, 5, 6, and 12 SMF
records, and the weekly PDB, A.PERF155(0), was built
on a mountable 3330-1 device; six weekly PDBs would
fit on one 3330 back then! I implemented the daily
PDBs in 1973, at the request of Operations, who had
come to like the weekly reports and wanted daily detail.
All trending, capacity planning and serious analysis
must use weekly data, rather than daily or monthly, to
see the true growth, because holiday-containing weeks
fall out of a weekly plot, while monthly data varies
according to the number of

work days (and when they fall in the week) and cannot TYPETSWP and TYPETALO are SORTed from the
be normalized safely. //WORK data library into the //PDB data library. By

The term PDB was in wide-spread use inside State do not have to do a SORT; instead, they can use BY
Farm by 1973, when Mario Morino and Doug Denault statements with the report procedures to save CPU
came to Bloomington, to install the first copy of their time and I/O activity for reporting. The sort order is
new TSO/MON product. They arrived Monday morning, preserved into the WEEKLY and MONTHLY PDB
and with the help of Kathy Colbert and Steve Cullen, libraries as well.
they had assembled and started the monitor by noon.
They then began to compile their COBOL report The third phase SORTs these RMF datasets into the
programs, which were still compiling at 6pm when //PDB data library:
Kathy handed me the SMF format for the TSO/MON
SMF record as they went out to supper. I wrote the SAS TYPE70 TYPE70PR TYPE71
code to decode the new record, added it to the PDB TYPE72 TYPE72DL TYPE72GO
job, and came in the next morning to find the new code TYPE72MN TYPE72SC TYPE73
was successful; when Mario and Doug showed up at TYPE73L TYPE73P TYPE74
8am, I gave them a SAS plot of the number of TSO TYPE74CF TYPE74ST TYPE74TD
users versus time of day, and thus did Mario learn of TYPE75 TYPE77 TYPE78
the power of SAS! (Only late that second day did their TYPE78CF TYPE78CU TYPE78IO
programs produce any reports!) TYPE78PA TYPE78SP TYPE78VS

The MXG BUILDPDB logic consists of five phases. In and then invokes member RMFINTRV to read and
the first phase, the input SMF file is read and multiple MERGE these datasets:
SAS datasets are created in the //WORK data library.
The simple macro references for this phase are: TYPE70 TYPE71 TYPE72

DATA TYPE75 TYPE78
_VAR0 _VAR0203 _VAR6 _VAR21
_VAR26J2 _VAR30 _VAR7072 _VAR71 to create one observation per RMF interval in the
_VAR73 _VAR74 _VAR75 _VAR77 PDB.RMFINTRV dataset. PDB.RMFINTRV contains the
_VAR78 _VAR89 _VAR110 _VARDB2 PCTCPUBY from type 70, and (by using member
 _VARTMNT _VARUSER IMACWORK to map performance groups or service
_SMF classes to workloads) type 72 resources are summed
_CDE0 _CDE0203 _CDE6 _CDE21 in Batch, TSO, CICS, etc workload variables, so
_CDE26J2 _CDE30 _CDE7072 _CDE71 uncaptured CPU time and capture ratio can be
_CDE73 _CDE74 _CDE75 _CDE77 measured, and the paging swapping and I/O activity is
_CDE78 _CDE89 _CDE110 _CDEDB2 contained in a single observation for each RMF interval,
_CDETMNT _CDEUSER; providing hour-by-hour capacity measurement data.
RUN;

This DATA step creates 116 SAS datasets in the that were written to the //WORK library and invokes
//WORK library and creates the CICSTRAN dataset member CICINTRV to summarize them into the
(one observation per CICS transaction, from type 110) PDB.CICINTRV (interval) and PDB.CICEODRV
direct to tape (to minimize DASD space and yet capture (shutdown) CICS datasets.
each CICS transaction). The programs ASUMCICS and
ASUMDB2A, executed after BUILDPDB, read the detail The fifth phase of BUILDPDB operates on the type 30
transaction datasets to create the summary datasets subtype 1, 4, and 5 records, the type 6, and type 26
PDB.CICS and PDB.ASUMDB2A that are compact for records to create accounting, resource and activity data
CICS and DB2 response and resource measurement. for Jobs, TSO, STC, APPC, and Open MVS address

Four PDB exits, EXPDBINC, EXPDBVAR, EXPDBCDE, not printed, or still running when SMF was dumped,
and EXPDBOUT, allow other SMF records to be added etc.) that were written yesterday to the PDB's //SPIN
to the PDB in the one reading of the SMF file. data library are merged in with today's new SMF data.

In the second phase of BUILDPDB, datasets observation per job, 223 variables), to the PDB.STEPS
TYPE0, TYPE0203, TYPE21, TYPE30_D, (one per step, 200 variables), and to the PDB.PRINT
TYPE30_6, TYPE30OM, TYPE30MU,TYPETMNT, (one per print file, 51 variables) and job accounting

creating PDB datasets in SORT order, report programs

TYPE72GO TYPE73P TYPE74

The fourth phase reads the 47 CICS statistics datasets

spaces. Records for incomplete jobs (i.e., executed but

The completed jobs are written to the PDB.JOBS (one

fields are propagated into

PDB.STEPS and PDB.PRINT so that resource billing by So the online DASD PDB required only 910MB (1150
account at the job, step, or program level can be done cylinders on a 3390). Its contents are shown in Figure 5.
directly from the PDB. Today's still-incomplete job Most of that volume is taken by only a few datasets:
records are written to the //SPIN library for tomorrow's DB2ACCT (427MB for 266,513 DB2 plan executions,
processing. The IMACSPIN member defines which could have been sent to tape like CICSTRAN),
SPINCNT, the number of days BUILDPDB will SPIN STEPS (83MB for 88,777 steps), ASUMDB2A (69MB,
records. While the PDB.JOBS, PDB.STEPS and the summarized output from DB2ACCT), TYPE74
PDB.PRINT data sets contain observations for (48MB), JOBS (34MB for 31,472 job executions),
completed jobs, the dataset PDB.SPUNJOBS TSOMSYST (30MB), TYPE30MU (22MB) and CICS
describes all jobs in the //SPIN library, so all of (21MB), plus all other RMF data (24 MB) account for
yesterday's work can be analyzed. Holding the records 760 MB. But many important datasets are less than
in the //SPIN library until the job has purged produces a one megabyte; the RMFINTRV summary dataset has
single picture of the job. If records are not SPUN, one 24 hours of each of the 3 system's 15-minute RMF
day's PDB can have an obs with only the CPU time interval data (288 obs) in only 452 Kilobytes (9 tracks)
from the type 30s, another day's PDB can have an obs of DASD space!
with only print lines from the type 6, and yet another
day's PDB will have an obs with just Purge record data, And what about that 130 million observation
and all three obs from this one job will have many CICSTRAN dataset? One massive site read that many
missing values and an incomplete picture, although no CICS transactions from 68 SMF tapes (3490E
resources are lost. The individual SPINxxxx data sets compressed) to select 1500 CICS transactions. The
are copied from the SPIN library into the PDB library for job took 30 elapsed hours and 5 CPU hours!
backup purposes. You can always go back to the last
successful run, copy the SPINxxxx datasets from that 8. Growth of the MXG Source Librar y
PDB into the SPIN library, and then restart after an An Annual MXG Version is created in first quarter of
error. each year, and throughout the year, interim Versions

While dataset TYPE70PR (one obs for each PR/SM, and changes to old records. The fourteenth MXG
MDF, or MLPF LCPUADDR in each LPAR) contains Annual Version will ship in early 1997, but MXG 14.06,
LPAR utilization, INCLUDing ASUM70PR after the August, 1996 Current Version, was the 99th MXG
BUILDPDB summarizes TYPE70PR to creates the Version created! Figure 6 lists the measurements of
more usable PDB.ASUM70PR dataset with resources each of the Annual MXG Versions and MXG 14.06.
consumed by each LPAR and with total CPU busy for Sometime in 1997, the MXG source library should
all LPARS. exceed 1,000,000 source lines.

7. Minin g costs and tons of warehouse data du g up The original MXG 3420 Tape Reel contained 99 feet for
and delivered: it’s 22,000 lines of source code!
The first phase of BUILDPDB took 1 hour and 1 minute
of elapsed time and 16 minutes of CPU time on an IBM 9. SAS does not stand for Sin gle Authored
9021-952 to process two 3490 tapes with 596,814 SMF Software. Acknowled gements.
records totalling 2,314 Megabytes (2.3 Gigabytes) of While I have designed all and written most of the MXG
raw SMF data from three MVS systems. The total Software, many users have contributed code examples,
BUILDPDB step plus the ASUM70PR, ASUMDB2A, and my three consultants who have ably tested each
ASUMCICS and ASUMJOBS summaries took 1 hour new release, have covered my technical calls while I
55 minutes elapsed and 24 CPU minutes. The WORK am out teaching, and have personally contributed
file required only 256 Megabytes (324 cylinders of significantly to MXG, are hereby acknowledged
3390). specifically:

This Performance Data Base PDB output data library Chuck Hopf
contains 143 datasets totalling 3,040 Megabytes, but Bruce Widlund
2,290 of those Megabytes are in CICSTRAN for its Freddie Arie
2,333,338 CICS transactions. The high-volume
CICSTRAN dataset is written directly to tape, to archive Overseas, where we are represented by the local SAS
each transaction, but using no DASD space. Then Office, there are also scores of dedicated SAS
CICSTRAN's 2,290 MB are summarized into only 21 technicians who have provided local language and
MB in the 214,088 observations of the PDB.CICS local time of day help with MXG queries.
summary dataset by ASUMCICS (which invokes the
VMXGSUM generic summarization %MACRO and took
only 22 minutes elapsed and 3 and a half minutes of
CPU for that summarization).

are created as needed to keep up with new products

Figure 5 - PDB Contents
Dataset Obs Vars Len Mbytes Description
ASUM70OR 288 218 836 RMF PR/SM LPAR INTERVAL
ASUMDB2A 52110 323 1383 69 DB2ACCT INTERVAL SUMMARY
CICAUSS 4648 31 172 1 CICS AUTOINSTALL TERMINAL USS
CICAUTO 96 43 203 CICS AUTOINSTALL GLOBAL
CICCONMR 2110 37 183 CICS ISC/IRC MODE ENTRY
CICCONSR 2044 48 223 CICS ISC/IRC SYSTEM ENTRY
CICCONSS 90 27 139 CICS ISC CONNECTION - SECURITY
CICDQG 96 38 183 CICS TDQUEUE TRANSIENT DATA GLOBAL
CICDQR 1002 28 140 CICS TDQUEUE TRANSIENT DATA SPECIFIC
CICDS 96 87 367 CICS DISPATCHER, CPU BY TCB
CICDTB 96 21 115 CICS DYNAMIC TRANSACTION BACKOUT
CICEODRV 96 290 1180 CICS END OF DAY
CICFCR 2352 70 435 1 CICS FILE CONTROL
CICINTRV 0 290 1180 CICS INTERVALS
CICJCR 196 32 162 CICS JOURNAL CONTROL
CICLDG 576 43 208 CICS LOADER DOMAIN FOR PROGRAM
CICSLSRFR 688 25 135 CICS LSRPOOL FILE STATS EACH FILE
CICSLSRR 76 294 1220 CICS LSRPOOL POLL STATS EACH POOL
CICM 96 27 139 CICS MONITOR DOMAIN GLOBAL
CICPAUTO 96 22 119 CICS AUTOINSTALL PROGRAM
CICS 214088 23 105 21 CICS INTERVAL SUMMARY
CICSDG 96 21 115 CICS SYSTEM DUMP GLOBAL
CICSDR 496 24 131 CICS SYSTEM DUMP SPECIFIC
CICSEXCE 205 39 194 CICS EXCEPTIONS
CICSMD 15092 35 164 2 CICS STORAGE MANAGER
CICSMDSA 768 64 335 CICS STORAGE MANAGER DSA AND EDSA
CICSMT 384 30 146 CICS STORAGE MANAGER TASK SUBP
CICST 96 22 119 CICS STATISTICS DOMAIN GLOBAL
CICSTRAN 2133338 260 1126 2290 CICS TRANSACTIONS
CICTCR 12476 35 166 2 CICS TERMINAL CONTROL SPECIFIC
CICTDG 96 21 115 CICS TRANSACTION DUMP GLOBAL
CICTDR 1368 24 127 CICS TRANSACTION DUMP SPECIFIC
CICTM 96 53 243 CICS TABLE MANAGER GLOBAL
CICTSQ 96 57 259 CICS TSQUEUE TEMPORARY STORAGE
CICUSG 96 24 127 CICS USER DOMAIN STATISTICS
CICUSSRV 147 290 1180 CICS USS INTERVAL SUMMARY
CICVT 96 30 151 CICS VTAM GLOBAL
CICXMC 1050 37 183 CICS TRANSACTION MANAGER TCLASS
CICXMG 96 31 155 CICS TRANSACTION MANAGER GLOBAL
CICXMR 32216 21 168 5 CICS TRANSACTION MANAGER TRANSACTION
DB2ACCT 266513 354 1680 427 DB2 PLAN ACCOUNTING
DB2ACCTB 0 46 294 DB2 PLAN BUFFER POOLS
DB2ACCTG 11 39 39 DB2 PLAN GROUP BPOOLS
DB2ACCTP 0 79 458 DB2 PLAN PACKAGES
DB2GBPAT 0 23 105 DB2 GLOBAL BUFFERS
DB2GBPST 0 44 148 DB2 STAT GB POOLS
DB2STAT0 571 540 2130 1 DB2 STATS SUBTYPE0
DB2STAT1 571 510 1987 1 DB2 STATS SUBTYPE1
DB2STAT2 2296 24 111 DB2 STATS SUBTYPE2
DB2STATB 1150 80 348 DB2 STATS BUFFER POOLS

DB2STATR 357 54 256 DB2 REMOTES
DB2STATS 571 1037 4047 2 DB2 STATISTICS INTERVAL
DDSTATS 0 26 148 TYPE 30 DD SEGMENTS
IPLS 0 14 70 IPLS
JOBS 31472 223 121 34 JOBS/TSO/STC/APPC/OMVS
JOBSKED 194 19 98 JOB SCHEDULING CLASS SUMMARY
NJEPURGE 0 62 357 NJE PURGE EVENTS
PRINT 15322 51 363 5 TYPE 6 PRINT EVENTS
RMFINTRV 288 402 1608 RMF INTERVAL SUMMARY
RRTMPSE 718 67 301 ROSCOE ACCOUNTING
SMFINTRV 0 218 1078 SMF INTERVAL ACCOUNTING
STEPS 88777 200 989 83 STEPS FOR JOBS/TSO/STC/APPC/OMVS
TAPEMNTS 0 18 1 MXGTMNT TAPE MOUNT SUMMARY
TAPES 1862 28 124 TYPE 21 TAPE DISMOUNTS
TSOMCALL 9075 110 573 5 TSO.MON USER RESPONSE
TSOMSYST 39372 183 785 30 TSO/MON SYSTEM INTERVAL
TYPE0203 140 5 27 SMF DUMP HEADER/TRAILER
TYPE23 72 22 110 SMF INTERVAL STATISTICS
TYPE30MU 142337 24 165 22 MEASURED USAGE DATA
TYPE30_6 1392 148 636 1 SSTEM ASID INTERVALS
TYPE37 7941 102 1091 8 NETVIEW HARDWARE MONITOR EXTERNAL
TYPE70 288 382 1435 RMF CPU ACTIVITY
TYPE70PR 4800 34 121 RMF PR/SM LPAR ACTIVITY
TYPE71 288 307 1248 RMF PAGING ACTIVITY
TYPE72 15941 89 396 6 RMF PERFORMANCE GROUP
TYPE7204 0 73 321 RMF MONITOR III GOAL MODE
TYPE72DL 0 35 166 RMF GOAL MODE DELAY SAMPLES
TYPE72GO 0 151 797 RMF GOAL MODE
TYPE72MN 14699 81 345 5 RMF MONITOR III COMPAT
TPYE72SC 0 16 97 RMF SERVICE CLASS SERVED
TYPE73 47520 45 197 9 RMF CHANNEL PATH
TYPE74 118712 101 423 48 RMF DEVICE ACTIVITY
TTYPE74CA 0 149 483 RMF CRR CACHE CONTROLLER
TYPE74CF 34 188 1050 RMF COUPLING FACILITY
TYPE74OM 0 82 336 OPENMVS KERNEL ACTIVITY
TYPE74ST 1728 56 259 RMF CF STRUCTURE REQUESTS
TYPE74TD 288 11 61 RMF TAPE DRIVES ALLOCATED
TYPE75 1344 40 225 RMF PAGE DATASET ACTIVITY
TYPE77 9917 43 266 3 RMF ENQ ACTIVITY
TYPE78 0 29 128 RMF I/O QUEUEING
TYPE78CF 15080 32 131 2 RMF I.O CONFIGURATION
TYPE78CU 5155 23 110 RMF LCU CU-HDR QUEUEING
TYPE78IO 1152 23 107 RMF IOP QUEUE
TYPE78PA 0 102 569 RMF JOB-LEVEL SUBPOOLS
TYP78VS 288 445 2430 RMF VIRTUAL STORAGE
TYPE89 0 29 188 MEASURED USAGE INTERVAL
TYPETALO 0 42 286 MXG TAPE ALLOCATION MONITOR
TYPETMNT 0 16 82 MXG TAPE MOUNT MONITOR
TYPETSWP 0 7 33 MXG TAPE SWAP EVENT
TOTAL SIZE 3200

Figure 6 - Histor y of Mx g Versions and Releases
Version Date Members Lines Bytes Mbytes Pages Datasets Vars

14.06 20AUG96 3011 911,749 72,939,920 69.6 15,196 1908 78,278
13.13 20JAN96 2940 885,344 70,827,520 67.3 14,756 1868 76,219
12.12 20MAR95 2533 776,687 62,134,960 59.3 12,945 1573 66,221
11.11 26MAR94 2286 654,341 52,134,960 49.9 10.975 1360 55,168
10.10 15MAR93 1965 534,902 42,792,160 40.8 9,999 1195 47,296

9.9 1MAR92 1605 388,651 31,092,080 29.6 6,477 1093 41,332
8.8 8APR91 1367 200,000 24,000,000 22.8 5,000 872 30,420
7.7 15FEB90 1100 230,000 18,400,000 17.5 3,834 679 22,277
6.6 15JAN89 910 165,614 13,249,120 12.6 2,760 552 18,048
5.5 01FEB88 785 136,880 10,951,296 10.7 2,281 456 14,909
4.4 01MAR87 661 108,166 8,653,472 8.8 1,803 360 11,770
3.2 01FEB86 537 79,444 6,635,648 6.8 1,346 264 8.632
2.0 01FEB85 413 50,722 4,057,024 4.9 845 169 5,526
1.0 AUG84 289 22,000 1,760,000 3.0 367 73 2,387

But our real thanks for our success are to the dedicated Contributors with Nine or more Changes -
MXG users, who have taken the time to learn those Descending Ranking
prerequisite skills of SAS, JCL, TSO, and PC
technology, and who have waded through 1,497 pages Name Total Changes
in two Books, 730 pages in 30 Newsletters, and 2,994 Chuck Hopf 130
Changes in 99 Releases to learn how to use MXG Diane Eppestine 50
Software to measure and thereby improve the Norbert Korsche 45
performance of their company's computer systems - Freddie Arie 40
they have made all of us look good! Tom Parker 34
 Joseph Faska 28

 Chapter 99 Pete Shepard 27

This chapter cites and thanks all contributors to MXG Don Deese 19
Software, who are hereby officially awarded the title of Bruce Widlund 18
"Chapter 99 CodeSharks"! Named by Judith S. "99" Rodney L. Reisch 18
Merrill, Vice President and Partner, in honor of the Susan Marshall 17
diligent sleuthing of the MXG code performed by each Tom Elbert 16
CodeShark, she also established our policy that credit Jim Gilbert 15
should be given to every MXG user who made any Dan Kaberon 14
contribution to MXG Software, whether they provided Neil Ervin 14
an entire program, or found a programming error, or Waldemar Schneider 14
offered a suggestion, or even just found a comma out Rod Fernandez 12
of place in a comment! Shaheen Pervaiz 12

Siegfried Trantes 23

Bob Rutledge 11
Dan Squillace 11
Dick Whiting 11
Don Friesen 11
George Scott 11
Ray Dickensheets 11
Barry Pieper 10
David Ehresman 10
Steve Glick 10
Chris Weston 9
Elliot Weitzman 9
Paul Walker 9
Wolfgang Vierling 9

	Main TOC

