
Systems Architecture Solutions for an STD Information System
Keith Humphrey, Centers for Disease Control and Prevention
Ray L Ransom, Centers for Disease Control and Prevention

Abstract

The Division of Sexually Transmitted Disease
Prevention (DSTDP) of the Centers for Disease Control and
Prevention (CDC) collects data on occurrence of STD’S and
disseminates this information throughout the world public
health community. DSTDP downsizing and the resulting
need to maximize resources are necessitating the move of
programmers into application development roles. Many
programmer person-hours are spent on ad hoc requests for
specific subsets and basic analyses on relatively static
surveillance data tables. The tables currently reside on an
IBM MVS mainframe. Many epidemiological and behavioral
researchers and statisticians in the Division, hereafter
referred to as “users”, frequently wished to query these
tables, but were unfamiliar with the mainframe environment.
Therefore, they would request a subset of tables to be
downloaded to the SAS@ System for the Microsoft
Windows@ environment. Realizing that these requests were
prime candidates for an application, programmers began to
plan for an STD surveillance data access and analysis
application.

Analysis and design of an STD information application
(STDINFO) began in early 1996. Due to extensive
experience with the SAS System, existing licenses and the
functionality of SASIAFa (especially the new FRAME
technology), the SAS System was the chosen development
platform. In addition to application development, another
need surfaced at about the same time. As sophistication of

analyses increased and multivariate modeling of sexual
behavior and demographic variables became common
methods, the ability to process relatively large tables using
process intensive SAS Procedures required more than our
current desktop abilities provided. Using the SAS System
on a Windows client remote submitting to a higher-end
processor was the obvious solution. The mainframe was
considered, but fluctuating queue times made real time
processing values unpredictable. A SUN ES3000a
enterprise system was purchased and dedicated to SAS
application and high-end statistical processing.

The LAN staff were challenged with providing a systems
architecture solution that would best utilize current
resources for Division programmers. The latest hardware
and software technologies were evaluated by comparing
real-time values for several distributed applications
environments. Processing resources included a diverse
LAN/WAN incorporating Windows 3.1, Windows 95 and NT
workstations, a Windows NT Server and SQL server, a SUN
ES3000 system, an IBM MVS mainframe and a Novell
network file server. Emerging technologies researched
included the new Scalable Performance Data Server
(SPDS~, SUN UltraSPARC@ 167 MHz processors, pentium
pro desktops and state-of-the-art network topology. This
paper will discuss the analysis and decision process citing
~esults and the final design decision. We will discuss our
methodology and hopefully this information will be useful to
other groups of varying needs and resources.

Resources

r!!il!
Cllmt Pc

Network

.@

ES 3000

Topolology

I / 18 Mbit T.k.n r

1. Ml Iu J
Mainframe

1

Client Hardware and Software
w Low end client 486/50 MHZ PC/1 6M Ram ISA Token Ring adapter
■ High end client Pentium Pro 200/32M Ram PCI Token Ring adapter
■ Windows 95 OS
■ The SAS System, Version 6.11 Wave 2 loading from a Novell Application server

Server Hardware and Software
Sun ES3000 Solaris 2.5.1 256M RAM 167 MHz RISCprocessors
Pentium 66 NT Server 4.0 133M RAM
Intel 486/50 Novell Netware 3.X 133M RAM

16 Mbit Token Ring for local client rings
100 Mbit CDD1/FDDl ring for center campus backbone
Cisco 7000 routers
T3 WAN
Secondary 16 Mbit Token Ring for center campus backbone
SUN Ultra 1 as backup for ES3000
IPXLSPX and TCP/lP cwotocols

SPDS Setu~
The SPDS is a clientkerver software package that will

allow the SAS System to take advantage of a multiple
processor system. SPDS is available for several OS
platforms such as Sun Solaris 1 and 2, AIX, HP-UX,
Microsoft Windows 3.11, Windows 95, NT Workstation and
0s/2.
Client Setur3

The client software is copied to the !SASROOTISPDS
directory. The following modifications need to be made to
the SAS invocation command:

path !SAs.ROOT/SpDS

sasmsg !SASROOT/SPDS
This will allow SAS to load the proper program files when it
recognizes an SPDS reference in the LIBNAME statement.
The proper protocol to access SPDS must be loaded on the
client for SPDS to communicate.
Server Setrm

Once the SPDS software is installed, the system must
be configured to service incoming requests from SPDS
clients. The SPDS communication is built around the RPC
(Remote Procedure call) API. A remote procedure call is a
clientherver interface that allows clients to process on
remote systems. If the server is running on a Unix system,
the only information that the clients need to know to access
the remote server is the 1P address and the port address
where the procedure is mapped. The SPDS has two
mandatory processes, the SPDS name server and the
server process. The ODBC process is only needed when
the client uses the ODBC interface. The SPDS LIBNAME
engine on the client connects to the SPDS name server
process on the Unix system. The name server must be on
a Unix non-well known pori that does not conflict with
another service on the system. The /etc/services file is
where the name server and ODBC services are recorded.
Edit /etc/semices and add the following lines:

spdsname 5001/tcp #SPDS name server
spdsodbc 5002/tcp #ODBC if needed

Usually port numbers over 5000 are non-well known port
and can be selected without a conflict. Once the services
have been registered the process can be initialized. This is
done by running the rc.spds script file located the spdslsife
directory. Edit the file and make sure the INSTDIR
parameter is set to the directory where SPDS is installed.

lNSTDIR=/opt/SPDS

Execute the rc.spds script file and when it is complete
check the processes by running the
ps -ef I grep spds command. Examine the output to see if
the spdsserv, spdsnsrv and spdsodbc (if selected) process
are loaded. When the processes are initialized, startup
information is recorded in log files located in the SPDSflog
directory. Examine the log files to determine if the name
server process loaded at port number you selected in
/etc/sefvices. If you are remote submitting on the same
system on which SPDS is located, be sure you have
installed the client software to that system’s SAS directory
as described in the Client Setup section above. SPDS also
allows clients access to data on the host by defining a Iibref
in the file SPDS/siteAibnames. pann

Example syntax: libname=bench
pathname=ldatalbench;
and then using this same name in a LIBNAME statement in
the client session.

Example syntax: LIBNAME d7 SASSPDS ‘bench’;

Architecture Analysis Methods

Going into the analysis, DSTDP development staff
made a few key assumptions which were clearly supported
by the literature including SAS documentation and previous
SUGI presentations. Other assumptions made were based
on the needs and requirements of DSTDP’S research staff.
The first assumption is that indexing tables on key variables
is more efficient than constant resorting of tables because
of the reduction in processing time due to decreased l/O
requirements. Another assumption was that SQL might
provide an advantage in AF development because of the
ability of SAS Screen Control Language to submit SQL
statements directly to the SQL processor without loading the
SQL Procedure, thus eliminating the need for submit block
processing. Also, all tables had to be located in an
environment accessible by all network clients. Finally, the
application processing has to run at speeds similar to other
querying applications at CDC to be well received by the
users.

Two different programs were used for evaluating
performance times across systems architecture platforms.
They both perform the same basic operations (figure 1), but
differ in methodology and syntax. The first program
BENCHI .SAS (Appendix 1) is very similar to the original

2

Fig 1 SAS Program Flowchart

r- m

mainframe programs used for previous ad hoc queries
except that tables accessed by the program are now
indexed on key variables and Where clause and BY-.ClrOUD

..’=..4&
processing a~e used to improve efficiency and r~duce
processing times. The other program, BENCH2.SAS
(Appendix 2) uses SQL syntax entirely except for the

““”’””0”r m
Results

E
C..r.b.::,::ym.;::= . . indexing and-printing steps. ‘Since each program performs
cc..,.
lm.,...
-.,. - C.m -... 3 basic steps:..*..,..

1 . Creation of table from master tables (data
management)

2. Indexing of final table
3. Simulation of an application query

real time values were recorded in seconds for each of these
3 steps and measured across different systems architecture
configurations for both programs and entered into a
spreadsheet (Fig 2). The observed values and spreadsheet
are discussed b-elow,

Architecture Operating ~ Data
Processing

System
rogram Engine Index Type Manage-

ment

;as loading from Novell Server Pentium Pro 200 Windows BENCH
)ata on Server RAM=32 Meg 95 1 V611 B-Tree 260.34

;as loading from Novell Server Pentium Pro 200 Windows BENCH
)ata on Hard Disk RAM=32 Meg 95 1 V611 B-Tree 84.11

;as loading from Novell Server SUN ES 3000 Solaris BENCH
)ata on SUN ES 3000 (rsubmit) 2.5.1 1 V611 B-Tree 26.412

ias loading from Novell Server SUN ES 3000 Solaris BENCH
)ata on SUN ES 3000 (rsubmit) 2.5.1 1 SPDS B-Tree 26.863

ias loading from Novell Server SUN ES 3000 Solaris BENCH Bit Map
~ata on SUN ES 3000 (rsubmit) 2.5.1 1 SPDS Index 26.757

Indexing Simulation

~

61.85 21.31

20.82 4.65

14.083 2.304

8.207 1.571

78.356 0.965

~asloading from Novell Server Pentium Pro 200 Windows BENCH
lata on Server RAM=32 Meg 95 2 V611 B-Tree 386.36 59.71 19.81

as loading from Novell Server Pentium Pro 200 Windows BENCH
lata on Hard Disk RAM=32 Meg 95 2 V611 B-Tree 307.54 20.48 4.16

as loading from Novell Server SUN ES 3000 Solaris BENCH
lata on SUN ES 3000 (rsubmit) 2.5.1 2 V611 B-Tree 107.649 13.687 2.105

as loading from Novell Server SUN ES 3000 Solaris BENCH
Iata on SUN ES 3000 (rsubmit) 2.5.1 2 SPDS B-Tree 110.814 8.221 1.384

as loading from Novell Server SUN ES 3000 Solaris BENCH Bit Map
Iata on SUN ES 3000 (rsubmit) 2.5.1 2 SPDS Index 105.483 77.136 0.383

as loading from Novell Server 48650 MHz RAM= I 6M Windows BENCH
Iata on Server 95 1 V611 B-Tree 576.7 179.88 66.11

as loading from Novell Server 48650 MHz RAM= I 6M Windows BENCH Bit Map
lata on Hard Disk 95 2 V611 Index 1890.16 172.68 65.9

as loading from Novell Client Pentium 66 MHz NT Server BENCH
ata on NT 4.0 Server Ram=l 22 Meg 4.0 1 V611 B-Tree 104.48 24.92 12.5

as loading from Novell Client Pentium 66 MHz NT Server BENCH
ata on NT 4.0 Server Ram=122 Mecr 4.0 2 V611 B-Tree 683.48 35.43 12.15

3

Discussion

Although we include the results of data stored on
the local drive of the clients to reflect the impact of
network traffic to the process, this architecture would
not allow all clients access to the same data. Though
queries on some configurations posted comparable
response times, note that bench2.sas queries
consistently took less time than benchl .sas. However,
bench2.sas was atrocious for the data management
process. This suggests that SQL syntax is preferred for
querying while it provides no advantages over
traditional Data step/Procedure programming on
subsetting and merging non-indexed tables.

With SAS loading from a Novell Application server
and processing on PC Clients, query processing times
ranged from 65.9 seconds on the low end clients to
21.31 seconds on the high end clients. By remote
submitting to a SAS session on the SUN System, we
can provide consistently fast queries (measured here
as 2.105 seconds) to all clients. This configuration
provides the fastest processing times without taking
advantage of SPDS. Just by re-evaluating our code
and taking advantage of indexing, Where clauses, and
SQL features of the SAS System, we were able to
achieve impressive improvements in processing time.

Efficient programming, as defined above, is
necessary to recognize the advantages of SPDS.
SPDS documentation stresses the advantages of
indexes and Where clause, BY-variable, and SQL
features of the SAS System. Therefore, simply
installing the server on your system will not guarantee
performance improvements and at times, as shown
above, may actually slow certain processes down. The
default index offered by the DATASETS Procedure” is
a B-tree index. SPDS introduces a new index called a
Bitmap Index. If a key variable to be indexed has low
cardinality a Bitmap Index should be used. Low
cardinality is defined as the number of unique values of
this variable being less than a number between 100
and 1000. Although Bitmap Indexes take longer to
create (creates a separate file for each variable), the
SAS System reads these smaller files quicker and
results in impressive query times. This is when we
were able to see speed increases as reported by The
SAS Institute” as 5-6 times faster than without SPDS.
This is certainly an impressive difference in processing
time.

Conclusion

This analysis process has been very beneficial to
DSTDP. First the re-evaluation of programming
techniques improved processing times substantially.
This combined with dedicating a SUN system for SAS
system processing provided all clients with impressive
query times. Although SPDS reduces these times even
more, the processing times seen without SPDS are
considerably faster than any application we have seen
at CDC. At $25,000 for the initial year for our system

configuration and a yet undetermined yearly renewal
cost, DSTDP cannot justify purchasing SPDS for the
time differences. Since the cost of the SPDS license is
based on the number of processors, it is inherent that
purchasing SPDS makes future processor purchases
more expensive. Since DSTDP’S tables are relatively
small and our processors are relatively few, we cannot
fully realize the benefit of SPDS. If our application
environment becomes one of many processors running
at high utilization, we would definitely consider the
SPDS. For organizations with gigabytes or terabytes of
information, the benifit of SPDS is obvious.

References

SAS Institute Inc. (1996), /nsta//ation Instructions for
Scalable Performance Data Server Software (SPDS),
Version 1, First Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1989), SAS Guide to fhe SQL
Procedure, Version 6, First Edifion, Cary, NC: SAS
Institute Inc.

SAS Institute Inc. (1994), SAS Screen Control
Language, Reference, Version 6, Second Edition, Cary,
NC: SAS Institute Inc.

SAS Institute Inc. (1996), Scalable Performance Data
Server User’s Guide, Version 1, Firsf Edition, Cary, NC:
SAS Institute Inc.

Acknowledgments

The authors thank the following people at CDC for their
contributions to this paper
Sharon Hixon, Van Munn and Brenda Sullivan

The SAS System, SASIAF, FRAME, SPDS, and
SAS/SCL are registered trademarks or trademarks of
SAS Institute Inc. In the USA and other countries. @
indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

Keith Humphrey
Centers for Disease Control and Prevention, MS E-63
1600 Clifton Road
Atlanta, GA 30333
kbh3@cpsstdl .em.cdc.gov

Ray L Ransom
Centers for Disease Control and Prevention, MS E-02
1600 Clifton Road
Atlanta, GA 30333
rlrl @cpsstdl .em.cdc.gov

4

@ww$’ *************** *************** *************** ***************

;: ~g~oS~ENCH1.SASPrepare data table for STDINFO application and create
/“ Index on key variables. Finally, this pro ram will simulate one
/’ query from the application. “?Th~s query W1 1 subset table and
/* calculate disease rates by requested BY variables.
/*****************************+*****************+******************.

i: :WOR: %y3?/Fsom
/***
/******* MODIFICATION HISTORY ********************** **************

;: ???!____ !!??W!??------ ?!W!?K’!___________________________
/,
/***
options pageno.l;
/~ table storage will vary according to architecture ‘/
l~bname app ‘c:\bench’;
/’ create effic~ent storage of variables */
/*DSTD 2638 Yearly STD Report Form Table ‘/
data app. std(drop.totcase pctage pctrace pctboth areaname);
set app. std(where=(area.2 and source in(l 2) and fiDscode<=56)) :
drop ~+ea;
attrib year length.4 disease race fipscode age source length.3;
if year>=80 then year=year+1900; ****make 20th century dates;
/* US Census data for rate calculations */
data app.pop (drop.totpop areaname);
set app.pop (where=(area=2 and fipscode<=56));
drop area;
attrib year length.4 race fipscode age length.3;
if year>.80 then year.year+1900; ****make 20th century dates;

/’ ‘ort ‘=les be;re ‘er%=n?”
‘/

proc sort data.app.std; y ~pscode year age race;
proc sort data.a p.pop; by fipscode year age race;
/* merge std an populat~on tables and keep intersection */
data app.data2638; merge app
by fipscode year age race; ;? itd & ~O~;

o (in=pop) app.std(in=std);

/’ recode year to 4 digit, store varla les in more efficient
/* lengths, and create 1 record per sex with a new sex, cases
/“ and pop variables
data app.data2638; set app.data2638;
drop fempop male op malecase femcase;

~{attrib sex len t =3;
label sex=’Gen er’

cases=’Number of cases of disease’
pop=’Number of persons in underlying population’ ;

sex=l; cases=malecase; pop.malepop; output;
sex=2; cases=femcase; po~.fempo ; output;
/’ f::;d~~s:~t by var~ables %efore indexing to reduce
/. of pointers in index to follow
PROC SORT; BY disease fipscode YEAR AGE race sex source;
$; I-~-t~aJa on yar~ables in order of most likely subsetting

Th~s ~s the last.step of the data management
/* that will be done by a cron lob and scheduled according to
/“ frequency of updates to master data files on mainframe
proc tables llb.app;

modify data2638;
index create data2638=(disease fipscode

/* from here down,
~ar, age race sex s

the program imitates a se ectlon from the
/’ STDINFO AF a plication.
/*o fsyphil~: %~~a~r~~ack andwhite males, 15-39

Here the user has selected a subset

/* from GA, SC, and TN for the
/* The select ~Y v~ria~les’are fipscode ear anx

ears

/* will be calculated for each stratum o
/* subset selected data

$ this th?g

DATA app.subset; SET APP.data2638
(where= (DISEASE.310 AWE RACE IN(1 2) AND SRX.1 AN17
FIPSCODE IN(13 12 28 1 37 45 47) AND AGE
YEAR IN (1988 1989
/* sum cases by BY
PROC MEANS DATA.APP.subset NOPRINT SUM; -
VAR CASES;
BY FIPSCODE YEAR AGE;
OUTPUT OUT=CASES SUM=CASES;
PROC SORT; BY FIPSCODE YEAR AGE;
/* sum POP by By-variables and create output table PO
PROC MEANS DATA=APP.subset NOPRINT SUM;
vAR Dr)D-

years old
1988-1995.
so rates
way table.

*/
*/
*I

*/
*/

*/
*/
*/
*/

;Our
,:/

‘;
‘/
+/
*/
*/

_—-. .—.-
: IN(i5 20 25 30 35) AND

1 1990 1991 1992 1993 1994 1995)));
!-variables and create outDut table cases */

)P *I

.. ----- ,
BY FIPSCODE YEAR AGE:
ouTPtr”ouT=PoP SUM.POP;
PROC SORT; BY FIPSCODE YEAR AGE;
/’ merge case and POP tables and calculate rate. We divide */
/’ the rate by 2 because there is one record perl~o~r:;eut the*/
/* underlying population for each is the same. */
/’ selegts OnlY PRIVATE or only PUBLICprovider type then the ‘/
/’ application WI1l not dlvlde populat~on by 2. */
DATA RATES; MERGE CASES POP; BY FIPSCODE YEAR AGE;
RATE=((cAsEs/(PoP/2))*1OOOOO);
label rates.’Disease rate per 100,000 persons’;
/* print rates b

$’
select BY variables */

PROC PRINT; VAR ~pscode year age CASES pop RATE;
RUN ;

;$

:$

*/
*/
‘/
*/
*/
*/
*/
*/
*/
*/
*/

);

5

+PPHW!’**************** **************** ***************** ************/
7* NAME: BENCH2. SAS *)
/’ pURpOSE: prep;~ri~~~~~able for STDINFO application and create
/* index on ke
/*query frcxn~he application. Thzsque wi?lsubset table and

Finally, this pro ram will simulate one :!

/’ calculate disease rates by requested ~ variables.
/*************************** ***************************+***********:;

;: :WOR: EY3?/EnsOm
*/

/***:;
MODIFICATION HISTORY *************** *************** *******$:*;;;;*

PROGRAMMER
/* -------- ________________ ?E??!W!!?!___________________________ ‘;

/. :$
/** /
kptions pageno.l;
/~ table storage will vary according to architecture */
llbname app ‘c:\bench’;
/* create efflclent storage of variables */
/* SQL procedure to create table to be used by application from
/* DSTD 2638 Yearl

z
STD Report form and US Census data (for rate

/. ~alulations) ta ~es*/
proc sql stimer;
/* merge tables and create subset of US states,

create table work.newstdl as
pub and pvt provider type *

select s.disease length=3, s.fipscode len@h.3, s.vear ~ength.4,
sage length=3, s.race length=3,
s.malecase, s.femcase, p.fempop,

frOm app.std as S, aDD.DOD aS D
where s.fipsc<
and s.age=p.ag= dLIU S.LciCX=&J..LdCC

and s.area.2 and s.source m (1 2) and s.fipscodec:
~; ~~~~k~able with one record per male with new cases,sex,

~ear4 di g~t 20th century years
create tab e work.males as

s.~ource leiigth.
p.malepop

ode.p.fi~s~o?le an?l s.year.p.year-- -- a - ----- — -----

select disease, fipscode, year, age, race, source,
malecase as cases, malepop as pop

from work.newstdl:
alter table work.males add sex num(3) ;
update work.males set sex.1, year=year+1900;

create table work.males as select * from work.males;
~~ ~=da~k~able wlth,one record per female with new cases,sex,

i’
ear 4 dlglt 20th century years

create tab e work.females as
select disease, fipscode, Far age, race, source,

femcase as cases la el.;Number of cases of disease’
label.’Number of persons in underlyin

fro~%~ .Z~w%%l .
alter table work.femafes add sex num(3) :

=56;
and pop vars

update work.females set sex=2, >
create table work.females as selec

———..-, ,
rear= ear+1900;
;t * xrom work.females;
:s into one/* concatenate male and female table

create table app.a pldata as
select disease ?ength.3 label= 1

fipscode length.3 label=’
year length=4 label.’
age length=3 label.’Age Groupr,
race lenqth.3 label=’Race/Ethnicitv’ ,

STD Code’,
FIPS Code’,
Reporting Year’,

and pop vars

& pop’

source len@h:
sex length.3 label=’
cases label= ‘

=3 >abe:.’~~~d~~;ng Sou?ce’,

Number ~f Cases of Diseasef ,
label.’Number of persons in Underlying Popf

fro~”~ork.mal es
outer un~on corresponding
select d~sease length=3, fipscode length.3, year length=4,

age length=3, race length.3, source length=3,
sex length=3, cases, pop

from work.females
order b diseaset fipscode,

3
age, race, sex, source;

~; ;;~tlaaa on yar:ables in or ~~r~f most llkely subsetting */
This IS the last step of the data management

/“ that will”be done by a cron job and sgheduled according to */
*/

/’ frequency of.updates to master data files on mamframe “/
proc datasets lib.app;

mod~fv a~~ldata:
index”cr~~te appldata.(disease fipscode

/* from here down, 1’
ear age race sex sou

.the.program imitates a se ection from the */
Here the user has selected a subset*/

~~ ~~D~NF~i?!sa%~;;c?;;O~iack and white males 15-39 years old */
/* from~A, FL, MS, AL, NC, SC, and TN for th;

ear anW_s
1988-1995.*/

/* The select BY variables are fipscode
/* will be calculated for each stratum o~ this thr~ ~~vr?%!?e. :$

rce);

wroc sal stimer;
cre~te table”work.rates as

select fips:codeI ,year~-age, sum(cases) as totcase, sum(pop) as totpop
from aim.armlaara

whe>~ di~ease=310 and fipscode in(13 12 28 1 37 45 47)
and year in (1988 1989 1990 1991 1992 1993 1994 1995)
and,age in (15 20 25 35) and race in(l 2) and sex=l

group by flpscode, year, age;
alter table work.rates

“/

*/
‘/

;*‘!

‘/

add rate dec(8,2) label=’Disease rate per 100,000 gersons’ .
update work.rates set rate=((totcase/(totpop/2))*1OOO O); ‘
create table work.rates as

select * from work.rates;
proc print data.work.rates;var fipscode year age totcase totpop rate;
run;

6

	Main TOC

