MOVING VMS® DATA TO MS-EXCELS:
USING SAS/CONNECT® AND DDE TO DOWNLOAD DATA FROM A VMS/ALPHA" NETWORK TO
EXCEL SPREADSHEETS ON A PC

Randall Cates, Arbor Consulting Resources, St. Louis, MO.

Introduction

I was given the task of moving a
large amount of data from a VMS/Alpha
network to Microsoft-Excel spreadsheets.
With this presentation I will demonstrate
how this was accomplished; using SAS on a
PC, connecting to a SAS session on the
VMS/VAX using SAS/CONNECT, downloading the
data to the local SAS session, and then
finally with DDE commands, creating the
Excel spreadsheets. I will also show you
some quirks of the data and the process
which made this particular task
interesting.

The Problem

The data consisted of a number of
separate studies existing in two separate
formats: RDBO tables accessed from within
SAS by Proc SQL statements and SAS
datasets. All of the studies had to be
separately transferred to Excel
spreadsheets for transport to another
company.

There were two groups of studies,
each study needing multiple spreadsheets to
be created. There was one set of 5 studies
which had 20 tables per study, and another
set of 9 studies which had 16 tables per
study all totaling over 200 separate
spreadsheets.

However working to our advantage we
had the following:

eall studies within the groups
needed the same types of spreadsheets.

eThere was a standard naming
convention across all studies.

eEach record had as primary control
vars: study type, study id, and subject id.

*The data had already been
thoroughly analyzed and reports generated
using VMS/SAS. These reports closely
matched the proposed contents of the Excel
spreadsheets. So we could take those

programs and modify them to produce
transfer datasets.

The Solution

Here is how we broke down the

process:

Figure 1
THE SOLUTION

Master Progr w\
A

MS-Excel

Batch
Programs

DDE

Y

From the PC,

1)
2)

3)

4)

3)

6)

Start a SAS/Connect session to the
VMS/ALPHA network.

Create transfer datasets in the
VMS/SAS session.

Download the transfer datasets to
the PC then disconnect the
SAS/Connect session.

Start an Excel session and connect
to it using DDE.

Download the data to the
Spreadsheets.

Format the spreadsheets, save them
and quit the Excel session.

To do this we used three separate

sets of programs:

1)

Batch programs on the VMS/ALPHA side

that created temporary transfer
datasets. These were essentially
copies of the original reporting
programs modified for the purpose.
They accessed the data using Macro

statements, Proc SQL views, and data
statements.

2) Batch programs on the PC side that;
started Excel, used DDE statements
to download the data to the
Spreadsheets, format the
Spreadsheets, and finally saved them
and quit Excel.

3) Master Control Programs on the PC
side that; started SAS/CONNECT
sessions, called the VMS/SAS batch
programs, downloaded the data,
closed the SAS/CONNECT sessions,
and called the PC/SAS batch
programs.

SAS/CONNECT ADVANTAGES

SAS/CONNECT software gives you more
effective use of your different systems by
allowing you to combine the different
strengths of each system. Here are some
ways that SAS/CONNECT can help.

Remote Processing of data;

With SAS/CONNECT you can send the
processing of data to the most appropriate
part of your system. For example, you can
develop your SAS programs using sample
datasets on your local PC, then move them
to your UNIX workstation for processing
your larger datasets.

Ease of File Transfer

You can easily and transparently
upload or download SAS datasets, SAS
catalogs, and even external files. You can
back up any or all of your files to a
remote host.

Improved Graphics Processing

You can use the graphics
capabilities of your local host while using
the processing power of your remote host.
Perhaps you have a better plotter or
printer attached to your local machine but
your data resides on a more powerful remote
host. With SAS/CONNECT you can run a
graphics program on the remote host and
then display the result in your local SAS
session.

Multiple Connections

A big advantage of SAS/CONNECT is
the ability to open multiple remote
sessions. Now you can transparently
combine data from what once might have been
incompatible systems. The SAS/CONNECT
manual offers the example of accessing an
ORACLE® database on one system and an
Rdb/VMS database on another then combining
the data on your local host.

Automated Processing

You can use SAS/CONNECT in most any
of the possible SAS formats; line mode, SAS
Display Manager Windows, and batch
programming (which is how we used it).

Step 1 -- Start a SAS/Connect session
to the VMS/Alpha network.

Figure 2
Start a SAS/CONNECT Session

options comamid=ten remntacvavmn-- .
signon ‘'sasroof\saslink\tcpvms.ser: .

OR

filename rlink $asroot\saslink\tcpvms.ser: -
signon rlink;

rsubmit;

SAS/CONNECT offers different
protocol options for connections; TCP/IP,
DECNET, etc. depending on your system. We
used the TCP/IP protocol. To start the
SAS/CONNECT session you need an external
file containing special SAS commands that
initiate the link. SAS provides many of
these script files and you can tailor them
to your needs. For our system using
TCP/IP, the file was tcpvms.scr. This file
does a number of things when called. It:

einvokes the software programs
necessary for the different hosts to talk
to one another,

elogs on to the remote host, and

eoptionally, queries the user for
logon id and password.

You also need an options statement
with two options; ‘commamid=’ and

‘remote=’. ‘Commamid’ tells SAS what type
of communications method we are using.
‘Remote’ is the name of the remote host
that we want to access.

The next command ‘signon’ creates
the link and starts a SAS session on the
remote host. To do this we tell SAS the
name of the external script file and where
it is located on the local host. You can
also place this information into a filename
statement and access that as in our second
example. At this point, SAS comes back to
you with query windows asking for your
logon id and password. Type them in
exactly as you do when you log onh normally.

The final command frsubmit’ submits
any statements following to the remote SAS
session.

One quirk I found with SAS/CONNECT
and VMS/ALPHA is that when I had a
customized prompt (for example ‘RCCATES:’)
rather than VMS standard ‘$’ prompt, SAS
would hang. SAS seems to read the $ prompt
as a signal of a proper connection.

Step 2 -- Call VMS/SAS batch programs
to create temporary datasets.

Now comes some simple but extremely
powerful programming. With judicious use
of macro variables, macro calls, and
generic programs we were able to set up a
programming assembly line for creating the
transfer datasets.

Figure 3
CREATE TEMPORARY DATASETS

%let stdynum=Af1:
%let stdytyp=PURPLE:

filename getdat1 'Irceato ecamnioe. . ..
%include getdat{:

run;

filename getdat2 'Irceata cammioa.. . .
%include getdat2:

run;

The first statements created macro
variables in the remote SAS session. These
macro variables defined the study types

that we wanted to access. Next the
‘filename’ statements defined SAS batch
programs on the remote host. Finally, the
‘%include’ statements ran the programs.

The beauty of this programming is
twofold. One, we were able to string
together programs to create all the
necessary transfer datasets for one
particular study number and type in one
remote SAS session. Two, since within
study groups all studies were virtually the
same, we could just redefine the macro
variables for a new study and rerun the
control program.

Step 3 -- Download the temporary
datasets to the PC then disconnect
SAS/CONNECT session.

Figure 4
DOWNLOAD DATA

PROC DOWNLOAD DATA=VAXNAT4 AlIT—bAmam..
RUN

PROC DOWNLOAD DATA=VAXNATO AlIT—bAmama.
RUN

endrsubmit;

signoff;

Once all the transfer datasets were
created, each one was individually
downloaded to the local SAS session using
SAS/CONNECT commands. Note that we used
similar naming conventions from the remote
SAS session to the local SAS session.

The last step with using SAS/CONNECT
was to close the remote session. To do
this we first stop submitting commands to
the remote SAS session by the ‘endrsubmit’
command. fsignoff’ then ends the remote
SAS session and disconnects the link.

Now we had all of the temporary work
datasets for a particular study type and
study on the PC. To transfer this data to
Excel, we called the PC/SAS programs.

DDE

DDE stands for Dynamic Data
Exchange. It is a powerful tool for
transferring data between applications.

DDE has been compared to a conversation
between two people. The exchange starts
when one person/application asks a question
of the other. Then the questioner stops
talking and waits for an answer.

DDE is termed Dynamic because both
applications are running at the same time
and ‘talking’ to each other and the
processes of one of the applications
(server) are controlled by the requests
from the other (client).

In our example, SAS is the client
and Excel is the server.

Call PC/SAS batch programs.

Figure 5
CALL PC/SAS BATCH PROGRAMS

%let STUdY=%Str(' [farmnlasteriime asn
%let titlq =

BSEr('[formula('NFMARDADLTA mamen oo
%let name =

%Str(I[SaVe-aS(“c:\ggegmn1hx--_J
filename print1 'c:\sasamnia\sane. ...

%include print1:

run;

The code for the transfer of data to
the spreadsheets was written in separate
PC/SAS programs that the master program now
called. Again we set up macro variables to
control the output. These are the
statements that we would change when
rerunning the programs for a different
study.

The code for calling PC/SAS programs
is the same, a filename statement, and a
%include macro command. The next steps
took place within the batch programs. Each
program was tailored for each type of
transfer dataset.

Step 4 -- Start an Excel session and
connect to it using DDE.

Figure 6
START MS-EXCEL AND CONNECT

options noxwait noxsvne-
Ll . <
X ‘ci\msoffice\exceliavanl nwnr.

data _NULL ;

X=sleep(5):

run;

filename PCEX1 dde 'exanllchonttiman. .
NOTAB:

3

We started out with an options
statement. The options ‘noxwait noxsync’
refers to the way SAS deals with the
Windows environment and essentially tell
SAS to Not wait for whatever you start with
external commands.

The ‘X’ command sends a call out to
Windows to start an Excel session.

Now here’s a conundrum. You want
SAS to continue working, but normally, when
you use the X command SAS waits for
whatever was started to finish before it
continues. If we start Excel in this way,
SAS would not move to the next step until
we shut down Excel, defeating the purpose.
That’s why we added the options so that SAS
would continue to the next step.

Now the other side of the coin is
that Excel requires some amount of time to
start up. If SAS starts sending DDE
requests to Excel before it is up and
running, the DDE requests will fail. So we
built in a finite time gap with the ‘data
_null ’ statements. I found out that with
my PC, 5 seconds was sufficient.

Once Excel is up and running we tell
SAS to connect with a filename statement,
specifically defining a DDE link and
telling SAS where to look within Excel.
The quoted name is the ‘DDE Triplet’ which
defines what application, what part of the
application, and what section is accessed.

Step 5 -- Download the data to the
Spreadsheets.

Figure 7
INSERT DATA TO SPREADSHEETS

OPTIONS MISSING='':

data _null ;

set PCDAT1 end=finis:

by study patient testdata-

file PCEX1 1s=410:

put study 9.0 '09'x
patient 3.n AN
testdate mmAdduue 1A
(more vars\
wat 2.0 ‘09°'x

Now we could finally transfer the
data to the Spreadsheet. We did this using
‘Data _Null_’ steps and put statements. We
output the dataset to the defined DDE 1link,
where SAS requested Excel to input the data
in the format defined by the put statement.
Excel recognizes the ‘09’x word as a Tab
character which it needs to keep the data
points in their proper columns.

Step 6 -- Further format the
spreadsheets (optional), save the
spreadsheets and shut down the Excel
session.

Figure 8
FORMAT SPREADSHEETS

filename cmds dde ‘excellcvctam: .

data _null ;
file cmds;

put '[formula("STUNV' wpomaus .
Put '[formula("PATTENT" wbonnu.
put '[formula("TEST" wo7roura..

put ' [for‘mula(" DATF" "bpoamrouya. .

Put '[column.widthf "rt4.nant A ..

At this point, we had transferred
the data to an Excel spreadsheet in an
Excel session. We had not yet saved the
data to a permanent spreadsheet however.

We also wanted to format the spreadsheet to
be easily understandable by those at the
receiving end. To do this, we needed
another separate ‘filename’ statement and
‘data null’ statement.

We re-connected to the Excel session
with the filename statement. This time

instead of defining a section of the
spreadsheet with a DDE Triplet, we
connected to the ‘Excel|system’ which gave
us formatting capabilities for the
Spreadsheet.

Then it was just a matter of
‘putting’ a series of formatting
statements, in Excel Macro language, which
we obtained from the Excel manuals. The
first four statements are examples of
adding column headers. The next statement
reformats the readable width of the columns
to the widest cells.

The next two statements are an
example of using macro variables. We had
set these macro variables in the control
program to uniquely identify the study that
the data came from. These particular macro
variables inserted titles.

Finally, the last statements saved
the data to a permanent Excel file and
closed the Excel session. This last
statement was necessary to clear the way
for the next batch program.

Conclusion

Transferring data between SAS and
other software packages and also between
computer systems is an increasingly common
activity for computer programmers. With
this presentation, I have tried to
demonstrate how we SAS gurus can fget the
job done’ within SAS by the use of such
tools as SAS/CONNECT and DDE, do it with
style and panache, and, hopefully, really
impress the client.

Requirements:

On PC
Version 6.10 Base SAS® for the PC.
SAS/CONNECT® Software for PC/SAS
Release 6.10.
TCP/IP access set up to VMS/Alpha
network with user id and logon
password.
Microsoft Windows® 3.1 or Windows
95®,
Microsoft Excel® Version 4.0.

On VMS/Alpha Network

An account on the network that has
access to SAS.

Version 6.09 Base SAS® for VMS.
SAS/CONNECT® Software for VMS/SAS
Release 6.09.

Version 6.11 VMS®.

Version 1.3a of VMS/Ultrix®
Connection.

Standard ‘$’ prompt.

Technical Sources:
Books;
SAS Language Reference, Version 6.

SAS Companion for the Microsoft Windows
Environment, Version 6.

SAS/CONNECT Software, Usage and Reference
Version 6.

SAS Technical Report P-223, SAS/CONNECT
Software: Changes and Enhancements for the
CMS, MVS, and VMS Environments, Release
6.07.

Microsoft EXCEL, User’s Guide 1, User’s
Guide 2, and Function Reference, Version
4.0.

Other Sources;
SAS WWW Site: http://www.sas.com, SAS
NOTES.

Bodt, Mark (1996), “Talking to PC
Applications Using Dynamic Data Exchange”
Observations: The Technical Journal for SAS
Software Users, 5(3), 18-28.

SAS and SAS/CONNECT are registered
trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. VMS,
VMS/ALPHA, and RDB are registered
trademarks of Digital Equipment
Corporation. MS-Excel is a registered
trademark of Microsoft Corporation.

	Main TOC

