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Abstract

We illustrate a maximum likelihood method for pa-

rameter estimation in combined tables of categorical

data. Often, not all cells will contain data when mul-

tiple tables are combined. Also, since the same level

of aggregation over covariates is often not available

in each of the constituent tables some data will exist

only on the margins. The method we present is ap-

propriate when data for some cells are missing, and

even when data may be available only on the margins.

To illustrate the method we combine mortality tables

from three di�erent sources with di�erent classi�ca-

tion information. The code for the analysis is pre-

sented in SAS Proc IML, a powerful developmental

tool for this type of analysis.

1 Introduction

The purpose of this paper is to demonstrate a sys-

tematic method of combining data from di�erent ta-

bles. With the growing emphasis on storing, main-

taining, and accessing data bases gathered over time

and space, the need for statistical methodology to

analyze such data is becoming increasingly critical.

When gathered under the auspices of di�erent man-

agers over time and in di�erent locations, even when

the purpose underlying the data gathering is the

same, seldom will the same or even similar proto-

cols be utilized. Thus, data sets gathered for the

same purpose may not (in fact, probably will not)

be capable of being analyzed together using standard

statistical programs.

The biggest problem with such data is level of data

aggregation. For example, in the analysis which we

show here, one data set has information on smoking

status, one set includes only those who currently do

not smoke, while one set has no information on smok-

ing status. Although there is a growing collection of

such data arising from many sources, combining such

data has traditionally been done either using ad hoc

methods or by �tting each data set to a model and

then combining models. Assumptions implicit in ac-

cepting the resulting models are often hard to state.

In the last decade, however, formal methods of com-

bining data have been developed by theoretical statis-

ticians. These methods can now be implemented to

provide data analysts with additional tools for deal-

ing with multiple sources of data.

We will illustrate a method of combining data from

several tables into a single information table. The

method illustrated uses maximum likelihood proce-

dures to model the combined data. These likelihood

procedures are based on the methodology presented

in Tolley, Fellingham, and Scott (1996) who provide

both estimation techniques and address identi�abil-

ity problems when some of the data combined are

aggregated at di�erent levels for some tables relative

to other tables. In this paper we show how to imple-

ment these procedures in practice.

2 A Concept Fixing Example

To �x ideas, consider the following three sets of data.

1. National. This data set was constructed as

a synthetic data set, for illustration, using the

Illustrative Life Table contained in Bowers, Ger-

ber, Hickman, Jones, and Nesbitt (1986). These

data are aggregated over gender, smoking sta-

tus, and alcohol consumption status. Mortal-

ity data by age was available, and grouped into

eleven �ve-year age classi�cations starting with

ages 30-34 and ending with 80-84. There were

22 observations from this data set. This data set

is shown in Table 1.

2. Church. This set consists of a ten year mortality

experience study on insured individuals working

for organizations associated with a church. The

experience was between 1981 and 1991. As a
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Table 1: The National data by status and age.

Dead Alive

30{34 669 480417

35{39 882 476519

40{44 1327 470884

45{49 2073 462157

Age 50{54 3178 448594

55{59 4622 428537

60{64 6619 399669

65{69 8859 359914

70{74 11449 307888

75{79 13619 243967

80{84 15220 170447

condition of employment, individuals could not

be current users of alcohol or tobacco, although

they might be former users. Both gender and age

information were available. Although age was

tabulated in single year age groups, for simplic-

ity we divided age into the same �ve-year classi-

�cations as were used in the National data set.

The data were predominantly for individuals in

the U.S. though there were some employees re-

siding in Canada. There were 44 observations

from this data set.

3. CPSI. This set consists of the CPS-I data set

from a study undertaken in the U.S. by the

American Cancer Society. This data contains

mortality outcomes for a group of people fol-

lowed prospectively in time (Lew and Gar�nkel,

1987). Individuals were enlisted into the study

on a voluntary basis with no conditions of rep-

resentativeness or randomness made. For each

individual enlisted, smoking history was deter-

mined as well as age and gender. Age was tab-

ulated in nine �ve-year age groups from 35-39

through 75-79. The study was initiated in 1959

and mortality data is available to 1972. There

were 144 observations from this data set.

The problem considered in this paper is to combine

these three mortality data �les to form an estimate

of mortality for each classi�cation (i.e., age, gender,

alcohol, and smoking status). We recognize that one

of the data sets is arti�cial (Bowers et al. (1986)),

and one is dated (Lew and Gar�nkel (1987)). There-

fore, the following example is more for illustration of

the method than it is for determining real mortality

patterns or related actuarial functions. Since data is

available at di�erent levels of aggregation as regards

smoking status and alcohol consumption for the vari-

ous groups, it is necessary to borrow information from

some of the mortality studies to apply to the others.

In this paper we illustrate how the likelihood solu-

tion of Tolley et al. (1996) can be implemented in

combining life table data. This solution is based on

the Poisson distribution and takes into account con-

straints imposed both by the sampling method and

by the classi�cation pattern of the data.

3 Preliminaries

We assume that each of the data sets to be combined

can be put into the format of a general contingency

table. The contingency table template will be the

one de�ned by the classi�cation variables available in

any of the data sets. The levels of the classi�cation

variables will be those that are the least aggregated

in the data sets. In the example, since information

is available on smoking status, alcohol consumption

status, gender, age and mortality outcome, we use a

�ve-way contingency table. Note that not all classi-

�cation variables are available for each data set. For

example, data set one has no gender, smoking status,

or alcohol consumption status. Data set two consists

only of currently nondrinking, nonsmoking individ-

uals, although these could be either never or former

smokers, and never or former drinkers. In these cases,

the information available is only the marginal infor-

mation aggregated across some of the levels of the

classi�cation variables. We set up the table as if data

were present in every cell. This not only helps the an-

alyst understand the constraints inherent in the data,

but aids in forming the components required in the

methodology. In this case we have the following lev-

els represented: (1) age group - 11 levels, (2) status -

alive or dead, two levels, (3) gender - two levels, (4)

smoking - never, former, current-moderate, current-

heavy, four levels, (5) alcohol - no, yes, two levels, and

(6) study - three levels. If data were present in every

possible cell, we would have 1056 cells with data.

If we denote c as the vector of (hypothetical) data

in each cell, then we assume

E[c] =m

where c is distributed as a Poisson random variable.

We also assume that the vector m can be expressed

as eX� , the traditional log-linear model formulation

Bishop, Fienberg, and Holland (1975). We now de�ne

a matrix A which we use to construct linear combi-

nations of the logs of the cell counts. We can now
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write

� = Alog(m);

where log(m) is the vector of natural logarithms of

the individual components of m. If A is full rank,

then we can write,

log(m) = X� = A
�1
Alog(m):

In this case, if X is nonsingular then A�1 resembles

the design matrixX and Alog(m) represents the lin-

ear combinations of the logarithms of the expected

counts that de�ne the entries of �. Often the matrix

X will have full column rank but will not be square.

As will be seen below, for combined data sets this is

almost always true. In this case, the matrix A�1 has

redundant columns that represent constraints which

are implicit in X. In other words, not all the �0s es-

timable in the complete data case will be estimable in

the case we consider here. We will demonstrate be-

low how to eliminate these degrees of freedom (terms

in the model) to assure estimability of the likelihood.

We refer the reader interested in more mathematical

detail to the paper by Tolley et al. (1996).

4 The Analysis Matrices

We now present in detail certain matrix notation

which is necessary for the analysis. First recall

m, representing the vector of expected cell counts,

must have dimension corresponding to the possi-

ble number of cells. For our example, m will be

of dimension 1056 � 1. Although this vector is

hypothetical, it is very important to keep track

of the subscripts associated with each element of

m. In our example, we used the following nota-

tion. Each element of m is designated mi;j;k;l;m;n,

where the subscripts are as follows: i, study num-

ber, i = 1(National); 2(Church); 3(CPSI); j, al-

cohol use, j = 1(no); 2(yes); k, tobacco use, k =

1(never); 2(former); 3(moderate); 4(heavy); l, gen-

der, l = 1(male); 2(female); m, status (alive or

dead), m = 1(alive); 2(dead); n, age group, n =

1(30 � 34); 2(35 � 39); : : : ; 11(80 � 84). We assume

the subscripts move fastest at the far right (lexico-

graphical order), so that the �rst 11 expected counts

are for study 1, alcohol use 1, tobacco use 1, gender

1, status 1, and age groups 1; : : : ; 11. The next 11 ob-

servations would be from status group 2, and so on.

It is important to keep track of the relative positions

of the various cells in the m vector so that other nec-

essary matrices which represent linear combinations

of m will be constructed appropriately.

The actual data is kept in a vector which we call n.

For these three data sets, the entire data vector n has

dimension 210�1. That is, there are 210 observations

available for the analysis. The vector of observations

for this analysis was formed by stacking the columns

of data in Tables 1, 2, and 3. So the �rst element of

the vector n is 669, the second is 882, the twelfth is

480417, etc.

We de�ne a matrix W to identify the cells from

which the actual observations were drawn. The W

matrix has a row corresponding to each or the 210

observed counts and a column corresponding to each

of the 1056 cells in the complete combined contin-

gency table. Thus, the dimensions of the W matrix

for this problem are 210 � 1056. In this case, none

of the studies supplied data for individual cells, all

data were from margins. Building the W matrix for

this particular problem is mainly a bookkeeping is-

sue. Each row of the W matrix consists of zeros and

ones, with a one corresponding to each cell which

contributed to the total count in the observation rep-

resented by the row. In the complete data case, the

W matrix would be an identity, representing one ob-

servation from each cell. In this problem, each row

contained multiple ones, indicating each observation

represented a sum over a number of di�erent cells.

Thus, Wm yields the expected counts of the actual

data.

We now construct the �rst row of the W matrix

explicitly. The �rst row of the W matrix must corre-

spond to the �rst data element of the vector n. This

element is the 669 count of subjects in the National

study whose status is dead and whose age is 30-34.

These subjects comprised both genders from all alco-

hol use and tobacco use levels. We now recall how the

m vector was constructed. The �rst one-third (352

of the 1056 cells) of the elements of m represent the

National study. Elements 1; 12; 23; : : : represent ages

30� 34, elements 2; 13; 24; : : : represent ages 35� 39,

etc. Elements 1 � 11; 23� 33; 45 � 55; : : : represent

alive while elements 12� 22; 34� 44; 56� 66; : : : rep-

resent dead. Gender would be represented in blocks

of 22, with the �rst 22 cells representing males, the

next 22 females, the next 22 males, etc. Tobacco

use is in blocks of 44, with the �rst 44 elements for

never, the next 44 for former, the next 44 for mod-

erate, and the next 44 for heavy. That cycle repeats

six times. Finally, non-alcohol users would be repre-

sented in the �rst 176 cells, alcohol users in the next

176 cells, with this cycle repeated three times. With

this in mind the �rst observation of 669 would include

people from cell 12 (age 30 � 34,status dead, gender

male, tobacco never, alcohol no, and study 1), cell 34
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(age 30�34,status dead, gender female, tobacco never,

alcohol no, and study 1), cell 56 (age 30 � 34,status

dead, gender male, tobacco moderate, alcohol no, and

study 1), etc. So the �rst row of the W matrix would

consist of 10s in cells 12; 34; 56; : : :; 342, and 00s ev-

erywhere else. The next 209 rows of the W matrix

are produced analogously. The SAS Proc IML code

used to produce part of the W matrix is shown in

Figure 1.

Figure 1: Code used to produce the W matrix.

/*********************************

SAS code to produce the W matrix

*********************************/

proc iml;

w=repeat(0,210,1056);

/** first study (National)

first 22 rows of w matrix

**/

do j=1 to 11;

do i=11+j to 330+11+j by 22;

w[j,i]=1;

end;

end;

do j=12 to 22;

do i=j-11 to 330+j-11 by 22;

w[j,i]=1;

end;

end;

To construct the A matrix, recall that this matrix

is used to form linear combinations of the logs of the

expected cell counts (m). Thus, we must keep track

of the elements ofm as we construct A the same way

that we did to construct W. These linear combina-

tions will, hopefully, be those of most interest to the

researcher. However, we need to keep in mind that

because of data sparseness, not all linear combina-

tions will be estimable.

Initially we work as if data were present in all cells.

We require A to be nonsingular. We constructed

our A matrix as follows. The �rst row computed

the overall average of the log cell counts. This is

simply a row of 1

1056

0

s which yields the average of

the log cell counts when multiplied by log(m). The

next ten rows we used were orthogonal polynomials

constructed to estimate linear, quadratic, cubic, etc.,

up to the 10th degree functions of age. Orthogonal

polynomials may be automatically constructed using

the function orpol in SAS Proc IML SAS Institute

(1990). Every 12th cell the coe�cients will start to

repeat since there are 11 age groups. These coe�-

cients will be repeated in 96 blocks of 11 along the

rows of the A matrix since age moves the fastest in

the m vector. The next row, row 12, computes the

di�erence between the number of alive and the num-

ber of dead, or what we called the status e�ect. Since

the m vector has 11 cells from status=alive followed

by 11 cells from status=dead, the row of the Amatrix

will have 48 groups of 11 � 10s followed by 11 10s.

Row 13 estimates the gender e�ect. Since there

are 22 cells associated with males followed by 22 cells

associated with females in the m vector, this row of

the A matrix will be 24 groups of 22 � 10s followed

by 22 10s.

The next three rows (rows 14 through 16) were con-

structed to estimate the e�ect of smoking. The �rst

contrasted level one (never smoked) with level two

(former smoker) and was constructed as 6 groups of

44 � 10s followed by 44 10s followed by 88 00s. The

next row contrasted level three (moderate smoker)

with level four (heavy smoker), and also had 6 groups,

this time with 88 00s followed by 44 � 10 followed by

44 10s. The �nal degree of freedom for smoking con-

trasted levels one and two (never and former smok-

ers) with levels three and four (moderate and heavy

smokers). This row consisted of 6 groups of 88 � 10s

followed by 88 10s

The next row estimated the alcohol e�ect. This

row consisted of 3 groups of 176 � 10s followed by

176 10s. The next two degrees of freedom were asso-

ciated with the e�ect of study. Since the three data

sets were gathered a number of years apart, these lin-

ear combinations were constructed to look for a time

e�ect. The �rst of these contrasted the Church study

(the most recent) against the CPSI study (the earli-

est). This row of the A matrix consisted of 352 00s

followed by 352 10s followed by 352 � 10s. The sec-

ond degree of freedom for study was a quadratic ef-

fect of time, the Church and CPSI data contrasted

against the National data (collected in between the

other two). This row consisted of 352 � 20s followed

by 704 10s. These were all the degrees of freedom for

the main e�ects. The other degrees of freedom were

constructed as interactions among these main e�ects.

The interaction rows of the Amatrix are calculated

from the main e�ects (and from previous interaction

terms) as component wise products of the entries of

these previous rows. This multiplication is accom-

plished quite easily using the hdir command in SAS

Proc IML. Three-way and higher interaction terms

are produced analogously. The dimensions of the A

matrix for our example are 1056� 1056.

The �nal matrix which needs to be understood is
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the Z matrix. This matrix describes which of the

observed totals are constrained by sampling consid-

erations. In these studies, the total alive plus dead is

�xed, so these totals are constrained. The Z matrix is

again mostly zeros, with ones in each row identifying

which cell counts must total to a �xed number. Since

the total over status was �xed, a row of the Z matrix

will have a one in the column associated with \alive"

and a one in the column associated with \dead" for

each given pair of observations.

The Z matrix only operates on observed data, so as

we build the Zmatrix, we need only concern ourselves

with the form of the observed data vector n. The �rst

number in n is 669 and the twelfth number is 480417.

Since these numbers represent the total number of

subjects in the 30 � 34 age group for the National

study, their sum is a constrained total. Thus, the

�rst row of the Z matrix will contain a 1 in the �rst

and twelfth positions, and 00s elsewhere. There are

210 observed data points with 105 data pairs, so the

dimensions of Z are 105� 210.

5 Building the Model

Since the only data available are the marginal counts

represented by n, and since we are subject to those

constraints made explicit in the Z matrix, we are re-

stricted as to which �
0

s are actually estimable. In

fact, the likelihood function itself (see below) ulti-

mately determines which of the �0s may actually be

included in the �nal model.

In this analysis, since alive or dead status is a con-

strained total, we really have a bivariate measure in

each of 528 cells. That is, if we think of the cells

as the proportion of alive and dead in each setting,

we are constrained that those proportions add up to

1. We are limited by that constraint to focus on the

degree of freedom associated with the main e�ect for

status, and all interactions involving status. These

account for the 528 degrees of freedom which would

be estimable if all data were present.

For the sake of simplicity, we also limited our search

for estimable degrees of freedom to three-way inter-

actions or lower and only to polynomials of up to

the �fth degree involving age. This left our possible

search space at 65 degrees of freedom. Since these

are the only degrees of freedom we wish to examine,

we de�ne the matrix B to be the 65 columns of A�1

corresponding to these degrees of freedom. The B

matrix is only of dimension 1056� 65 and represents

the design matrix X.

However, not even all of these 65 degrees of freedom

will be estimable. A �nal determination of estima-

bility is made by appealing to the Implicit Function

Theorem (Apostol, 1957). As shown in Tolley et al.

(1996) this results in assessing the rank of a matrix

whose individual components are formed from the

derivatives of the likelihood. Since we use Newton-

Raphson as our estimation procedure, this matrix

must be computed. Thus, if any of the degrees of

freedom (terms of the model) are not estimable, the

Jacobian will not be invertable and the computation

will fail.

Since we use the Newton-Raphson method to esti-

mate the �0s, it is important to get initial estimates

within the radius of convergence. This is not always a

trivial matter. We are currently exploring numerical

options which may make this step easier to imple-

ment. We built our models by �rst �nding estimates

for a small model which had essentially main e�ects

(the two-way interactions involving status are main

e�ects in this model), and then, using these estimates

for the starting point, testing gradually more compli-

cated models. We used ((WB)0WB)�1(WB)0log(n)

for the initial estimates, where B represents the

columns taken from the A�1 matrix which were lim-

ited to those corresponding to the e�ects for status,

status by alcohol, status by tobacco, status by gender,

and status by age(linear). Figure 4 shows the section

of SAS Proc IML code which was used for the actual

implemenation of the Newton-Raphson method.

6 Results

Although we had some di�culty extracting the al-

cohol e�ect from the Church e�ect because only the

Church data had alcohol information, this �t seemed

reasonable. We show two plots of expected (based

on the model) rates and actual rates based on the

CPSI and National data. These plots were built us-

ing SAS/GRAPH.

7 Conclusion

We have illustrated a maximum likelihood technique

which allows estimation of e�ects in log-linear models

of categorical data even when many cells are missing

data and some data may be available only on the mar-

gins. We have demonstrated the methodology using

three data sets which have only marginal information,

so none of the available data represents a count in a

single cell. SAS Proc IML o�ers a powerful platform

to perform this analysis.
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Figure 2: The portion of SAS Proc IML code used to

actually implement the Newton-Raphson algorithm.

W is w, Z is z, x contains the columns of A�1 which

are estimable (B), and b is a vector of the initial

estimates for the �0s. The �rst derivative of the log-

likelihood is designated f, and the second derivative

is designated j.

g=nrow(z);

k=nrow(w);

con=100;

do while(con>.00000000001);

m=exp(x*b);

f=(n/(w*m))`*(w*(x#m))

-j(1,k,1)*(w*(x#m))

-((z*n)/(z*(w*m)))`*(z*(w*(m#x)))

+j(1,g,1)*(z*(w*(m#x)));

j=-(w*(x#m))`*((n/(w*m)##2)#(w*(x#m)))

+((w*x)`*(n/(w*m)#(w*(x#m))))

-((w*x)`*(w*(x#m)))

+(z*(w*(x#m)))`*(((z*n)/((z*(w*m))##2))

#(z*(w*(x#m))))

-(((z`*((z*n)/(z*(w*m))))#(w*x))`

*(w*(x#m)))

+(((z`*j(g,1))#(w*x))`*(w*(x#m)));

b1=b-inv(j)*f`;

con=max(abs(b1-b));

b=b1;

end;

Figure 3: Expected mortality experience of previous

smoking females and actual CPSI rates.

Figure 4: Expected mortality experience of never

smoking females, heavy smoking males, and actual

National rates.
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