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Abstract

The analysis of correlated data arising from repeated
measurements when the measurements are assumed
to be multivariate normal has been studied exten-
sively. In many practical problems, however, the
normality assumption is not reasonable. When the
responses are discrete and correlated, for example,
different methodology must be used in the analysis of
the data. Generalized Estimating Equations (GEES)
provide a practical method with reasonable statistical
efficiency to analyze such data. This paper provides
an overview of the use of GEEs in the analysis of
correlated data using the SAS System. Emphasis is
placed on discrete correlated data, since this is an
area of great practical interest.

Introduction

GEEs were introduced by Liang and Zeger (1986) as
a method of dealing with correlated data when, except
for the correlation among responses, the data can be
modeled as a generalized linear model. For example,
correlated binary and count data often can be mod-
eled in this way. With Release 6.12 of SAS/STATY
software, the GENMOD procedure includes the ca-
pability to perform GEE model fitting. In addition, the
Alternating Logistic Regression algorithm for fitting log
odds ratios with binary data will be implemented in
a future release. This paper provides an overview
of the GEE methodology that is implemented in the
GENMOD procedure. Refer to Diggle, Liang, and
Zeger (1994) and the other references at the end of
this paper for more details on this method.

Correlated data can arise from situations such as

¢ longitudinal studies, in which multiple measure-
ments are taken on the same subject at different
points in time

¢ clustering, where measurements are taken on
subjects that share a common category or char-
acteristic that leads to correlation. For example,

incidence of pulmonary disease among family
members may be correlated because of hered-
itary factors.

The correlation must be accounted for by analysis
methods appropriate to the data. Possible conse-
guences of analyzing correlated data as if they were
independent are

¢ incorrect inferences concerning regression pa-
rameters due to underestimated standard errors

¢ inefficient estimators, thatis, more mean square
error in regression parameter estimators than
necessary

Example of Longitudinal Data

The following data, from Thall and Vail (1990), are
concerned with the treatment of epileptic seizure
episodes. These data were also analyzed in Dig-
gle, Liang, and Zeger (1994). The data consists of the
number of epileptic seizures in an eight-week baseline
period, before any treatment, and in each of four two-
week treatment periods, in which patients received
either a placebo or the drug Progabide in addition
to other therapy. A portion of the data is shown in
Table 1.

Table 1. Epileptic Seizure Data

Patient ID Treatment Baseline Visitl Visit2 Visit3 Visit4

104 Placebo 11 5 3 3 3
106 Placebo 11 3 5 3 3
107 Placebo 6 2 4 0 5
101 Progabide 76 11 14 9 8
102 Progabide 38 8 7 9 4

0 4 3 0

103 Progabide 19

Within-subject measurements are likely to be corre-
lated, whereas between-subject measurements are
likely to be independent. The raw correlations among
the counts between visits are shown in Table 2. They
indicate strong correlation in the number of seizures



between the visits. Accounting for this correlation is
an important aspect of the analysis strategy. The
seizures data will be analyzed in later sections as
count data with a specified correlation structure.

Table 2. Raw Correlations
| Visitl Visit2 Visit3 Visit4 |

Visit 1 1.00 .69 .54 72
Visit 2 1.00 .67 .76
Visit 3 1.00 71
Visit 4 1.00

Generalized Linear Models for Indepen-
dent Data

LetY;, ¢ = 1,...,n be independent measurements.
Generalized linear models for independent data are
characterized by

e a Systematic component
g(E(Y:) =g(u) =x'B

where p; = E(Y;), ¢ is a link function that re-
lates the means of the responses to the linear
predictor x;’3, x; is a vector of independent
variables for the th observation, and 3 is a vec-
tor of regression parameters to be estimated.

e a random component: Y;, ¢ = 1,...,n are
independent and have a probability distribution
from an exponential family:

Y; ~ exponential family:

binomial, Poisson,
normal, gamma,
inverse gaussian

The exponential family assumption implies that the
variance of Y; is given by V; = ¢v(y;), where v is
a variance function that is determined by the specific
probability distribution and ¢ is a dispersion parameter
that may be known or may be estimated from the
data, depending on the specific model. The variance
functions for the binomial and Poisson distributions
are given by

e binomial: v(y) =

e Poisson: v(y) =
The maximum likelihood estimator of the p x 1 pa-
rameter vector 3 is obtained by solving the estimating
equations
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for 3. This is a nonlinear system of equations for g3,
and it can be solved iteratively by the Fisher scoring
or Newton-Raphson algorithm.

Modeling Correlation
Generalized Estimating Equations

Let Y;;, j=1,...,n;,¢ =1,..., K represent the jth
measurement on the ith subject. There are n; measur-
ments on subject : and Zfil n; total measurements.

Correlated data are modeled using the same link func-
tion and linear predictor setup (systematic component)
as the independence case. The random component
is described by the same variance functions as in the
independence case, but the covariance structure of
the correlated measurements must also be modeled.
Let the vector of measurements on the ith subject
be Y; = [Yi1,...,Y:,,) with corresponding vector of
means p; = [ui1, - - -, lin,)” @nd let V; be an estimate
of the covariance matrix of Y,;. The Generalized Es-
timating Equation for estimating 3 is an extension of
the independence estimating equation to correlated
data and is given by
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Working Correlations

Let R;(«) be an n; x n; "working" correlation matrix
that is fully specified by the vector of parameters a.
The covariance matrix of Y, is modeled as

V; = 6A7R(a)A;

where A is an n; x n; diagonal matrix with v(y;; ) as the
Jjth diagonal element. If R;(«) is the true correlation
matrix of Y, then V; is the true covariance matrix of
Y.

The working correlation matrix is not usually known
and must be estimated. It is estimated in the iterative
fitting process using the current value of the param-
eter vector 3 to compute appropriate functions of the
Pearson residual

_ Yij — My
Cij = — —/—
v(pis)

There are several specific choices of the form of
working correlation matrix R;(a) commonly used to
model the correlation matrix of Y;. A few of the
choices are shown below. Refer to Liang and Zeger
(1986) for additional choices. The dimension of the



vector «, which is treated as a nuisance parameter,
and the form of the estimator of « are different for
each choice. Some typical choices are

e R;(a) = Ry, a fixed correlation matrix. For
R, =1, the identity matrix, the GEE reduces to
the independence estimating equation.

¢ m-dependent:

ar t=1,2,...,m
CO”“(K'JVYLJH):{ Ot t>m

e exchangeable: Corr(Yi;,Yir) =, j # k
e unstructured: Corr(Yi;, Yir) = ajp
Fitting Algorithm

The following is an algorithm for fitting the specified
model using GEEs.

e Compute an initial estimate of 3, for exam-
ple with an ordinary generalized linear model
assuming independence.

¢ Compute the working correlations R,;(«).

o Compute an estimate of the covariance:
Vi= A R(a)A]

e Update 3:
Bro1=B,—

Z a“z i—lal"'z Z al"’z V

¢ lIterate until convergence.

Properties of GEEs

The GEE method has some desirable statistical prop-
erties that make it an attractive method for dealing
with correlated data.

e GEEs reduce to independence estimating
equations for n; = 1.

¢ GEEs are the maximum likelihood score equa-
tion for multivariate Gaussian data.

K(B3-8) — N(0, M(¢)) if the mean model is
correcteven if V; is incorrectly specified, where

- M((b) = I;M,05!

. IO — Z a“z V lal"'z

K

. Z “z V lC (Y )V 18“2

The third property listed above means that you don’t
have to specify the working correlation matrix cor-
rectly in order to have a consistent estimator of the
regression parameters. Choosing the working cor-
relation closer to the true correlation increases the
statistical efficiency of the regression parameter esti-
mator, so you should specify the working correlation
as accurately as possible based on knowledge of the
measurement process.

Estimating the Covariance of 3

The model-based estimator of C'ov(83) is given by

C'OUM(B) =

This is the GEE equivalent of the inverse of the Fisher
information matrix that is often used in generalized
linear models as an estimator of the covariance esti-
mate of the maximum likelihood estimator of 3. It is
a consistent estimator of the covariance matrix of 3
if the mean model and the working correlation matrix
are correctly specified.

The estimator
—17 71-1
M =I5

is called the empirical, or robust, estimator of the
covariance matrix of 3. It has the property of being
a consistent estimator of the covariance matrix of ﬁ
even if the working correlation matrix is misspecified,
that is, if Cov(Y;) # V;. In computing M, 3 and ¢
are replaced by estimates, and Cov(Y;) is replaced
by an estimate, such as

(Yi = m:(B)(Yi — p;(B))

Progabide Example

GEE is an appropriate strategy for analyzing the
epileptic seizure data. You can employ a log-linear
model with v(p) = p (the Poisson variance function)
and
log(£(Yi;)) = fo+ xinfr+ xi2f2+
ri12i203 +109(i5)

where

¢ Y;;: number of epilectic seizures in interval j



e t;;: length of interval j

o pi— 1: weeks 8-16
=1 0: weeks 0-8

o 1y — 1: progabide group
2= 0: placebo group

The correlations between the counts are modeled
as ry; = «,t # j (exchangeable correlations). For
comparison, the correlations are also modeled as in-
dependent (identity correlation matrix). In this model,
the regression parameters have the interpretation in
terms of the log seizure rate shown in Table 3.

Table 3. Interpretation of Regression Parameters

Treatment Visit | log(E(Y;;)/ti;)
Placebo Baseline | 5o
1-4 | fo+

Progabide Baseline | 8o + 32
1-4 | Bo+B1+ 52+ 53

As indicated schematically in Figure 4, the difference
between the log seizure rates in the pretreatment
(baseline) period and the treatment periods is 3; for
the placebo group and 3; + 35 for the Progabide group.
Avalue of 53 < 0 would indicate an effective reduction
in the seizure rate.

Table 4. Interpretation of Model

log(£(Yi;)/ti;)
Baseline * *

£1
Visits 1-4 * ﬁ]_ =+ 63

*

Placebo Treatment

You can now fit this model in the SAS System by using
the GENMOD procedure, which has been enhanced
to provide Generalized Estimating Equations method-
ology. The following statements input the data, which
are arranged as one visit per observation:

data thall;
input idy visit trt bline age;
intercpt=1
dat al i nes;
104 51 0 11 31
104 3 2 0 11 31
104 33 011 31
104 3 4 0 11 31
106 31 0 11 30
106 5 2 0 11 30
106 3 3 0 11 30
106 3 4 0 11 30
107 21 06 25
107 4 2 0 6 25
107 03 06 25
10754 06 25
114 41 0 8 36
114 4 2 0 8 36

run;

Some further data manipulations create an obser-
vation for the baseline measures, create an interval
variable, and create an indicator variable for whether
the observation is for a baseline measurement or a
visit measurement.

dat a new,
set thall;
out put ;
if visit=1 then do;
y=bl i ne;
vi si t =0;
out put ;
end;
run;
data newz;
set new,
if id ne 207;

if visit=0 then do; x1=0; Itinme=log(8); end;
el se do; x1=1; Itinme=log(2); end;
x1ltrt=x1*trt;
run;

The GEE solution is requested by using the RE-
PEATED statement in the GENMOD procedure. The
option SUBJECT=ID specifies that the ID variable de-
scribes the observations for a single cluster and the
CORRW option prints the working correlation matrix.
The TYPE=option specifies the correlation structure;
the value EXCH indicates the exchangeable structure.
Other structures now supported include the unstruc-
tured, AR(1), independent, and user-specified.

proc gennobd dat a=newz;
model y=x1 | trt / d=poi sson
offset=ltine itprint;
class id;
repeated subject=id / corrw type=exch;
run;

These statements produce the usual output for fitting
a generalized linear model to these data; the esti-
mates are used as initial values for the GEE solution.
First, the usual results for fitting a GLM solution are
produced; the GLM parameter estimates are used as
the initial parameter estimates for the GEE solution.

Information about the GEE model is displayed in Fig-
ure 1. The results of fitting the model are shown
in Figure 2. Compare these with the model of in-
dependence displayed in Figure 3. The parameter
estimates are nearly identical, but the standard errors
for the independence case are underestimated. The
coefficient of the interaction term, 33, is highly signif-
icant under the independence model and marginally
significant with the exchangeable correlations model.



GEE Model I nformation
Description Val ue

Correlation Structure Exchangeabl e
Subj ect Effect 1D

Nunber of Clusters 58

Maxi mum Cluster Size 5

M nimum Cluster Size 5

Figure 1. GEE Model Information

Enpirical 95% Confidence Linits
Paranmeter Estimate Std Err Lower Upper Z Pr>|Zz|
INTERCEPT  1.3476 0.1574 1.0392 1.6560 8.5640 0.0000
X1 0.1108 0.1161 -0.1168 0.3383 0.9543 0.3399
TRT -0.1080 0.1937 -0.4876 0.2716 -.5578 0.5770
X1* TRT 0.3016  0.1712 -0.6371 0.0339 -1.762 0.0781
Scal e 3.2245 . . . . .

Figure 2. GEE Parameter Estimates

Anal ysis O Paraneter Estimates

Par aret er DF Estimate Std Err Chi Square Pr>Chi

| NTERCEPT 1 1.3476  0.0341 1565.4356 0.0001
X1 1 0.1108  0.0469 5.5839 0.0181
TRT 1 -0.1080 0.0486 4.9316 0.0264
X1*TRT 1 -0.3016 0.0697 18.6987 0.0001
SCALE 0 1.0000 0.0000 . .

Figure 3. Independence Model

Table 5 summarizes the parameter estimation infor-
mation.

Table 5. Results of Model Fitting

Variable Correlation Coef. Std. Error Coef./S.E.
Structure

Intercept Exchangeable 1.35 .16 8.56
Independent 1.35 .03 39.52

Visit (x1) Exchangeable 11 12 .95
Independent A1 .05 2.36

Treat (x5) Exchangeable -11 .19 -.56
Independent =11 .05 -2.22

T * xp Exchangeable -.30 17 -1.76
Independent -.30 .07 -4.32

The working correlation is printed with the CORRW
option. The fitted exchangeable correlation matrix is
shown in Figure 4.

Working Correlation Matrix
cal caL2 ca3 caL4 CaLs
ROWL 1.0000 0.5983 0.5983 0.5983 0.5983
ROW2 0.5983 1.0000 0.5983 0.5983 0.5983
ROVB 0.5983 0.5983 1.0000 0.5983 0.5983
ROWM 0.5983 0.5983 0.5983 1.0000 0.5983
ROVWG 0.5983 0.5983 0.5983 0.5983 1.0000

Figure 4. Working Correlation Matrix

If you specify the COVB option, you produce both the
model-based (naive) and the empirical (robust) co-
variance matrices. Figure 5 contains these estimates.

Covariance Matrix (Model - Based)
Covari ances are Above the Diagonal and Correl ations are Bel ow

Par arret er

Nunber PRML PRV2 PRVB PRV4
PRML 0.01206  0.001594 -0.01206 -0.001594
PRV2 0.11876 0.01493 -0.001594 -0.01493
PRVB -0.70017 -0.08316 0.02460 0. 005562
PRV4 -0. 07557 -0.63627 0. 18466 0. 03687

Covariance Matrix (Enpirical)
Covari ances are Above the Diagonal and Correl ations are Bel ow

Par arret er

Nunber PRML PRV2 PRVB PRV4
PRML 0.02476 -0.001152 -0.02476 0. 001152
PRV2 - 0. 06305 0.01348 0. 001152 -0.01348
PRVB -0.81249 0. 05122 0.03751 -0.002999
PRV4 0. 04276 -0.67815 - 0. 09045 0. 02931

Figure 5. Covariance Matrices

The two covariance estimates are similar, indicating
an adequate correlation model.

Modeling Odds Ratios for Binary Data

Diggle, Liang, and Zeger (1994) point out that model-
ing association among binary responses with correla-
tion has

a disadvantage, and they propose using the odds ratio
instead. For binary data, the correlation between the
fth and kth response is, by definition,

Pr(Yy; = 1,Yi = 1) — pijpa
Vi (1= i) pin (1 — par)

Corr(Ys;,Yi) =

The joint probability in the numerator satisfies the
following bounds, by elementary properties of proba-
bility, since y;; = Pr(Y;; = 1):

max(0, pij + pix — 1) < Pr(Yy; =1,Yir =1) <

min(gi;, fix)

The correlation, therefore, is constrained to be within
limits that depend in a complicated way on the means
of the data.

The odds ratio, defined as
OR(Yyj,Yir) =

Pr(Yiy =1,y = J)Pr(Yy; = 0,Yy; = 0)
Pr(Yi; = 1Y = 0)Pr(Yy; = 0, = 1)

is not constrained by the means and is preferred by
many researchers to correlations for binary data.



Carey, Zeger, and Diggle (1993) propose an algorithm
for fitting the log odds ratio as

log(OR(Yij, Yir)) = Z;’jka

where z;;, is a vector of covariates and « is a vec-
tor of association parameters to be estimated. The
mean is modeled with a regression model just as it is
when you use correlations to model association. This
implementation of GEE is called alternating logistic re-
gression (ALR). It uses a GEE similar to the one used
to model correlations to estimate the mean regression
parameters 3 alternating with a logistic regression to
estimate the association parameters «.

The previous method treated correlation as a nuisance
parameter, which must be taken into account but is
not of scientific interest. The ALR method is useful
if the association is a scientific focus of the analysis,
since a detailed model for the association is fitted.

Conclusion

Generalized Estimating Equations provide a practical
method with good statistical properties to model data
that exhibit association but cannot be modeled as
multivariate normal.
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