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Abstract

Release 6.12 of the SAS System brings several key
enhancements to SAS/STAT software. Generalized
Estimating Equations (GEE) methodology, a popu-
lar technique for the modeling of correlated response
data, has been incorporated into the GENMOD proce-
dure. Another key update is the computation of exact
p-values for a number of statistical tests provided by
the FREQ procedure. In addition, this paper provides
an overview of enhancements to the MULTTEST,
MIXED, GLM, and NPAR1WAY procedures.

GEE Methods in the GENMOD Procedure

GEEs were introduced by Liang and Zeger (1986) as
a method of dealing with correlated data when, except
for the correlation among responses, the data can be
modeled as a generalized linear model.

Correlated data can arise from situations such as

� longitudinal studies, in which multiple measure-
ments are taken on the same subject at dif-
ferent points in time. A clinical trial for a new
treatment of psoriasis may involve repeated
measurements of symptom severity.

� clustering, where measurements are taken on
subjects that share a common category or char-
acteristic that leads to correlation. Incidence of
pulmonary disease among family members may
be correlated because of hereditary factors.

The correlation must be accounted for by analysis
methods appropriate to the data. Possible conse-
quences of analyzing correlated data as if they were
independent are incorrect inferences due to under-
estimated standard errors and inefficient estimators.
You model the correlated data by using the same
link function and linear predictor setup as you use in
a generalized linear model in the independent case;
you describe the random component by the same vari-
ance function. However, in the GEE approach, you
also model the covariance structure of the correlated
measures.

You model the covariance matrix ofYi as
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1
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whereAi is an ni � ni diagonal matrix with v(�ij) as
the jth diagonal element.

Usually, you estimate the working correlation matrix

eij =
yij � �ijp

v(�ij )

using the current value of the parameter vector � to
compute appropriate functions of the Pearson resid-
ual. There are several choices for the form of the
working correlation matrix, including a fixed correla-
tion matrix, the identity matrix, exchangeable correla-
tion structure, unstructured correlation structure, and
AR(1) structure. Both a model-based estimator of
Cov(�̂) and an empirical estimator are available; both
estimators are consistent, and the empirical estimator
is consistent even if the working correlation matrix
is not specified correctly. See the paper Repeated
Measurements Analysis Using GEE Methodology in
these proceedings for additional detail about the GEE
approach.

The GEE strategy is implemented in the GENMOD
procedure with the new REPEATED statement. In
the following example, this strategy is applied to the
Six Cities study of the effects of air pollution (Ware
et al. 1984) for the cases analyzed in Lipsitz et al.
(1994). The binary response, the wheezing status of
children at ages 9, 10, 11, and 12, is modeled with a
logistic regression for the explanatory variables city,
age, and maternal smoking status at that age. Corre-
lations among the binary responses are modeled as
exchangeable correlations.

data six;
input case city$ @@;
do i=1 to 4;

input age smoke wheeze @@;
output;

end;
datalines;
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1 p 9 0 1 10 0 1 11 0 1 12 0 0
2 k 9 1 1 10 2 1 11 2 0 12 2 0
3 k 9 0 1 10 0 0 11 1 0 12 1 0
4 p 9 0 0 10 0 1 11 0 1 12 1 0
5 k 9 0 0 10 1 0 11 1 0 12 1 0
6 p 9 0 0 10 1 0 11 1 0 12 1 0
7 k 9 1 0 10 1 0 11 0 0 12 0 0
8 p 9 1 0 10 1 0 11 1 0 12 2 0
9 p 9 2 1 10 2 0 11 1 0 12 1 0

10 k 9 0 0 10 0 0 11 0 0 12 1 0
11 k 9 1 1 10 0 0 11 0 1 12 0 1
12 p 9 1 0 10 0 0 11 0 0 12 0 0
13 k 9 1 0 10 0 1 11 1 1 12 1 1
14 p 9 1 0 10 2 0 11 1 0 12 2 1
15 k 9 1 0 10 1 0 11 1 0 12 2 1
16 p 9 1 1 10 1 1 11 2 0 12 1 0
;
proc genmod data=six;

class case city;
model wheeze = city age smoke / dist=bin;
repeated subject=case / type=exch covb corrw;

run;

You request the GEE strategy with the REPEATED
statement. Specifying SUBJECT=CASE identifies the
clustering variable, which must also be listed in the
CLASS statement. The TYPE=EXCH option specifies
an exchangeable working correlation structure. The
COVB and CORRW options request that the param-
eter estimate covariance matrix and the final working
correlation be printed, respectively.

The model information table lists the total number of
clusters as well as the minimum and maximum cluster
sizes.

GEE Model Information

Description Value

Correlation Structure Exchangeable
Subject Effect CASE (16 levels)
Number of Clusters 16
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

NOTE: GEE parameter estimates converged after 4 iterations.

Figure 1. GEE Model Information

Both the model-based and empirical covariance ma-
trices are printed.

Covariance Matrix (Model-Based)
Covariances are Above the Diagonal and Correlations are Below

Parameter
Number PRM1 PRM2 PRM4 PRM5

PRM1 5.71511 -0.22386 -0.53133 0.01658
PRM2 -0.13847 0.45733 -0.002411 0.01877
PRM4 -0.96838 -0.01553 0.05268 -0.01658
PRM5 0.01587 0.06353 -0.16530 0.19088

Covariance Matrix (Empirical)
Covariances are Above the Diagonal and Correlations are Below

Parameter
Number PRM1 PRM2 PRM4 PRM5

PRM1 9.33891 -0.85121 -0.83232 -0.16667
PRM2 -0.40467 0.47378 0.05737 0.04007
PRM4 -0.97676 0.29893 0.07775 -0.002201
PRM5 -0.15108 0.16125 -0.02187 0.13032

Figure 2. GEE Covariance Matrices

The working correlation matrix is displayed.

Working Correlation Matrix

COL1 COL2 COL3 COL4

ROW1 1.0000 0.1686 0.1686 0.1686
ROW2 0.1686 1.0000 0.1686 0.1686
ROW3 0.1686 0.1686 1.0000 0.1686
ROW4 0.1686 0.1686 0.1686 1.0000

Figure 3. GEE Working Correlation Matrix

Finally, the parameter estimates table contains pa-
rameter estimates, standard errors, confidence in-
tervals, Z-scores, and p-values for the parameter
estimates.

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Empirical 95% Confidence Limits
Parameter Estimate Std Err Lower Upper Z

INTERCEPT 1.2754 3.0560 -4.7141 7.2650 0.4174
CITY k 0.1219 0.6883 -1.2272 1.4709 0.1771
CITY p 0.0000 0.0000 0.0000 0.0000 0.0000
AGE -0.2036 0.2788 -0.7501 0.3429 -.7302
SMOKE -0.0928 0.3610 -0.8003 0.6147 -.2571
Scale 0.9991 . . . .

Figure 4. GEE Parameter Estimates Table

More Exact p-Values

Exact p-values provide an alternative strategy when
data are sparse, skewed, or unbalanced so that the
assumptions required for standard asymptotic tests
are violated. Advances in computer performance
and developments in network algorithms over the
last decade have made exact p-values accessible for
a number of statistical tests. In Release 6.11, ex-
act p-values were added for the simple linear rank
statistics produced by the NPAR1WAY procedure.
In Release 6.12, exact p-values are produced for
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many of the statistics computed by the FREQ pro-
cedure. You are now able to request exact p-values
for the following chi-square statistics: Pearson’s chi-
square, likelihood-ratio chi-square, Mantel-Haenszel
chi-square, Fisher’s exact test and r by c exact test,
Jonckheere-Terpstra test, and McNemar’s test. In
addition, you can also obtain exact p-values for hy-
pothesis tests that the following statistics are equal to
0: Pearson correlation coefficient, Spearman correla-
tion coefficient, simple kappa statistic, and weighted
kappa statistic. Exact confidence bounds are also
available for the odds ratios produced for 2 by 2
tables.

The following example illustrates the use of the new
EXACT statement to produce an exact p-value for
the simple kappa statistic. Researchers studied two
scoring systems for evaluating fitness in fifth grade
students. Forty-three students were classified into one
of four fitness categories. Interest lies in determining
whether there is agreement between the two scoring
systems, which can be assessed by testing whether
the kappa coefficient is equal to 0.

data fitness;
input score_1 $ score_2 $ count;
datalines;
poor poor 5
average average 4
good good 4
superior superior 3
poor average 3
average poor 1
average good 6
good average 5
good superior 1
superior average 10
superior good 1
;

To request the exact p-value for the kappa statistic,
you specify the keyword KAPPA in the EXACT state-
ment. The AGREE option in the MODEL statement
requests the measures of agreement.

proc freq;
weight count;
tables score_1 * score_2 / agree;
exact kappa;

run;

The following figure displays the contingency table
form of the data. Note the number of zero cells, which
makes the use of the asymptotic test questionable.

TABLE OF SCORE_1 BY SCORE_2

SCORE_1 SCORE_2

Frequency|
Percent |
Row Pct |
Col Pct |average |good |poor |superior| Total
---------+--------+--------+--------+--------+
average | 4 | 6 | 1 | 0 | 11

| 9.30 | 13.95 | 2.33 | 0.00 | 25.58
| 36.36 | 54.55 | 9.09 | 0.00 |
| 18.18 | 54.55 | 16.67 | 0.00 |

---------+--------+--------+--------+--------+
good | 5 | 4 | 0 | 1 | 10

| 11.63 | 9.30 | 0.00 | 2.33 | 23.26
| 50.00 | 40.00 | 0.00 | 10.00 |
| 22.73 | 36.36 | 0.00 | 25.00 |

---------+--------+--------+--------+--------+
poor | 3 | 0 | 5 | 0 | 8

| 6.98 | 0.00 | 11.63 | 0.00 | 18.60
| 37.50 | 0.00 | 62.50 | 0.00 |
| 13.64 | 0.00 | 83.33 | 0.00 |

---------+--------+--------+--------+--------+
superior | 10 | 1 | 0 | 3 | 14

| 23.26 | 2.33 | 0.00 | 6.98 | 32.56
| 71.43 | 7.14 | 0.00 | 21.43 |
| 45.45 | 9.09 | 0.00 | 75.00 |

---------+--------+--------+--------+--------+
Total 22 11 6 4 43

51.16 25.58 13.95 9.30 100.00

Figure 5. Exact Test for Simple Kappa

The resulting exact p-value for the hypothesis that the
simple kappa statistic is equal to 0 is p=0.055, which
may be considered to have marginal significance at
best. Note the value p=0.038 for the asymptotic test.
Using exact p-values for this analysis leads to a very
different conclusion than using the asymptotic test.

STATISTICS FOR TABLE OF SCORE_1 BY SCORE_2

Test of Symmetry
----------------

Statistic = 11.091 DF = 6 Prob = 0.086

Simple Kappa Coefficient
------------------------

95% Confidence Bounds
Kappa = 0.167 ASE = 0.102 -0.032 0.366

Asymptotic P-Values Exact P-Values
(Right-sided) = 0.019 (Right-sided) = 0.034
(Two-sided) = 0.038 (Two-sided) = 0.055

Weighted Kappa Coefficient
--------------------------

95% Confidence Bounds
Kappa = 0.100 ASE = 0.100 -0.096 0.297

Sample Size = 43

Figure 6. Exact Test for Simple Kappa

There have been other additions to the FREQ proce-
dure. These include

� goodness-of-fit test for one-way tables

� test for specified proportions or frequencies for
one-way tables

� confidence bounds for MEASURES statistics
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PROC FREQ users will also be pleased to know that
the procedure no longer truncates values of character
variables to 16 characters.

Tests for Homogeneity of Variance

One of the assumptions of one-way ANOVA is ho-
mogenity of variance (HoV)—that is, that the groups
have equal variance. The GLM procedure in Release
6.12 of SAS/STAT software includes several methods
for testing HoV in a one-way model and also provides
Welch’s HoV-robust test for group mean differences.

The traditional test for HoV is Bartlett’s (Barlett 1937).
While this is the optimal test under a normal model,
it can be very inaccurate when the data deviate from
normality (Box 1953). Levene’s test, O’Brien’s test,
and the Brown and Forsythe test are all based on
an ANOVA for a dispersion variable derived from the
dependent variable values. These tests are fairly
robust to underlying distributions (Conover, Johnson,
and Johnson 1981).

These tests are now available for groups defined
in the MEANS statement and are requested with
the HOVTEST= option and the following keywords:
BARTLETT, LEVENE, OBRIEN, and BF. Specifying
HOVTEST alone produces Levene’s test. The option
is ignored unless the MODEL statement specifies a
simple one-way model; investigating homogeneity of
variance for more complicated models is an area of
ongoing research.

The following example displays the use of homogene-
ity variance testing for a study on olfactory capability
(O’Brien and Heft 1995). Each observation contains
the score of an olfactory index for a study participant
and the age group (1–5), where age group ranges
from younger to older. There is evidence that as peo-
ple age, their sense of smell decreases. However,
some people experience no decline, so there may be
greater variability within the older age groups than the
younger age groups.

data upsit;
input agegroup smell @@;
datalines;

1 1.381 1 1.322 1 1.162 1 1.275 1 1.381 1 1.275 1 1.322
1 1.492 1 1.322 1 1.381 1 1.162 1 1.013 1 1.322 1 1.322
1 1.275 1 1.492 1 1.322 1 1.322 1 1.492 1 1.322 1 1.381
1 1.234 1 1.162 1 1.381 1 1.381 1 1.381 1 1.322 1 1.381
1 1.322 1 1.381 1 1.275 1 1.492 1 1.275 1 1.322 1 1.275
1 1.381 1 1.234 1 1.105
2 1.234 2 1.234 2 1.381 2 1.322 2 1.492 2 1.234 2 1.381
2 1.381 2 1.492 2 1.492 2 1.275 2 1.492 2 1.381 2 1.492
2 1.322 2 1.275 2 1.275 2 1.275 2 1.322 2 1.492 2 1.381
2 1.322 2 1.492 2 1.196 2 1.322 2 1.275 2 1.234 2 1.322
2 1.098 2 1.322 2 1.381 2 1.275 2 1.492 2 1.492 2 1.381
2 1.196
3 1.381 3 1.381 3 1.492 3 1.492 3 1.492 3 1.098 3 1.492
3 1.381 3 1.234 3 1.234 3 1.129 3 1.069 3 1.234 3 1.322
3 1.275 3 1.230 3 1.234 3 1.234 3 1.322 3 1.322 3 1.381
4 1.322 4 1.381 4 1.381 4 1.322 4 1.234 4 1.234 4 1.234
4 1.381 4 1.322 4 1.275 4 1.275 4 1.492 4 1.234 4 1.098
4 1.322 4 1.129 4 0.687 4 1.322 4 1.322 4 1.234 4 1.129
4 1.492 4 0.810 4 1.234 4 1.381 4 1.040 4 1.381 4 1.381
4 1.129 4 1.492 4 1.129 4 1.098 4 1.275 4 1.322 4 1.234
4 1.196 4 1.234 4 0.585 4 0.785 4 1.275 4 1.322 4 0.712

4 0.810
5 1.322 5 1.234 5 1.381 5 1.275 5 1.275 5 1.322 5 1.162
5 0.909 5 0.502 5 1.234 5 1.322 5 1.196 5 0.859 5 1.196
5 1.381 5 1.322 5 1.234 5 1.275 5 1.162 5 1.162 5 0.585
5 1.013 5 0.960 5 0.662 5 1.129 5 0.531 5 1.162 5 0.737
5 1.098 5 1.162 5 1.040 5 0.558 5 0.960 5 1.098 5 0.884
5 1.162 5 1.098 5 0.859 5 1.275 5 1.162 5 0.785 5 0.859
;

The following PROC GLM invocation requests Lev-
ene’s test and Welch’s test for the groups defined by
the AGEGROUP variable.

proc glm data=upsit;
class agegroup;
model smell = agegroup;
means agegroup / hovtest welch;

run;

The usual ANOVA indicates that the olfactory index
mean differs for the various age groups.

Analysis of Variance Procedure

Dependent Variable: SMELL

Source DF Anova SS Mean Square F Value Pr > F

AGEGROUP 4 2.13878141 0.53469535 16.65 0.0001

Figure 7. ANOVA Results

However, Levene’s test indicates that the assumption
of homogeneity of variance is violated, with anF value
of 6.3494 for 4 df (p=0.001).

Analysis of Variance Procedure

Levene’s Test for Equality of SMELL Variance
ANOVA of Squared Deviations from Group Means

Sum of Mean
Source DF Squares Square F Value Pr > F

AGEGROUP 4 0.0799 0.0200 6.3494 0.0001
Error 175 0.5503 0.00314

Figure 8. Levene’s Test

Using Welch’s ANOVA, you would still conclude that
there are differences in mean olfactory index for the
various groups. The F statistic has the value 13.7208
(p=0.001).

Analysis of Variance Procedure

Welch’s ANOVA for SMELL

Source DF F Value Pr > F

AGEGROUP 4.0000 13.7208 0.0001
Error 78.7489

Figure 9. Welch’s ANOVA

Note that unless group variances are extremely differ-
ent or unless you have a very large number of groups,
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the usual ANOVA is quite robust when groups are
roughly the same size.

Upgrading the MULTTEST Procedure

The MULTTEST procedure computes regular and
multiplicity-adjusted p-values for a variety of statistical
tests. The input comes from a multivariate ANOVA
model, and the response variables can be either
discrete or continuous. In the case of a continuous
variable, p-values for the t-test are computed; in the
case of discrete response variables, p-values for the
Cochran-Armitage trend test, the permution exact test,
and the Peto test can be produced, among others.

With Release 6.12, the MULTTEST procedure has
undergone substantial improvement. A very useful
enhancement is the capability of accepting unadjusted
p-values as input and adjusting them by using any
method that doesn’t require raw data. Options for the
Peto test have expanded: it can now be computed via
a permutation test, all relevant tables are now printed,
and a new permutation-based multiplicity adjustment
is available.

Several new multiplicity adjustments have been added
to PROC MULTTEST, including the false discovery
rate controlling method of Benjamini and Hochberg,
Hochberg’s step-up Bonferroni adjustment, Bonfer-
roni approximations using exact permutation distribu-
tions, and independence-assuming approximations
using exact permutation distributions.

Other new enhancements include:

� Freeman-Tukey and t-tests are weighted by the
STRATA variable.

� Simulation standard errors and intermediate
calculations are now included in the OUT= data
set.

� The hypergeometric variance has become the
default for the Cochran-Armitage test.

� Handling of missing data has improved.

As an example of the new features, the following
analysis illustrates the use of PROC MULTTEST to
multiplicity-adjust a set of raw p-values. In the DATA
step, the unadjusted p-values from eight tests are as-
signed to the required variable RAW P in the data set
RAW. In the PROC MULTTEST invocation, the option
PDATA identifies the data set with the raw p-values,
and the options HOLM, HOC, and FDR request the
Holm, Hochberg, and Benjamini and Hochberg meth-
ods, respectively.

data raw;
input test$ raw_p;

datalines;
test1 .08201
test2 .67132
test3 .00112
test4 .54333
test5 .23112
test6 .02454
test7 .01423
test8 .04222

;
proc multtest pdata=raw

holm hoc fdr out=newvalue;
run;
proc print;
run;

No output from PROC MULTTEST is produced.
The following listing from PROC PRINT displays the
multiplicity-adjusted p-values.

OBS TEST RAW_P STPBON_P HOC_P FDR_P

1 test1 0.08201 0.32804 0.32804 0.13122
2 test2 0.67132 1.00000 0.67132 0.67132
3 test3 0.00112 0.00896 0.00896 0.00896
4 test4 0.54333 1.00000 0.67132 0.62095
5 test5 0.23112 0.69336 0.67132 0.30816
6 test6 0.02454 0.14724 0.14724 0.06544
7 test7 0.01423 0.09961 0.09961 0.05692
8 test8 0.04222 0.21110 0.21110 0.08444

Figure 10. Adjusted p-Values

The Hochberg method controls the familywise error
rate under independence, using step-up Bonferroni,
while the Holm method uses step-down Bonferroni.
The Benjamini and Hochberg method controls the
false discovery rate and not the familywise error rate.
Note that the adjusted p-values for the Hochberg
method (HOC P) are less than or equal to those for
the Holm method (STPBON P), and those from the
Benjamini and Hochberg method (FDR P) are less
than or equal to those for the Hochberg method.

Enhancements to the MIXED Procedure

The MIXED procedure continues to be improved with
Release 6.12. New covariance structures have been
added to facilitate repeated measurements analysis,
including the spatial anisotrophic exponential struc-
ture and direct product structures designed for multi-
variate repeated measures. The former structure has
the (i; j)th element equal to

�2
cY

k=1

exp[��kd(i; j; k)pk ]

where c is the number of coordinates and d(i; j; k)

is the absolute distance between the kth coordinate
(k = 1; : : : ; c) of the ith and jth observations in the
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input data set. There are 2c + 1 parameters to be
estimated: �k, pk (k = 1; : : : ; c), and �2.

The direct product structures are constructed by tak-
ing the Kronecker product of an unstructured matrix
(modeling covariance across the multivariate observa-
tions) with an additional covariance matrix (modeling
covariance across time or another factor). The upper
left value in the second matrix is constrained to be
equal to 1 to identify the model. Refer to Galecki
(1994).

The computations for predicted values requested with
the P options in the MODEL statement have changed
for specifications with a REPEATED statement with
the SUBJECT= option and missing dependent vari-
ables. Now, the predicted values are computed using
empirical best linear unbiased prediction (EBLUP) in-
stead of using the estimated means. This means that
you can perform kriging predictions when you specify
the spatial correlation structures.

In addition, many of the tables in the PROC MIXED
output have been altered to improve readability and
interpretation.

LSMEANS Enhancements

Previously, the GLM procedure computed multiple
comparisons of group averages only. With highly un-
balanced data, this didn’t necessarily produce useful
estimates. With Release 6.12, the LSMEANS facility
of both the GLM and MIXED procedures have been
updated to provide for multiple comparisons based
on a general methodology described by Hsu (1996).
The implementation of this approach provides multi-
ple comparisons for the complete set of linear models
fitted with the GLM procedure as well as providing mul-
tiple comparisons for mixed models fit in the MIXED
procedure with non-trivial error structures.

The LSMEANS strategy now includes a more gen-
eral approach that allows the user to define alternate
weighting schemes. Enhancements include options
that allow you to specify the population over which
the expected marginal means are to be computed.
Covariates can be handled by setting them to their
mean value in the analysis data set, and you can also
set their values directly.

When an interaction A*B is significant, you may want
to analyze the marginal differences between the A*B
means for different values of A. You can test these so-
called simple effects of B by ‘‘slicing’’ the LSMEANS
of the A*B interaction by A:

lsmeans A*B / slice=A;

This produces a familiar ANOVA table for the marginal

differences.

Miscellaneous Enhancements

The 6.12 Release of SAS/STAT contains other en-
hancements. These include:

� The NPAR1WAY procedure now includes an
OUTPUT statement. You can put the statistics
produced into an output data set for further
processing and reporting.

� The NLIN procedure now computes analytic first
and second order derivatives. This feature was
previously available in an experimental version
of PROC NLIN called PROC TNLIN.

� The REG procedure now includes new options
that allow you to output to the OUTEST= data
set the standard errors of the parameter es-
timates, the corresponding t statistics and p-
values, error degrees of freedom, and the model
R2.

Conclusion

With Release 6.12, SAS/STAT software continues to
provide current statistical methodology in a variety
of application areas. For documentation of all the
new features, you have two choices. SAS/STAT
Software: Changes and Enhancements in Release
6.12 describes the features new in the 6.12 Release.
SAS/STAT Software: Changes and Enhancements
through Release 6.12 contains all of the features
added since the two-volume SAS/STAT User’s Guide
was produced. For up-to-date information on the
statistical products and development, please visit us
at http://www.sas.com/rnd/.
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