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ABSTRACT

A simple visual method of comparing means given normal %~.

confidence intervals is proposed. Monte Carlo simulations were
used to derive a visual rule of thumb that can be used to test the
null hypothesis of equal means, given the confidence intervals of
the means, and the sample sizes (or degrees of freedom). The
type-1 error rate of the test is approximately .05. The rule in-
volves accepting the null hypothesis when a confidence interval
for either mean overlaps the other mean, and rejecting the null
hypothesis otherwise. In some cases with moderate to high
sample sizes and/or similar-sized confidence intervals, the
original confidence intervals need to be extended before the null
hypothesis can be rejected by the rule. The rule is most easily
applied when the means and confidence intervals are displayed
with auxiliary information that includes the degrees of freedom
and potential extensions to the confidence interval bounds. To
display results in this manner, a SAS macro utilizing the annotate
facility with the SAS GPLOT procedure is provided.

INTRODUCTION

The relationship between a confidence interval and a hypothesis
test is that the confidence interval contains all the values of the
population mean that could serve as the null hypothesis value (for
equality of means) and the null hypothesis would not be rejected
at the nominal type-1 error rate (Nelson 1990). Rather than rely
solely on p values from statistical tests, there are practical ad-
vantages of using confidence intervals for hypothesis testing
(Wonnacott 1987, Nelson 1990). For most people, confidence
intervals are easier to understand. Confidence intervals also
provide additional useful information since they include a point
estimate of the mean, and the width of the interval gives an idea
of the precision of the mean estimation.

The most direct manner of comparing pairs of means with confi-
dence intervals is to the compute confidence interval for the
difference between each pair of estimated means. If the confi-
dence interval covers a value of zero, then the null hypothesis is
accepted at the type-1 error rate of 700-p (Gardner and Altman
1989, Hsu and Peruggia 1994, Lo 1994), where p is the percent
coverage of the confidence intervals. With this approach the
visual advantage of the confidence interval of the mean is lost.
The individual means and their uncertainty will be obscured. Also,
if several estimated means are to be compared, there will be n(n-
7)/2 separate confidence intervals of the differences to display
(n=the number of means compared). This can be a very large
number of confidence intervals.

Another common approach is to reject the null hypothesis when
the %~o confidence intervals of the means do not overlap. Barr
(1969), Nelson (1989), and Lo (1994) show that using the overlap
criterion with gs~o confidence intervals of the mean will be asso-
ciated with an actual type-1 error rate as low as .005 and rela-
tively low power. Thus this approach represents a relatively
insensitive test.

and Healy 1995), the interval bounds are computed so that the null
hypothesis of equal means is rejected (at a nominal type-1 com-
parisonwise or experimentwise error rate) when the uncertainty
intervals of a pair of means do not overlap. The uncertainty interval
methods can be exact when the samples sizes are balanced and
standard errors for the means are homogeneous. Otherwise, the
interval sizes will usually be rough approximations since different
sized intervals would be required for comparisons of different pairs
of means (when more than MO means are to be compared). Hsu
and Peruggia (1994) discuss approximation methods for unbal-
anced designs, and Hochberg (1976) and Lenth (1988) give ap-
proximations for unequal standard errors of the means.

My objectives in developing the technique presented in this paper
were to provide a method where
1. hypothesis tests on the equality of means could rapidly be

made with a simple rule of thumb and without computations,
2. the comparisonwise type-1 error of the tests will approximate a

known nominal type-1 error rate whether the design is bal-
anced or unbalanced and whether the standard errors of the
means are homogeneous or heterogeneous, and

3. a commonly displayed statistical interval is used directly in the
hypothesis test. The 95% (or 90%) confidence interval of the
mean was chosen for this purpose. This objective precluded
using uncertainty interval methods.

Browne (1979) provides an approach for using 95’XOconfidence
intervals of the mean to test for the equality of means at a nomi-
nal .05 type-1 error level. The method is based on a D statistic,
which for each pair of means is the ratio of the difference in the
two upper confidence bounds to the length of the smaller of the
two confidence intervals. A table is provided with D values for
several sets of sample sizes and different M ratios. An M ratio is
the ratio of the larger interval to the smaller interval for a pair of
means being compared. The D values in the table are minimum
D values for which the means will be significantly different. From
the patterns of the D values in the table, the author provided a
few rules of thumb that covered some but not all situations. The
D values in Browne’s table (Browne 1979) were directly com-
puted using the definition of the t statistic for the difference in two
means. 1use a simulation approach in an attempt to obtain a
more general and simpler rule of thumb.

In this paper, I describe a visual test using confidence intervals to
test the null hypothesis of equal means with known approximate
nominal type-1 error rates. The test is visual in that it requires no
statistical computations, and can be directly applied to results
presenting confidence intervals. Only the degrees of freedom and
the approximate ratio of the lengths of the respective confidence
intervals are needed. I propose a simple rule of thumb to accom-
plish this for confidence intervals based on normal distributions.
My main focus is on two-tailed tests with a nominal type-1 error
rate of .05 (Q! =.05). I present an example plot that includes
useful auxiliary information for easily applying the proposed
method, along with a SAS macro that can be used to produce
similar plots.

Most other graphical techniques for comparing means with statisti-
cal intervals involve intervals that are specialized for hypothesis
testing. For example, with uncerfainfy or corrrpaffson intervals
(Gabriel 1978, Andrews et al. 1980, Hochbert et al. 1982, Hochbert
and Tamhane 1987, Lenth 1988, Hsu and Peruggia 1994, Goldstein
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METHODS

Rule of thumb for hypothesis testing

As a starting point for developing a rule of thumb for hypothesis
testing with confidence intervals, I propose the following rule of
thumb with two-tailed 95% confidence intervals.

Rule of thumb: Accept the null hypothesis of equal means for two
estimeted means if either mean is within the 95% confidence
interval of the other mean. Otherwise, reject the null hypothesis.

I I

I 1

accept
null

I I

I
}

reject
null

Figure 1, Rule of thumb. The null hypothesis is acceuted if either. .
confidence interval includes the mean of the other.

The rule is illustrated in Fiaure 1. To test tvoe-1 error levels
associated with this rule, [-performed Mon~e Carlo simulations for
two normal populations with equal means. Many simulation
scenarios with different sample sizes and population variances
were used to approximate a wide variety of situations. Simula-
tions were performed in SAS. Each simulation scenario involved
randomly drawing 100,000 samples from each of the two normal
populations, using the RANNOR function. For each sample, the
population sample mean and confidence limits were computed.
The upper (U) and lower (L) bounds of two-tailed confidence
limits were comrmted as

L=y–t /J_.975,dfs n
and

U=x+t /J.975,ay s n S

(1)

(2)

where ~, s, and df are the estimated mean, standard deviation,
and degrees of freedom, respectively, for a sampled population.
In the simulations, df=n-f, where n is the sample size. The t.975,df
is the value for the 97.5th percentile of the cumulative t distribu-
tion with df degrees of freedom.

Preliminary simulations showed that the actual type-1 error rates
varied with the degrees of freedom and the ratio of the lengths of
the confidence intervals being compared. The ratio of confidence
intervals lengths (F/) for a simulation scenario is computed as

(3)

where ~1 and ~2 are the average estimated lengths of the

confidence intervals for the two populations over ail simulations.
R is simply the ratio of the expected value of the larger confi-
dence interval to the expected value of the smaller confidence
interval. Variation in R is produced by using different population
variances and sample sizes in the different simulation scenarios.

Figure 2 summarizes the pattern of actual type-1 error rates,
which are the proportion of the simulations (within a scenario) for
which the null hypothesis of equal means is rejected using the
rule of thumb. Separate plots are shown for different ranges of R
that produced similar results. In these, the simulation type-1 error
rates are shown as a function of the degrees of freedom for the
@Jopopulation samples. Lines are drawn to delimit blocks of

sample-size combinations where the actual type-1 error levels
are roughly similar. Type-1 error rates within the block labeled
“A=O are close to .05 or, in a few cases involving minimal
degrees of freedom, the rates get low as .01. Most of the type-1
error rates in the block labeled “A=.3 are over twice the .05 rate,
and the type-1 error rates in the blocks labeled “A=. 7“ or “A=.2’

are moderately above the ,05 rate. The results in Figure 2 indi-
cate that in most cases where the R is relatively high (Figure 2c)
or the sample size of at least one of the populations is relatively
low (Figures 2a and 2b), the rule generally works well if one is
interested in a nominal type-1 error rate of .05.

(o) R<I.5

“’1 ’’’1”’’”’”’’’’” ‘31313

(b) 1.5< R<30

Figure 2. Actual simulation type-I error rates using rule of thumb for

multiple simulation scenarios involving dl~erent degrees offreedom

and R ratios. i%e two-tailed error rates are shown as 100(error rate),

rounded to the nearest digit. For example, an error rate of. 051 would

appear as a “5”, and an error rate of. 066 would appear as a “7”. The
rates are blocked into regions with generally similar error rates. The

indicated values for A are used to modl~ the con~dence intervals to

improve the @pe-1 error rate. Where R> I, the expected confidence

interval length for mean I is greater than the expected conjdence

interval length for mean 2. For (a) R <1.5, (b) R =1.5 to 3, and (c) R

~3.
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Application of the rule of thumb to extended confidence intervals.

The more common situation where rule of thumb fails involves
lower R values and/or higher degrees of freedom (AX in Figure
2). To correct for this, I propose extending the interval bounds to
produce type-1 error rates closer to .05 in cases where the initial
type-1 error rates are too high. The rule of thumb is then applied
to the extended confidence bounds. For a pair of means being
compared, the rules for interval modification are as follows.
1.

2.

3.

4.

5.

Make no modifications to the interval bounds if the null hy-
pothesis has been accepted by the rule, since extension of the
bounds cannot cause rejection of the null hypothesis.
Make no modifications if the confidence intervals for the two
means do not overlap. As noted in the introduction, a test us-
ing interval overlap will generally be associated with very low
type-1 error, so we will not reverse the decision to reject the
null hypothesis in cases of non-overlap.
Make no modifications for situations corresponding to areas
labeled “A=O” in Figure 2. The type-1 error in these areas are
already for the most part satisfactory.
Make no modifications if it appears that as much as a 30%
extension of the half intervals will not change the decision on
rejection of the null hypothesis. As shown below, the maxi-
mum proposed extension of fhe half intervals is 307. (A=.3),
so if this amount of extension will not change our decision,
there is no need to go through the process of determining the
best modification for the specific situation.
If rule 4 above is not applied, make modifications for situations
corresponding to areas labeled “A=.I”, “A=.2” or “A=.3” in
Figure 2.

The modification of the confidence intervals, which involves a
visual extension of the interval lengths for the means being
compared is now described. The confidence interval length ratio
for a pair of samples is

Re~t=
Max(_zlj Q

(4)

Min(EI, Z2) ‘

where Z] and L2 are the estimated confidence interval lengths

for the first and second samples, respectively. The &value for a
pair of means is needed to determine the value of the adjustment
factor A (see below).

A separate potential modification is required for each pair of
means to be compared. The modified upper and lower confidence
interval bounds for each mean being compared are

u~o~=u+A(u–q,
and

L.mi = L–A(Y– L),

(5)

(6)

where L, U, and ~ are defined in (1) and (2). The value for A k
taken from Figure 2, and depends on the f?,., and the degrees of
freedom associated with the two estimated means. If&s 7.5
use Figure 2a, or if 7.5< & <3.0 use Figure 2b. When F& >3,
no adjustment is needed since A=() for all degrees of freedom
(see Figure 2c). Note that the adjustment factor A is applied to

one half the Ienath of the confidence intervals (~ — L or

U – ~) rather;han to the full length of the confidence intervals
(U-L) I could just as easily halved the size of the A values and
used the entire confidence interval length. However I chose to
work with the half size interval because it is easier to visually
apply the modification to the shorter length of the half interval.

Figure 3 shows the type-1 error rates when the rule of thumb is
applied with extended intervals where necessaty. The simulation
type-1 error rates are now closer to .05. The error rates when the
larger confidence interval (for mean 1) is associated with 1
degree of freedom are still low. To keep things simple, I made no
attempt to correct for this situation since it would entail reducing
the interval sizes. It is probably not a bad idea to accept a con-

servative test when the degrees of freedom are so minimal fo[
one of the means.

(0) R<I.5 with Rule of Thumb
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(b) 1.5 . R . 3.0 with Rule of Thumb
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(c) R>3. O with Rule of Thumb
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Figure 3. Simulation @pe-1 error rates using rule of thumb for simula-

tion scenarios with (a) R <1.5, (b) R =1.5 to 3, and (c) R~3. See Figure

2 for explanation of values in plots.

The confidence interval modification is illustrated with an exam-

ple. The confidence interval for one sample mean is 1I_*, the

confidence interval for a second mean is 77t2, and the respec-
tive degrees of freedom are 7 and 39. Using (4), (5), and.(6), the
modified lower confidence interval bound for the first mean is L~Od
= 6-.1(11-6)=5.5, and U~o~= 16+. 1(16-11)=16.5. Here A=. 1, since
R,.t=70/4=2.5 and thus A k taken from Figure 2b for degrees of
freedom of 7 and 39. For mean 2, L~Od= 15-. 7(77-15)=74.8, and
U~O, = 19+. 1(19-17)=19.2.

Given the rules for modification above and the patterns in Figure
2, a summary of the rule of thumb as modified to apply to the
extended intervals is given in Figure 4. In practice, the application
of the rule of thumb need not be too complicated nor require
repeated reference to Figure 2. In most cases, it should be easy
to visually determine the approximate value for R,,~, and with
some experience, extensions of the intervals corresponding to
the different values of A should become simple. When the data
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are displayed as in the example shown below (Figure 5), the
application of the rule should be even more simplified.

Incidentally, a one-tailed comparison of means with approxi-
mately a .05 tvDe-1 error rate can be obtained with the exactlv the. .
same rule of thumb by using 90°A instead of 95°A confidence
intervals.

Use the rule of thumb directly it

no overlap of confidence intervals, or
null hypothesis accepted with rule of thumb, or
high R,.f (Re.f > 3), or
low degrees of freedom (Max(df)c6 or Min(df)<4)

Otherwise extend the intervals as follows before
applying the rule of thumb:

If R,sf >7.5 let A=.7,
otherwise
if Max(df)<74, let A=.2
otherwise let A=.3.

Figare 4. Rule of thumb extended to apply to modl~ed intervals if

necessary. Max(dfl is the maximum deqees of freedom for the two

sample means be;ng compared, and M%(djl ~“the minimum degrees of

freedom for the two means being compared.

RESULTS

Example
Figure 5 shows a hypothetical example plot showing some
estimated means and confidence intervals. To aid in applying the
proposed rule of thumb, I have included the associated degrees
of freedom (df=) and three dots corresponding to interval adjust-
ments for A=. 1, A=.2, and A=.3 (in case modified intervals are
needed). Table 1 summarizes the rules applied and acceptance
or rejection of the null hypothesis for each pair of treatments.

B-

.
a
Ec-
m
m
.
1-

.... . df=19

{ dr=3

.~ df=13

E -- df=49
( I I 1,, --, [, ’,1
5 10 15 20 25 30 35

Weight(g)
Figure 5. Hypothetical example for body weights of test organisms

exposed to five dz~erent treatments (A-E). The jive treatment sample

means and their estimated confidence intervals, along with the associ-

ated degrees offieedom (df=) are shown. The three dots outside the
interval bounds correspond to modl~cations of the interval bounds

corresponding to A =.1, A =.2, and A‘. 3, respectively.

Table 1. Results of hypothesis tests for all pairs of means in Figure 5
using the rule of thumb. An “M” in the lower diagonal indicates that

modl~ed intervals were used in the decision. In the upper diagonal,
“A” indicates acceptance and ‘<R”indicates rejection of the null

hypothesis for the treatmentpair using the rule of thumb,

A
B

TREATMENT c
D
E

TREATMENT
ABCDE

ARRR
M-ARR

AA
M R

Given the display in Figure 5 with the degrees of freedom and the
dots for potential adjustments, it is a simple matter to determine
which comparisons will require using an adjusted interval. For the
example data, only the A-B and B-D comparisons require modi-
fied intervals before application of rule of thumb. All other com-
parisons are directly handled by the rule because they meet at
least one of the criteria at the top of Figure 4.

Macro BPLOT
The SAS macro BPLOT, which produces output similar to that
shown in Figure 5, is presented in Appendix A. Macro BPLOT
uses the GPLOT procedure and the Annotate facility of
SASIGRAPH@.

CONCLUSION

A simple visual rule of thumb is presented for comparing means
using 95%!. confidence intervals. For the most part, the method
controls the type-1 error for a 2-tailed test of the null hypothesis
of equal means at approximately .05. A SAS macro is included
for presenting means and confidence intervals in a manner that
facilitates applying the rule of thumb.
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APPENDIX A. THE BPLOT MACRO.

%macro bplot (

dsn=, /* Name of sas dataset with plot data */

yvar., /* Name of variable with y data values (A
separate mean with confidence
intervals plotted for each value of

the yvar= variable */

yformat=, /* Format f.. y variable (var.) */
yorder=, /* If yorder= (blank) the order on the Y

axis will be in ascending order (top

to bottom) of the xmean= variable.
If yorder.variable name (s), then the

order on the Y axis will be in

ascending order of the values of the

yorder= variable (S) */
xmean. , /* Name of variable with x mean values */

xlci=, /* Name of variable with x lower

confidence limit */

xuci=, /* Name of variable with x upper

confidence limit */

hsize=7, /* Horizontal size of plot area */
vsize=l O, /* Vertical size of plot area */

units. in, /’ UnitS for hsize and ..rsize./
xtick=, /’ Set xtick= tick values for x ~xi~ */
df=, /* Name of variable with degrees of

freedom to be plotted */
dfsize=.6, /* Size of df text */

dotprope.. 1 .2 .3, /* Proportion expansions for each
half ci */

dotsizee=. 6, /* Size of the ci expansion dot (s) */

dotsizem=.6, /* Size of the mean dot */

cisize=l, /* Size of vertical part of the

confidence interval bars */

lnsize=l, /’ SiZe of horizontal line for confidence
interval bars */

title=, /* Main title for plot */

titlsiz=l, /* Size for title text */

xtitle=, /* X-axis title */

xtitlsiz=l, /* Set xtitlsiz = size for x axis tit~e*/
ytitle=, /* Y-axis title */

ytitlsiz=l, /* Set ytitlsiz = size for y axis title*/

rOtytitl.Y, /* Set rotytitl=Y to rotate the y title

90 degrees */

setgOpt=Y, /* If setgopt=Y, GOPTIONS statement

used */

device. LJIVPS, /*

tardev=LJIVPS, /*

gaccess=, /*

goutmode., /,

bfont=SWISS, /,

Device parm for GOPTIONS

statement*/
targetdevice parm for GOPTIONS

statement */
gaccess parm for GOPTIONS

statement */

goutmode parm for GOPTIONS

statement */

Name of font for vertical bars at

ci bounds

Note : SIMPLEX works best with cgm

device file to be imported into
WORD */

titlfont=SWISSB, I* Font for plot main title */

texfont.SWISS) ; /’ Font for text in plot ./

%local nprop ngapp dflab setgopt ndot word srtv nform

mxlen i ndot dotl

dot2 dot3 maxx minx

Cl C2 C3 C4 C5 C6 C7 C8 C9 c1O Cll c12 c13 c14 c15

c16 c17 c18 c19 c20

fl f2 f3 f4 f5 f6 f7 f8 f9 f10 fll f12 f13 f14 f15
f16 f17 f18 f19 f20;

%*---- SOME DEFAULTS ;
%let nprop= 10;%let ngapp. .03;%let dflab=%guote (df=) ;

%let title= %quOte (&title) ;

%*---- PARSE DOT PROPORTIONS ;

%let ndot=O;
%do %until (&word. );

%let word= %qscan(&dotprope, %eval (&ndot+l) ,%str ( ));

%-if &word ne %-then %do; %-let ndot=%eval (&ndot+l) ;%let

dot&ndot=&word; %end;

%end;

%*---- GOPTIONS STATEMENT;

%if tupcase (&setgopt ).Y %then

%do ;

GOPTIONS RESET= ALL HSIZE=&hsize &units VSIZE=&vsize
&units

%if &device ne %then %do; DEVICE =&device %end;

%if &tardev ne %then %do; TARGETDEVI CE. &tardev %end;

%if &goutmode ne %-then %do; GOUTMODE= &goutmode %end;

%if &gaccess ne %then %do; GACCESS=” &gaccess” %end;

;RUN;

%end;

%*---- SET UP DATA FOR Y AXIS ORDER;

%if &yorder ne %then

%let srtv=&yorder; %else %let srtv=&xmean;

PROC SORT DATA. &dsn OUT.SS_; BY DESCENDING &srtv;

DATA SSS_ (KEEP.&yvar &xmean &xlci &xuci &df _YCD) ;

LENGTH _YCD $ 4 _IV $ 4 _YFORM $ 16;

RETAIN I MAXLEN O;
SET SS_~KE~P.&yvar &xmean &xlci &xuci &df ) END=EOF;

IF &xmean. THEN DELETE;

ELSE

DO>

_I=_I+l ;
_YCD=POT (_I,Z4 );

IF &xlci=. THEN &xlci=&xmean;
IF &xuci. . THEN &xuci. &xmean;

%if &yfOrmat= %then %do; YFORM. &~ar; %end;—
%else %do; YFORM. PUT (&yvar,&yformat) ; %end;

_MAXLEN=MAX~_MAXLEN, LENGTH (_YFORM) );

_IV=LEFT (PUT (_I,4.));

CALL SYMPUT( ‘C’ II _IV, _YCD) ;

CALL SYMPUT( ‘f ‘ II _IV, _YFORM) ;

END ;

IF EOF THEN

DO;

CALL SYMPUT( ’nform’, LEFT (PUT (_I,4 .))) ;

CALL SYMPUT( ‘mxlen’ ,LEFT (PUT (_M?+XLEN,2. )));

END ;

RUN ;

PROC FORMAT;

VALUE $YFORM

%do i.1 %to &nform;
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%if %length (&&f&i) >&mxlen %then %do;
!!&&c&i,!=,,%substr (&&f&i, 1,&mxlen) “ %end;

%else %do; !!&&c&i ‘r=11&&f&i ‘r%end;

%end; ;

DATA PLOTDS_ ;

SET SSS_;

FORMAT YCD YFORM .;

RENAME ~xuci. XUCI &xlci. XLCI &xmean. XMEAN;— — —

%*---- ANNOTATE DATA SET WITH LINES, N, AND DOTS;

%if kdfkdotprope ne %then

%do ;
DATA NPOS_ (KEEP=_MAXX _MINX _MAXXF );
RETAIN _MAXX _MAXXF -999999 _MINX 999999;

SET PLOTDS END= EOF ;— —
%if &ndot>O %-then
%do ;

X. XUCI+ ( XUCI - XMEAN) *&&dot &ndot;

‘XM?N. XLC?- ( XM~AP - XLCI )*&&dot &ndot;— —
;end —

%else %do; X. XUCI; XMIN= XLCI; %end;

_MAxx.MAx (_–w=, _x) ;– –

_MINX=MIN (_MINX,_XMIN) ;

IF EOF THEN

DO;–

%if &df ne %then %do;

_MAXXF=_MAXX+ (&nprop+ &ngapp )* (_MAXX -_MINX) ; %end;

%else %do; MAXXF. MAXX; %end;— —
OUTPUT ;

CALL SYMPU’I(!maxx’ ,LEFT (PUT (_MAXX,BEST15 .)));

CALL SYMPU’I(‘minx’ ,LEFT (PUT (_MINX,BEST15. )));

STOP ;
ENC ;

RUN ;

%end;

DATA ANNO_ ;
LENGTH FUNCTION $5 POSITION $ 1 TEXT $ 16 STYLE $ 8;

RETAIN XSYS YSYS ‘2 ‘;

SET PLOTDS_ END=_EOF ;
FUNCTION= !MOVE 1; *-- move to beginning of CI;

YC= YCD; X. XLCI; OUTPUT; *-- draw horizontal line;

FUN~TION=’ D–mW’ ; SIZE= &lnsize; YC=_YCD; X=_XUCI;

ouTPuT ;

%*-- dots;

%if &dotprope ne %then

%do ;

POSITION= 1B 1;SIZE= &dot sizee; TEXT=’ .‘;YC=_YCD;

kdo i.1 %to &ndot;

FUNCTION. IMOVE’ ; X=_XUCI+ (_XUCI-_XMEAN) *&&dot&i;

OUTPUT; FUNCTION= ‘LABEL ‘;OUTPUT;
X. XLCI - ( XMEAN- XLCI )*&&dot&i; FUNCTION=’ MOVE’ ;

O~–PUT ; FfiCTION: tLABEL T; OUTPUT;

%end;

%end;

%*-- df values;

%if &df ne %then

%do ;
POSITION= 16t;STYLE=ll&texf ont” ;SIZE=&df size;

%if &df lab ne %then %do ;TEXT=” &df lab” \I

LEFT(PUT(&df,6. ));%end;

%else %do; TEXT=LEFT (PUT (&df,6.));%end;

YC._YCD; _XADD=&ngapp * (&maxx -

&minx) ;FUNCTION=’ MOVE’ ;X. &maxx+_XADD; OUTPUT;

FUNCTION= !LABEL ‘;OUTPUT;

%end;

%*---- ADD MIN AND MAX POSITIONS TO PLOT DATA;

DATA PLOTDS l_;

%if &df&dotprope ne %then %do; MERGE PLOTDS NPOS_;—
%end;

telse *do; SET PLOTDS_; %end;

IF _XLCI=_XUCI THEN DO;_XLCI= .; XUCI= .;END;—

ti*---- PLOTTING;

SYMBOL1 VALUB. dot HE IGHT. &dots izem COLOR. BLACK;

SYMBOL2 VALUE=’ 1‘ FONT= &bfont HEIGHT. &cisize
COLOR= BLACK;

SYMBOL3 VALUE= dot HEIGHT=. 00001 COLOR= WHITE;
AXIS1 LABEL= (F=&titlfont HEIGHT= &xtitlsiz !t&xtitle!r)

OFFSET= (5 PCT, O PCT) VALUE. (FONT.&texfont)
%if &xtick ne %then %do; ORDER= (&xtick) %end; ;

AXIS2 LABEL. (F=&titlfont HEIGHT. &ytitlsiz
%if &rotytitl.Y %then %do; ANGLE .90 %end;

!r&ytitlej!)

OFFSET= (5 PCT, O PCT) VALUE= (FONT.&texfont) ;

PROC GPLOT DATA= PLOTDSl_ ;

PLOT YCD* XMEAN= 1 YCD* XLCI=2 _YcD*_xucI=2

‘%i f ~df &dotpr~pe n: %then %do; YCD* MINX=3—
YCD* MAXXF.3 %end;

—

— —
/ OVERLAY HAXIS=AXIS1 VAXIS=AXIS2

ANNOTATE=ANNO_ ;

%if &title ne %then %do ;TITLE FONT. &tit lfont

HE IGHT=&titlsiz ‘!&titlev-;%end;

RUN; QUIT; RUN;

%mend bplot;
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