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ABSTRACT

In multiple linear regression models problems arise when
a serious multicollinearity or influential outlier present in
the data. Failure to include significant quadratic or
interaction terms results in model specification errors.
Simple scatter plots are mostly not effective in revealing the
complex relationships or detecting data problems in
multiple regression models. However, partial regression
plots are recommended mainly in detecting influential
observations and multiple outlier and the partial residual or
the added-variable or component plus-residual plots are
mainly usefi,d in detecting non-linearity and model
specification errors. Neither plots in the standard format
fails to detect the presence of multicollinearity. However,
If these two plots are overlaid on the same plot with
centered Xi values in the X-axis, the clustered data points
in a partial regression plot clearly indicate the presence of
multicollinearity. SAS@ macros for displaying partial
regression and partial residual plots using SAS/REG@ and
SAS/GRAPH@ procedures are presented here.

INTRODUCTION

Multiple linear regression models are widely used applied
statistical techniques. In regression analysis, we study the
relationship between the response variable and one or more
predictor variables and we utilize the relationship to predict
the mean value of response variable form the known level
of predictor variable or variables. Simple scatter plots are
very useful in exploring the relationship between a response
and a single predictor variable. However, simple scatter
plots are not effective in revealing the complex
relationships or detecting the trend and data problems in
multiple regression models.

The use and interpretation of multiple regression depends
on the estimates of individual regression coefficient.
Influential outliers can bias parameter estimates and make
the resulting analysis less usefid. It is important to detect
outliers since the outliers can provide misleading results.
Several statistical estimates such as studentized residual,
hat diagonal elements, Dfflts, R-student, Cooks D statistics
(Neter et. al, 1989; Myers 1990; Montgomery and Peck,
1992) are available to identifj both outliers and influential

observations. The PROC/REG procedure has an option
called “INFLUENCE” to identifj influential outliers.
However, identi~ing influential outliers are not always
easy in simple scatter plots.

Failure to include significant quadratic or interaction terms
or omitting other important predictor variables in multiple
linear regression models results in model specification
errors. Significant quadratic terms and cross products can
be identified by using the SAS PROC / RSREG. However,
identi&ing significant model terms in multiple linear
regression are not always easy in simple scatter plots.

The use and interpretation of multiple regression models
often depend on the estimates of individual regression
coefficient. The predictor variables in a regression model
are considered orthogonal when they are not linearly
related. But, when the regressors are nearly perfectly
related, the regression coefficients tend to be unstable and
the inferences based on the regression model can be
misleading and erroneous. This condition is known as
multicollinearity (Mason et. al, 1975).

Severe mukicollinearity in OLS regression model results in
large variances and covariances for the least squares
estimators of the regression coefficient. This implies that
difikrent samples taken at the same X levels could lead
widely dit%rent coefficients and variances of the predicted
values will be highly inflated. Least-squares estimates of pi
are usually too large in absolute values with wrong signs.
Interpretation of the partial regression coefficient is
difficult when the regressor variables are highly correlated.
Multicollinearity in multiple linear regression can be
detected by examining variance inflation factors (VIF) and
condition indices (Neter et, al. 1989). SAS PROC REG has
two options, VIF and COLINOINT to detect
multicollinearity. However, identi~ing multicollinearity is
not possible by examining simple scatter plots.

Partial plots are considered better substitutes for scatter
plots in multiple linear regression. The partial regression
plot for the Xi variable shows two sets of residuals, those
fi-om regressing the response variable and Xi on other
predictor variables. The associated simple regression has
the slope of pi, zero intercept and the same residuals (e) as
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the multiple linear regression.. This plot is considered
useful in detecting influential observations and multiple
outliers (Myers, 1990). The PARTIAL option in PROC
REG produces partial regression plots (Text based plots) for
all the predictor variables.

The partial residual ( added-variable or component plus-
residual) plot (Myers, 1990) corresponding to Xi shows the
relationship between (e + @ Xi) versus Xi where e is the
residual of the fill model. This simple linear regression
model has the same slope (pi ) and residual (e) of the
multiple linear regression. The partial residual plot display
allows to easily evaluate the extent of departures ffom
linearity. Currently, no option is available in SAS to readily
produce partial residual plots.

Neither plots in the standard format fails to detect the
presence of multicollinearity. However, If these two plots
are overlaid on the same plot with the X-axis uses centered
Xi values, the clustered in a partial regression plot clearly
indicate the presence of multicollinearity (Stine, 1995).
Since the overlaid plot is mainly useful in detecting
multicollinearity. I named this plot as VIF plot.

The objective of this study is to develop SAS macros to
produce high quality partial regression, partial residual,
and W? plots for all predictor variables in a multiple linear
regression. The effectiveness of these plots in detecting
influential outliers, model specification errors, and
multicolliniarity are evaluated in this paper. Three separate
data sets namely, DATA1 (contain highly influential
outlier), DATA2 ( need significant quadratic term for X2
variable and significant cross-product between Xl and X2),
and DATA3 (three predictor variables involved in
multicollinearity) are used in this investigations.

EXAMPLE

DATA1: Data with influential outlier (Neter et. al., , 1989)

data score;
input xl X2x3 y (@z&
label y =’Patientsatisfactionscore’

xl =’Patientsage in years’
x2=’severityindex’
x3=’anxietyindex’;

card%
50 51 2.3 48

40 48 2.2 66

28 43 1.8 89

42 50 2.2 46

52 62 2.9 26

29 48 2.4 89

38 55 2.2 47

53 54 2.2 57

29 46 1.9 88

33 49 2.1 60

29 52 2.3 77

43 50 2.3 60

36 46 2.3 57

41 44 1.8 70

49 54 2.9 36

45 48 2.4 54

29 50 2.1 77

43 53 2.4 67

34 51 2.3 51

36 56 2.5 79

89 70 4.0 90

55 51 2.4 49

44 58 2.9 52

;
proc print label noobs;
run;
* The influential outlier is highlighted;

DATA2: Response surface data - (contain significant
quadratic and cross product)

DATA regxlti;
INPUT xl X2 Y (@@;
LABEL Y = ‘UNITSOF ALGAE’ Xl= ‘MGCOPPER’

X2= ‘DAYS;
CARDS;
25.3 2 12 .40 2 18 .38 2 25 .32

2 5 .34 2 12 .36 2 18 .30 2 25 .22

1 5 .38 1 12 .46 1 18 .38 1 25 .34

1 5 .36 1 12 .44 1 18 .39 1 25 .32

1 5 .34 1 12 .38 1 18 .29 1 25 .23

3 5 .28 3 12 .32 3 18 .28 3 25 .16

35.2 3 12 .28 3 18 .22 3 25 .18

3 5 .24 3 12 .32 3 18 .30 3 25 .20

4 5 .04 4 12 .10 4 18 .08 4 25 .06

4 5 .00 4 12 .18 4 18 .13 4 25 .04

4 5 .06 4 12 .18 4 18 .10 4 25 .08

5 5 .01 5 12 .14 5 18 .04 5 25 .03

5 5 .02 5 12 .10 5 18 .07 5 25 .02

550 5 12 .11 5 18 .05 5 25 .01

proc print label noob$ rurL

Data3: Data with severe multicollinearity (Neter et. al
1989).

Data fat
inputxl-x3 x
label xl=’Tricew skin fold thickness’ x2=’Thizlrcircumference’

x3=’midarm circumference’
card>

19.5 43.1

24.7 49.8

30.7 51.9

29.8 54.3
19.1 42.2

25.6 53.9

31.4 58.5
27.9 52.1
22.1 49.9

25.5 53.5
31.1 56.6

30.4 56.7
18.7 46.5

19.7 44.2

14.6 42.7

29.5 54.4
27.7 55.3

30.2 58.6
22.7 48.2

25.2 51.0

proc print label noob~ rum
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y+ody-fit’;
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ANALYSIS:
The partial regression, partial residual, and overlaid partial
regressionh-esidual plots of given predictor variables in a
multiple linear regression can be obtained easily by running
the SAS macro VIFPLOT. The macro-call tile with the
descriptions of macro parameters for running this SAS
macro is given below:

%inc ‘a: \macro\vifplot ,mac’ ;

%vifplot(data= fat , /*RQ : SAS data file */

resp= y /’ RQ: Name of the response ‘/

pred= xl x2 x3 , /’ RQ: Model terms */

Term =x1 x2 X3 ,/’ RQ: Identify the terms for

Partial plots */

size = 1 , /’ Text size in SAS graphics ‘/

dir = a:\plot , /“ Dir to save the graphics ‘/

dev = win) /’ Change to CGM to save the graphics*/

*RQ: Required ;

Results and Discussion

The partial residual, partial regression, and the overlaid
VIT plots for the DATA1 that contain a highly influential
outlying observation are presented in Fig. 1. The impact of
the influential outlier is clearly evident in all three partial
residual plots (Fig. 1 A, D, G). The linear regresion line is
pulled toward the influential point. Also, because of the
single influential observation, a significant quadratic effect
is evident for predictor variable Xl and X3.
Surprisingly, the partial regression plots (Fig. 1 B, E, H) are
not very ei%ctive in detecting the influential outlier in this
data set. Partial regression plots are specially
recommended to detect influential and multiple outliers
(Myers, 1990). However, in this example, partial
regression plot failed to detect the single influential point.
Multicollinearity is not a problem in this data set.
Therefore, any unusual clustering of partial regression
points is not evident in these plots (Fig. 1 C, F, I).

The partial residual, partial regression, and the overlaid
VIF plots for the DATA2 with the following model terms
(Xl, X2, Xl *X2) are presented in Fig.2. The need for a
significant quadratic term for X2 is clearly evident in Fig.2
D. The partial residual plot for the cross product term
(Xl *X2) also shows a quadratic trend. This might be due
to the fact that X2 - quadratic term is not included in the
model..
Once again, the partial regression plots (Fig. 2 B, E, H) are
not very effective as the partial residual plots in detecting
the non linearity in this data set. Because, the X-axis in
partial regression plot is based on residual, rather than the
actual Xi, it complicates the usefidness of these plots.
Small amount of multicollinearity is expected in this data
because we have included both the main effects of Xl and
X2 and their cross products. This is clearly shown in the

VIF plot (Fig. 2-I) for cross product term and some degree
of clustering of partial regression points is evident here.

The partial residual, partial regression, and the overlaid
VIF plots for the DATA3 that contain a high degree of
multicollinearity among the predictor variables are
presented in Fig.3. The partial residual plots (Fig 3. A, D,
G) or partial regression plots (Fig. 3 B, E, H) alone failed
to detect the problem of multicollinearity in the data set .
The VIF plots ( Fig. 3 C, F, I) very clearly indicate the
impact of multicollinearity in all three predictor variables.
In the presence of other two variables, the influences of the
third predictor variable become unimportant when
multicollinearity is present.

Summary

The features in SAS systems for detecting influential
outliers, model specification errors, and multicollinearity
using partial regression, partial residual, and overlaid
partial regressionh-esidualplots are presented her by using
SAS macro called VIFPLOT. This macro can be obtained
fi-omthe author by sending e-mail.
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FIG. 1. DATA1: Patient satisfaction score data containing three predictor variables and one highly influential outlier.



0.3

-0.3

o.
a
a.
o.
a.
a.

-::
-a.

~ :::
z -a.
& -0.

-a.
-a.
-a.

Partial F.tes3idual plot

!s

R
R

R

T——————2 3 4 5-
X1

2-A

~——
-2 -~

—.
0 1 2

xl residual

2-B

Partial Residual nl~t
Partial Regression plot

R
.

❑

R

R

o $0 2a 30
x2

2-D

Partial Residual plot

0.124

/R
R I@
R ‘R

-0.16{ R

xl x2

2-G

$$a:g

z -0.08
‘; -0.10
g -0.12

-0.14
-0.16

x2 residual

2-E
Partial Regression plot

,EEE

E~

-30 -20 TT”—— 10 20 30
xl x2 residuel

2-H

‘artaii residual and partial regression plots

1

-3 -2 -1 0 1 2
Mean adjusted xl i partial residual- xl

2-c

Partail residual and partkl regressicm plote

IE
R

E
.

?0 n 1 ‘n
Maan adjusted x2 ;partial residual- x2 “-

2-F

Par’tail residual and partial regression plots

-0.76
~R--0.18,

1

E
E 1

—.———
-60 -40 -20 b 20 40 80 80

Mean adjusted X1X2 / partial ra6idual- X1X2

2-I
FIG. 2. DATA2 Response surface data with 2 predictor variables and X1X2 cross product: The x2 variable has significant quadratic effect.

5



30

~ 20

, ?0

go

#-lo

~ -20

c -30
A!

-40

Partial Residual ulot Partial Regression u!at Parmllres[dualand partialregressionplots

s
4

3

2

1

0

1

30

20
= R

, to

‘o:
E

$.f(j

z -20 R

,j.30.

-40

-50

-12 -10 -8 -6 -4 -2 0 2468
Mesh adlusted XI / Padial residual- xl

>
E E

E

E

-50
J———

‘14151617*819202d222324252tj27282%30$l 32
xl

k
-o .r—-0.3 -0.2 T——— 0.0 0.1 0.2 o.a— 0.4

xl residual

3-A 3-B

Partial Regression plot

3-c

Partial Residual plot Partail residual and c.artial regression Dlots

30-

?! 20-

30.

~ 20.

,
E E

E E

E

E E
E

E -30I~.--.-d
-9-8-?-6-5-4-3-2-+0 1 2 3456780.4 -0.3 -0.2 -0.1 0:0 0.1 0.2 0.3 0.4

X2 residualx2

3-D

Partial Residual plot

Mean adiusted x2 /partial residual-x2

3-E
Partial Regression plot

3-F

Partail residual and partial regression plots

R

R

R

m.,

R

R

R

R

—— ————.——

20

2, 10

E
E E

E

%

E
E

E E

E

($-2(J

-30

.
~ -20

-30 ———-
-oT——— -0.4 -0.2 0.0 0.2 0.4 0.6

x3
X3 residual

—., ,—..,.7 —,–. _. —r—. —_ —..—. ,. . . . .._. — .. . ., ,—–

-7-6-5-4-3-2-101234 5678910

Mean adjusted X3 / partial re$idual- X3
21 22232425262726293031 323334353637

3-G
three predictor

3-I
variables involved in multicollinearity.

6

FIG. 3. DATA3: Body fat data containing
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