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Abstract
This paper will explain the steps necessary to build
a linear regression model using the SAS System®. 
The process will start with testing the assumptions
required for linear modeling and end with testing the
fit of a linear model.  This paper is intended for
analysts who have limited exposure to building
linear models. This paper uses the REG, GLM,
CORR, UNIVARIATE, and PLOT procedures.

Topics
The following topics will be covered in this paper:

1. assumptions regarding linear regression
2. examing data prior to modeling
3. creating the model
4. testing for assumption validation
5. writing the equation
6. testing for multicollinearity
7. testing for auto correlation
8. testing for effects of outliers
9. testing the fit
10 modeling without code.

Assumptions
A linear model has the form Y = b0 + b1X + ε.  The
constant b0 is called the intercept and the coefficient
b1 is the parameter estimate for the variable X.  The
ε is the error term.  ε is the residual that can not be
explained by the variables in the model.  Most of the
assumptions and diagnostics of linear regression
focus on the assumptions of ε.  The following
assumptions must hold when building a linear
regression model.
1. The dependent variable must be continuous.  If

you are trying to predict a categorical variable,
linear regression is not the correct method.  You
can investigate discrim, logistic, or some other
categorical procedure.

2. The data you are modeling meets the "iid"
criterion.  That means the error terms, ε,  are:
a. independent from one another and
b. identically distributed.

If assumption 2a does not hold, you need to
investigate time series or some other type of
method.  If assumption 2b does not hold, you
need to investigate methods that do not assume

normality such as non-parametric procedures.

3. The error term is normally distributed with a
mean of zero and a standard deviation of σ2,
N(0,σ2).

Although not an actual assumption of linear
regression, it is good practice to ensure the data you
are modeling came from a random sample or some
other sampling frame that will be valid for the
conclusions  you wish to make based on your
model.

Example Dataset
We will use the SASUSER.HOUSES dataset that is
provided with  the SAS System for PCs v6.10.  The
dataset has the following variables: PRICE, BATHS,
BEDROOMS, SQFEET and STYLE.  STYLE is a
categorical variable with four levels.  We will model
PRICE.

Initial Examination Prior to
Modeling
Before you begin  modeling, it is
recommended that you plot your
data.  By examining these initial
plots, you can  quickly  assess
whether the data have linear
relationships or interactions are
present.

The code below will produce three
plots.
  PROC PLOT DATA=HOUSES;
    PLOT PRICE*(BATHS     
        BEDROOMS SQFEET);
  RUN;
An X variable (e.g. SQFEET) that
has a linear relationship with Y
(PRICE) will produce a plot that
resembles a straight line. (Note
Figure 1.)  Here are some
exceptions you may come across in
your own modeling.

If your data look like Figure 2,
consider transforming the X variable
in your modeling to log10X or √X.
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If your data look like Figure 3, consider transforming
the X variable in your modeling to X2 or exp(X).

If your data look like Figure 4, consider transforming
the X variable in your modeling to 1/X or   exp(-X)

This SAS code can be used to visually inspect for
interactions between two variables.
  PROC PLOT DATA=HOUSES;
    PLOT BATHS*BEDROOMS;
  RUN;

Additionally, running correlations among the
independent variables is helpful.  These correlations
will help prevent multicollinearity problems later.
  PROC CORR DATA=HOUSES;
    VAR BATHS BEDROOMS SQFEET;
  RUN;

In our example, the output of the correlation
analysis will contain the following.
                      Correlation Analysis
        3 'VAR' Variables:  BATHS    BEDROOMS
SQFEET
Pearson Correlation Coefficients  / Prob > |R|
under Ho: Rho=0 / N = 15
           BATHS       BEDROOMS       SQFEET

 BATHS     1.00000    0.82492           0.71553
           0.0        0.0002            0.0027
 BEDROOMS  0.82492    1.00000           0.75714
           0.0002     0.0               0.0011
 SQFEET    0.71553    0.75714           1.00000
           0.0027     0.0011            0.0
   

In the above example, the correlation coefficents
are in bold.  The correlation of 0.82492 between
BATHS and BEDROOMS indicates that these
variables are highly correlated.  A decision should
be made to include only one of them in the model. 
You might  also argue that 0.71553 is high.  For our
example we will keep it in the model.

Creating the Model
As you read, learn and become experienced with
linear regression you will find there is no one correct
way to build a model.  The method suggested here
is to help you better understand the decisions
required without having to learn a lot of SAS
programming. 

The REG procedure can be used to build and test
the assumptions of the data we propose to model.
However, PROC REG has some limitations as to
how the variables in your model must be set up. 
REG can not handle interactions such as

BEDROOMS*SQFEET or categorical variables with
more than two levels.  As such you need to use a
DATA step to manipulate your variables.  Let's say
you have two continous variables (BEDROOMS and
SQFEET) and a categorical variable with four levels
(STYLE) and you want all of the variables plus an
interaction term in the first pass of the model.  You
would have to have a DATA step to prepare your
data as such:
  DATA HOUSES;
    SET HOUSES;
    BEDSQFT = BEDROOMS*SQFEET;
    IF STYLE='CONDO' THEN DO;
       S1=0; S2=0; S3=0; END;
    ELSE IF STYLE='RANCH' THEN DO;
       S1=1; S2=0; S3=0; END;
    ELSE IF STYLE='SPLIT' THEN DO;
       S1=0; S2=1; S3=0; END;
    ELSE DO;
       S1=0; S2=0; S3=1; END;
  RUN;
When creating a categorical term in your model, you
will need to create dummy variables for "the number
of levels minus 1".  That is, if you have three levels,
you will need to create two dummy variables and so
on.

Once the variables are correctly prepared for REG
we  can run the procedure to get an initial look at
our model.
  PROC REG DATA=HOUSES;
    MODEL PRICE = BEDROOMS SQFEET S1 S2
                   S3 BEDSQFT ;
  RUN;

The GLM procedure can also be used  to create a
linear regression model.  The GLM procedure is the
safer procedure to use for your final modeling
because it does not assume your data are balanced.
 That is with respect to categorical variables, it does
not assume you have equal sample sizes for each
level of each category.   GLM also allows you to
write interaction terms and categorical variables with
more than two levels directly into the MODEL
statement.  (These categorical variables can even
be character variables.) Thus using GLM eliminates
some DATA step programming.

Unfortunately, the SAS system does not provide the
same statistics in REG and GLM.  Thus you may
want to test some basic assumptions with REG and
then move on to using GLM for final modeling. 
Using GLM we can run the model as:
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  PROC GLM DATA=HOUSES;
    CLASS STYLE;
    MODEL PRICE = BEDROOMS SQFEET STYLE
                  BEDROOMS*SQFEET;
  RUN;

The output from this initial modeling attempt will
contain the following statistics:
General Linear Models Procedure
Dependent Variable: PRICE   Asking price
            Sum of    Mean       F       Pr>
Source  DF  Squares   Square     Value   F
Model   6  7895558723 1315926453 410.66 0.0001

Error   8  25635276   3204409
Corrected
Total   14 7921194000
    R-Square   C.V.    Root MSE    PRICE Mean
    0.996764  2.16   1790.08    82720.00

             Type III   Mean      F          Pr>
Source   DF   SS         Square    Value      F
BEDROOMS 1   245191    245191    0.08    0.7891
SQFEET   1   823358866 823358866 256.95  0.0001
STYLE    3   5982918   1994306   0.62    0.6202
BEDROOMS*
SQFEET   1   712995    712995    0.22    0.6497

When building a model you may wonder which
statistic tells whether the model is good.  There is no
one correct answer.  Here are some approaches of
statistics that are found in both REG and GLM.
R-square and Adj-Rsq

You want these numbers to be as high as
possible.  If your model has a lot of variables,
use Adj-Rsq because a model with more
variables will have a higher R-square than a 
similar model with fewer variables.  Adj-Rsq
takes the number of variables in your model into
account.  An R-square or 0.7 or higher is
generally accepted as good.

Root MSE
You want this number to be small compared to
other models.  The value of Root MSE will be
dependent on the values of the Y variable you
are modeling.  Thus, you can only compare
Root MSE against other models that are
modeling the same dependent variable.

Type III SS Pr>F
As a guideline, you want the value for each of
the variables in your model to have a Type III
SS p-value of 0.05 or less.  This is a judgement
call.  If you have a p-value greater than .05  and
are willing to accept a lesser confidence  level,
then you can use the model.  Do not substitute
Type I or Type II SS for Type III SS.  They are
different statistics and could lead to incorrect
conclusions in some cases.

Other approaches to finding good models are
having a small PRESS statistic (found in REG as
Predicted Resid SS (Press)) or having a CP statistic
of p-1 where p is the number of parameters in your
model.  CP can also be found using PROC REG.  

When building a model only eliminate one term,
variable or interaction, at a time.  From examining
the GLM printout, we will drop the interaction term
of BEDROOMS*SQFEET as the Type III SS 
indicates it is not significant to the model.  If an
interaction term is significant to a model, its
individual components are generally left in the
model as well.  It is also generally accepted to leave
an intercept in your model unless you have a good
reason for eliminating it.  We will use BEDROOMS,
S1, S2 and S3 in our final model.

Some of the approaches for choosing the best
model listed above are available in SELECTION=
options of REG and SELECTION= options of GLM. 
 For example:
   PROC REG;
     MODEL PRICE = BEDROOMS SQFEET
         S1 S2 S3 / SELECTION = ADJRSQ;
will iteratively run models until the model with the
highest adjusted R-square is found. Consult the
SAS/STAT User's Guide for details.

Test of Assumptions
We will validate the "iid" assumption of linear
regression by examining the residuals of our final
model.  Specifically, we will use diagnostic statistics
from REG as well as create an output dataset of
residual values for  PROC UNIVARIATE to test. 
The following SAS code will do this for us.
  PROC REG DATA=HOUSES;
    MODEL PRICE = BEDROOMS S1 S2 S3 /
          DW SPEC ;
    OUTPUT OUT=RESIDS R=RES;
  RUN;
  PROC UNIVARIATE DATA=RESIDS
       NORMAL PLOT;
    VAR RES;
  RUN;

Dependent Variable: PRICE
Test of First and Second Moment Specification
DF: 8 Chisq Value: 7.0152   Prob>Chisq:0.5350

Durbin-Watson D             1.334
(For Number of Obs.)           15
1st Order Autocorrelation   0.197
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The bottom of the REG printout will have a statistic
that jointly tests for heteroscedasticity (not identical
distributions of error terms) and dependence of error
terms. This test is run by using the SPEC option in
the REG model statement.  As the SPEC test is
testing for the opposite of what you hope to
conclude, a non-significant p-value indicates that
the error variances are not not indentical and the
error terms are not dependent.  Thus the
Prob>Chisq of 0.5350 > 0.05 lets us conclude our
error terms are independent and identically
distributed.

The Durbin-Watson statistic is calculated by using
the DW option in REG.  The  Durbin-Watson
statistic test for first order correlation of  error terms.
 The Durbin Watson statistic ranges from 0 to 4.0. 
Generally a D-W statistic of 2.0 indicates the data
are independent.  A small (less then 1.60) D-W
indicates positive first order correlation and a large
D-W indicates negative first order correlation.

However, the D-W statistic is not valid with small
sample sizes.  If your data set has more than p*10
observations then you can consider it large.  If your
data set has less than p*5 observations than you
can consider it small.  Our data set has 15
observations, n, and 4 parameters, p.  As n/p equals
15/4=3.75, we will not rely on the D-W test.

The assumption that the error terms are normal can
be checked in a two step process using  REG and
UNIVARIATE.  Part of the UNIVARIATE output  is
below.
Variable=RES Residual
        Momentsntiles(Def=5)

 N               15 Sum Wgts  15
 Mean             0  Sum       0
 Std Dev   12179.19 Variance   1.4833E8

 W:Normal   0.985171  Pr<W       0.9818
        Normal Probability Plot
 25000+                                        *+++++++
      |                                  +++*++++
      |                         *+**+*+*+*
      |                 +*+*+**+
      |         ++++*++*
-25000+ +++++++*
      +----+----+----+----+----+----+----+----+----+----+
          -2        -1         0        +1        +2

The W:Normal statistic is called the Shapiro-Wilks
statistic.  It tests that the error terms come from a
normal distribution.  If the test's p-value is less than
signifcant (eg. 0.05) then the errors are not from a

normal distribution.  Thus, Pr<W or 0.9818 indicates
the error terms are normally distributed.

The normal probability plot plots the errors as
asterisks ,*, against a normal distribution,+.  If the 
*'s look linear and fall in line with the +'s then the
errors are normally distributed.  The outcome of the
W:Normal statistic will coincide with the outcome of
the normal probability plot.  These tests will work
with small sample sizes. 

Writing the Equation
The final output of a model is an equation.  To write
the equation we need to know the parameter
estimates for each term.  A term can be a variable
or interaction.   In REG the parameter estimates
print out and are called Parameter Estimate under a
section of the printout with the same name. 

           Parameter Estimates
            Parameter   Std.  T for H0    Prob
Variable DF  Estimate   Error Parameter=0  > |T|
INTERCEP   1  53856  12758.2  4.221     0.0018
BEDROOMS   1  16530  3828.6   4.317     0.0015
S1         1 -22473  10368.1 -2.167     0.0554
S2         1 -19952  11010.9 -1.812     0.1001
S3         1 -19620  10234.7 -1.917     0.0842

We could argue that we should remove the STYLE
dummy variables.  For the sake of this example,
however, we will keep them in the model.  The
parameter estimates from REG are used to write the
following equations.  There is an equation for each
combination of the dummy variables.
PRICECONDO = 53856+ 16530(BEDROOMS)

PRICERANCH = 53856 +16530(BEDROOMS)   - 22473
                     =  31383 +16530(BEDROOMS)

PRICESPLIT    =  33904 +16530(BEDROOMS)

PRICE2STORY = 34236 +16530(BEDROOMS)

If using GLM, you need to add the SOLUTION
option to the model statement to print out the
parameter estimates.
  PROC GLM DATA=HOUSES;
    CLASS STYLE;
    MODEL PRICE=BEDROOMS              
                STYLE/SOLUTION;
  RUN;                                         
                           T for H0:   Pr > |T|
Parameter     Estimate  Parameter=0  Estimate

INTERCEPT        34235.8 B  2.52   0.0301
BEDROOMS         16529.7    4.32   0.0015
STYLE     CONDO  19619.9 B  1.92   0.0842
          RANCH  -2852.7 B -0.27   0.7931
          SPLIT   -331.7 B -0.03   0.9767
          TWOSTORY   0.0 B   .      . 
NOTE: The X'X matrix has been found to be



5

singular and a generalized inverse was used to
solve the normal equations.  Estimates followed
by the letter 'B' are biased, and are not     
unique estimators of the parameters.

When using GLM with categorical variables,  you
will always get the NOTE: that the solution is not
unique.  This is because GLM creates a separate
dummy variable for each level of each categorical
variable. (Remember in the REG example, we
created n-1 dummy variables.)  It is due to this
difference in approaches that the GLM categorical
variable parameter estimates will always be biased
with the intercept estimate.  The GLM parameter
estimates can be used to write equations but it is
understood that other parameter estimates exist that
would also fit the equation.

Writing the equations using GLM output is done the
same way as when using REG output.  The equation
for the price of a condo is shown below.
PRICECONDO =  34236+16530(BEDROOMS)+19620
                     = 53856 + 16530(BEDROOMS)

Testing for Multicollinearity
Multicollinearity is when your independent,X, 
variables are correlated.  A statistic called the
Variance Inflation Factor, VIF, can be used to test
for multicollinearity.  A cut off of 10 can be used to
test if  a regression function is unstable.  If VIF>10
then you should search for causes of
multicollinearity.

If multicollinearity exists, you can try: changing the
model, eg. drop a term; transform a variable; or use
 Ridge Regression (consult a text, e.g., SAS System
for Regression).

To check the VIF statistic for each variable you can
use REG with the VIF option in the model
statement.  We'll use our original model as an
example.
  PROC REG DATA=HOUSES;
    MODEL PRICE = BEDROOMS SQFEET S1 S2
          S3  BEDSQFT / VIF;
  RUN;
       Parameter Estimates
                  Variance
Variable          Inflation
INTERCEP         0.00000000
BEDROOMS        21.54569800
SQFEET           8.74473195
S1               2.14712669
S2               1.85694384
S3               2.01817464

BEDSQFT         39.07446066

The VIF of 39 for the interaction term BEDSQFT
would suggest that BEDSQFT is correlated to
another variable in the model.  If you rerun the
model with this term removed, we'll see that the VIF
statistics change and all are now in acceptable
limits.
       Parameter Estimates
            Variance
Variable   Inflation
INTERCEP   0.00000000
BEDROOMS   3.04238083
SQFEET     3.67088471
S1         2.13496991
S2         1.85420689
S3         2.00789593

Testing for Autocorrelation
Autocorrelation is when an error term is related to a
previous error term.  This situation can happen with
time series data such as monthly sales.  The Durbin-
Watson statistic can be used to check if
autocorrelation exist.  The Durbin-Watson statistic is
demonstrated in the Testing the Assumptions
section.

Testing for Outliers
Outliers are observations that exert a large influence
on the overall outcome of a model or a parameter's
estimate. When examining outlier diagnostics, the
size of the dataset is important in determining
cutoffs.  A data set where  ( 2 (p/n)1/2 > 1) is
considered large.  p is the  number of terms in the
model excluding the intercept.  n is the sample size.
 The HOUSES data set we are using has n=15 and
p=4 (BEDROOMS,  S1, S2, S3).  Since 2x(4/15)1/2 =
1.0 we will consider the HOUSES dataset small.

The REG procedure can be used to view various
outlier diagnostics.  The Influence option requests  a
host of outlier diagnostic tests. The R option is used
to print out Cook's D.  The output prints  statistics for
each observation in the dataset. 
  PROC REG DATA=HOUSES;
    MODEL PRICE = BEDROOMS S1 S2 S3 / 
                  INFLUENCE R;
  RUN;

Cook's D is a statistic that detects outlying
observations by evaluating all the variables
simultaneously.  SAS prints a graph that makes it
easy to spot outliers using Cook's D.  A Cook's D
greater than the absolute value of 2 should be
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investigated.

        Dep Var Predict                         
                                          
Cook's
  Obs  PRICE  Value  Residual   -2-1-0 1 2    D
   1 64000.0 64442.6  -442.6  |    |     | 0.000
   2 65850.0 50433.8  15416.2 |    |***  | 0.547
   3 80050.0 86915.2  -6865.2 |   *|     | 0.026
   4  107250  100355  6895.3  |    |*    | 0.032
   5 86650.0 80972.3  5677.7  |    |     | 0.018

RSTUDENT is the studentized deleted residual. 
The studentized deleted residual checks if the
model is significantly different if an observation is
removed.  An RSTUDENT whose absolute value is
larger  than 2 should be investigated. 

The DFFITS statistic also test if an observation is
strongly influencing the model.  Interpretation of
DFFITS depends on the size of the dataset.  If your
dataset is small to medium size,  you can use 1.0 as
a cut off point.  DFFITS greater than 1.0 warrant
investigating.  For large datasets, investigate
observations where  DFFITS > 2(p/n)1/2.  DFFITS
can also be evaluated by comparing the
observations among themselves.  Observations
whose DFFITS values are extreme in relation to the
others should be investigated. An abbreviated
version of the printout is listed.

                    INTERCEP BEDROOMS   S1
Obs  Rstudent Dffits Dfbetas Dfbetas Dfbetas
1   -0.0337  -0.0197 -0.0021  0.0026 -0.0131
2    1.7006   1.8038  0.9059 -1.0977 -0.2027
3   -0.5450   -0.3481-0.2890  0.1289  0.2485
4    0.5602   0.3848  0.1490  0.1806  0.0333
5    0.4484   0.2864 -0.0875  0.1060  0.2045

In addtion to tests for outliers that affect the overall
model, the Dfbetas statistics can be used to find
outliers that influence an particular parameter's
coefficient. There will be a Dfbetas statistic for each
term in the model.  For small to medium sized
datasets, a Dfbetas over 1.0 should be investigated.
 Suspected outliers of large datasets have Dfbetas
greater than  2/√n.

Outliers can be addressed by: assigning weights, 
modifying the model (eg. transform variables) or 
deleting the observations (eg. if data entry error
suspected). Whatever approach is chosen to deal
with outliers should be done for a reason and not
just to get a better fit!

Testing the Fit of  the Model
The overall fit of the model can be checked by
looking at the F-Value and its corresponding p-value
(Prob >F) for the total model under the Analysis of
Variance portion of the REG or GLM print out. 
Generally, you want a Prob>F value less than 0.05.

If your dataset has "replicates",  you can perform a
formal Lack of Fit test.  This test can be run using
PROC RSEG with option LACKFIT in the model
statement.
  PROC RSREG DATA=HOUSES
    MODEL PRICE = BEDROOMS            
          STYPE/LACKFIT;
  RUN;
If the p-value for the Lack of Fit test is greater than
0.05 then your model is a good fit and no additional
terms are needed.

Another check you can perform on your model is to
plot the error term against the dependent variable Y.
 The "shape" of the plot will indicate whether the
function you've modeled is
actually linear. 

A shape that centers around 0
with 0 slope indicates the
function is linear.   Figure 5 is an
example of a linear function.

Two other shapes of Y plotted
against residuals are a
curvlinear shape (Figure 6) and
an increasing area shape
(Figure 7).  If the plot of
residuals is curvlinear, you
should try changing  the X
variable in your model to X2.

If the plot of residuals looks
like Figure 7, you should try
transforming the predicted Y
variable.

Modeling Without Code
Interactive SAS will let you run
linear regression without
writing SAS code.  To do this envoke
SAS/INSIGHT® (in PC SAS click Globals / Analyze
/ Interactive Data Analysis and select the Fit (Y X)

Figure 5

Figure 6

Figure 7
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option).  Use your mouse to click on the data set
variables to build the model and then click on Apply
to run the model.

References
Neter, John, Wasserman, William, Kutner, Micheal H, Applied
Linear Statistical Models, Richard D. Irwin, Inc., 1990, pp.113-133

Brocklebank PhD, John C, Dickey PhD, David A, SAS System for
Forecasting Time Series,  Cary, NC: SAS Institute Inc., 1986,  p.9

Fruend PhD, Rudolf J, Littel PhD, Ramon C, SAS System for Linear
Regression, Second Edition, Cary, NC: SAS Institute Inc., 1991,
pp.59-99.

SAS Institute Inc., SAS/STAT User's Guide, Version 6, Fourth
Edition, Vol 2,  Cary, NC: SAS Institute Inc., 1990,  pp.1416-1431.

SAS Institute Inc.,  SAS Procedures Guide, Version  6, Third
Edition, Cary, NC: SAS Institute Inc., 1990,  p.627.

SAS and SAS/Insight are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

About The Author
Leslie A. Christensen, Market Research Analyst Sr.
The Goodyear Tire & Rubber Company
1144 E. Market St, Akron, OH 44316-0001
(330) 796-4955   USGTRDRB@IBMMAIL.COM


	Main TOC

