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Abstract

In the past decade there has been a high degree

of interest in improving the quality, productivity,

and reliability of manufactured products. Global

competition and higher customer expectations for

safe, reliable products are driving this interest.

After the areas of experimental design and statis-

tical process control the one of reliability is the

next to receive a high degree of emphasis. Indus-

try's current concern is on how to move rapidly

from product conceptualization to a cost-e�ective

highly reliable product. Part of the reliability

assurance process requires conducting tests and

studies to obtain reliability data and to turn these

data into useful information for making decisions.

In this paper we consider the use of modern

methods for analyzing time-to-failure data that

can be implemented using SAS software. We

provide an appropriate mix of proven traditional

techniques, enhanced and brought up to date with

some modern computer-based methodology. The

methodology will be illustrated using PROC RE-

LIABILITY to analyze some applications of prod-

uct reliability.

Key words: Life data; Censored data, Quality,

Survival analysis; PROC RELIABILITY.

1 Introduction

1.1 Importance of reliability data anal-

ysis

Proper reliability data analysis are needed in di-

verse areas like design for reliability, reliability

modeling, reliability budgeting, reliability predic-

tion and assessment, reliability demonstration.

Some major objectives in obtaining reliability

data include: (i) Obtaining early identi�cation of

failure modes and understanding and removing

their root causes{and thereby improving reliabil-

ity. (ii) Determining how long each unit should be

run prior to shipment in order to avoid likely pre-

mature �eld failures. (iii) Quantifying reliability

to determine whether or not a product is ready

for release.

1.2 Common types of reliability data

It is important to distinguish between the follow-

ing types of reliability data: (i) A sequence of re-

ported system failure times (or the times of other

system-speci�c events) for a repairable system.

(ii) The time of failure (or other clearly speci�ed

event) for nonrepairable units or components (in-

cluding data in nonrepairable components within

a repairable system).

We describe methods for data analysis for non-

repairable units or components as well as for ana-

lyzing system reliability data using SAS software.

Data from nonrepairable units arise from many

di�erent kinds of reliability studies see Meeker,

Escobar, Doganaksoy, and Hahn (1997) (MEDH)

for a detailed account.

1.3 Censoring

Reliability data are typically censored (exact fail-

ure time is not known). The most common reason

for censoring is the need to analyze data before all

units fail. The analysis of censored data is more
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complicated when the censoring times of unfailed

units di�er. This would happen when di�erent

units of the product enter into the �eld at dif-

ferent times, as is usually the case in analyzing

�eld failure data. It may also be the case when

units have di�erent degrees of exposure over time

or when one is evaluating failures due to a par-

ticular failure mode (in which case, failures from

other independent modes are treated as censored

observations).

An important assumption needed for standard

analysis of censored data is that the censoring

time for a unit is chosen independently of when

that unit would have failed. For example, if a unit

were removed from the �eld because it is about to

fail, treating it as a censored observation would

bias the analysis.

1.4 Computer software

Although it is possible to do some of the simplest

reliability data analyses by hand, for e�ective

analyses with real problems, computer process-

ing with modern high-resolution graphics should

be used. PROC RELIABILITY provides capabil-

ities that facilitate the analysis of reliability data.

2 Life Data Models

This section deals mainly with unrepairable com-

ponents or other products that are replaced rather

than repaired (or time to failure of �rst failure on

repairable products). We describe: (i) a summary

of alternative statistical models for representing

time to failure of non-repairable products; (ii) two

parametric models commonly used in the analysis

of reliability data.

2.1 Time-to-failure models

The distribution of time to failure T can be char-

acterized by a cumulative distribution function

(cdf), a survival function (sf), a probability den-

sity function (pdf), or a hazard function (hf).

These functions are illustrated, for a typical time-

to-failure distribution, in Figure 1. The choice of

which function of functions to use depends on con-
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Figure 1: Typical time-to-failure cdf, pdf, sf, and

hf.

venience of model speci�cation, interpretation, or

technical development. All are important for one

purpose or another. In Section 2.3, we give the

cdfs for the lognormal and Weibull families.

2.2 Parameters of interest in reliability

analysis

Often, the traditional parameters of a statistical

model (mean and standard deviation) are not of

primary interest in reliability studies. Instead,

design engineers, reliability engineers, managers,

and customers are interested in speci�c measures

of product reliability or particular characteristics

of a failure-time distribution, e.g., quantiles of the

time-to-failure distribution. The quantile tp is the

time at which a speci�ed proportion p of the pop-

ulation will have failed. Also, F (tp) = p. For

example t:20 is the time by which 20% of the popu-

lation will have failed. Alternately, frequently one

would like to know the probability of failure as-

sociated with a particular number of hours, days,

week, months, or years of usage.

2.3 Some useful parametric models

Here we give the cdfs and the log-quantiles for two

very useful parametric models commonly used in

reliability analysis. For a complete detailed de-

scription of these and some other parametric mod-

els see Chapters 4 and 5 of Meeker and Esco-
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bar (1998) and MEDH (1997).

Lognormal distribution. For the lognormal

distribution the cdf and the quantiles are

F (t;�; �) = �nor

�
log(t)� �

�

�
; t > 0

log(tp) = � +��1

nor
(p)�; 0 < p < 1

where �nor is the cdf for the standardized normal

distribution.

The logarithm of a lognormal random variable

Y = log(T ) follows a normal distribution with

mean � and standard deviation �. This relation-

ship between the lognormal and normal distribu-

tions is often used to simplify the process of using

the lognormal distribution.

Weibull distribution. For the Weibull distri-

bution the cdf and the quantiles are

F (t; �; �) = 1� exp

"
�

�
t

�

��#
; t > 0

log(tp) = � +��1

sev
(p)�; 0 < p < 1

where � = log(�), � = 1=�, and �sev(z) =

1 � exp[� exp(z)] is the cdf for a standardized

smallest extreme value distribution.

The logarithm of a Weibull random variable

Y = log(T ) follows a smallest extreme value dis-

tribution with location-scale parameters (�; �).

3 Strategy for the Analysis of

Censored Life Data

This section brie
y discusses two examples to il-

lustrate some useful methods for analyzing life

data. The �rst example are single censored data

from a laboratory life test. The second example

illustrates the analysis of multiply censored data

from a �eld tracking study. In both cases we fol-

low the following simple strategy

� Examine the data graphically, using a non-

parametric estimate plotted on special prob-

ability paper (giving a probability plot).

� If a parametric distribution provides an ad-

equate description of available data, its pa-

rameters are estimated and the distribution

model are used to provide estimates and

con�dence intervals for distribution quantiles

and population proportion failing.

3.1 Simple life test data (single censor-

ing)

Chain link fatigue life. Parida (1991) gives

the results of a load-controlled high-cycle fatigue

test conducted on 130 chain links. The 130 links

were randomly selected from a population of dif-

ferent heats used to manufacture the links. Each

link was tested until failure or until it had run for

80 thousand cycles, which ever came �rst. There

were 10 failures|one each reported at 33, 46, 50,

59, 62, 71, 74, and 75 thousand cycles and 2 re-

ported at 78 thousand cycles. The other 120 links

had not failed after 80 thousand cycles.

A nonparametric estimate of F (t) is computed

as

bF (t) = # of failures up to time t

n
: (1)

bF (t) is a step function that jumps by an amount

1=n at each failure time (unless there are ties, in

which case the estimate jumps by the number of

tied failures divided by n). For details see Meeker

and Escobar (1998) or MEDH (1997)

Figure 2 was generated with PROC RELIA-

BILITY, the nonparametric estimate of the cdf

fall nearly along a straight line, indicating that

the Weibull distribution will provide a good �t to

these data. A similar lognormal plot (not shown

here) had showed some curvature but the degree

of departure was small relative to the sampling

uncertainty exhibited by the con�dence bands, in-

dicating the chain link fatigue data could have

come from either distribution.

Figure 2 also shows a Weibull Maximum Like-

lihood (ML) estimate plot for the chain link data.

The dotted lines are drawn through a set of point-

wise normal-approximation con�dence intervals

for F (t) (computed as described in Chapter 8 of

Meeker and Escobar 1998).
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Figure 2: Weibull probability plot with the

Weibull ML estimate and a set of approximate

95% con�dence intervals for F (t) for the chain

link failure data.

3.2 Analysis of staggered �eld data en-

try (multiply censored data)

Multiple censoring can arise when units go into

service at di�erent times so that some running

times are less than some censoring times. For

such data, the cumulative fatigue probability F (t)

cannot be estimated directly using (1).

Shock absorber failure data. O'Connor

(1985) gives failure data for shock absorbers. At

the time of analysis, failures had been reported

at 6700, 9120, 12200, 13150, 14300, 17520, 20100,

20900, 22700, 26510, and 27490 km. There were

many units in service that had not failed. The

running times for these units were 6950, 7820,

8790, 9660, 9820, 11310, 11690, 11850, 11880,

12140, 12870, 13330, 13470, 14040, 17540, 17890,

18450, 18960, 18980, 19410, 20100, 20150, 20320,

23490, 27410, 27890, and 28100 km.

To estimate F (t) with multiply censored data

we use the following procedure. Let t1, t2, . . . ,

tm denote the times where failures occurred, let

di denote the number of units that died or failed

at ti, and let ni denote the number units that are

alive just before ti. The nonparametric estimator
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Figure 3: Weibull probability plot of shock ab-

sorber failure times with ML estimates and ap-

proximate 95% pointwise con�dence intervals for

quantiles.

of F (t) for values of t between ti and ti+1 is

bF (ti) = 1�
iY

j=1

"
1�

dj

nj

#
i = 1; : : : ; m: (2)

This is the well-known product-limit or Kaplan-

Meier (KM) estimator. It can be shown that the

KM estimator simpli�es to (1) when the data are

complete or single censored. Figure 3 obtained us-

ing PROC RELIABILITY gives a Weibull proba-

bility plot for the shock absorber data along with

approximate 95% pointwise likelihood con�dence

intervals for selected quantiles tp of the life distri-

bution (for details see Meeker and Escobar 1998).

4 Accelerated Life Test Data

Analysis

Estimating the time-to-failure distribution or

long-term performance of components of high re-

liability products is particularly di�cult. Most

modern products are designed to operate with-

out failure for years, decades, or longer. Acceler-

ated Life Tests (ALTs) are used widely in manu-

facturing industries, particularly to obtain timely

information on the reliability of simple product
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components and materials, and to provide early

identi�cation (and removal) of failure modes, thus

improving reliability.

4.1 Strategy for analyzing ALT data

This section outlines and illustrates a strategy

that has been useful for analyzing ALT data con-

sisting of a number of subexperiments, each hav-

ing been run at a particular set of conditions. The

basic idea is to start by analyzing the subexper-

iments separately and then to progress to �tting

a model that ties together the data at di�erent

conditions. Brie
y, the strategy is to

� Examine the data graphically, especially

through probability plots, to suggest and ex-

plore the adequacy of possible distributional

models.

� At test conditions with two or more failures,

�t models individually to the data at sepa-

rate levels of the acceleration variable. Plot

the ML lines on a multiple probability plot

showing the individual nonparametric esti-

mates at each level of the accelerating fac-

tor. Use the plotted points and �tted lines

to assess the reasonableness of the constant-

� assumption and of the model relating life

di�erent levels of the accelerating factor (e.g.

Figure 4).

� Fit an overall model with the assumed re-

lationship between life and the accelerating

variable (e.g. Figure 5).

� Perform residual analyses and other diagnos-

tic checks of the model assumptions.

� Assess the reasonableness of using the ALT

data to make the desired inferences.

For further examples and further discussion of

methods for analyzing ALT data, see Nelson

(1990) or Meeker and Escobar (1998).

New Technology Device. Table 1 gives the

results of an ALT on a new-technology integrated

circuit (IC) device. The device inspection process

involved an electrical diagnostic test that required

much time on a machine requiring expensive mea-

surements. Thus only a few inspections could be

Table 1: Hours versus temperature data from an

ALT experiment on a new-technology integrated

circuit device.

Hours Number Temp

Lower Upper Status of Obs Degrees C

{ 1536 Censored 50 150

{ 1536 Censored 50 175

{ 96 Censored 50 200

384 788 Failed 1 250

788 1536 Failed 3 250

1536 2304 Failed 5 250

{ 2304 Censored 41 250

192 384 Failed 4 300

384 788 Failed 27 300

788 1536 Failed 16 300

{ 1536 Censored 3 300

conducted on each device. The �rst inspection

was after one day with subsequent inspections at

two days, four days, and so on. Tests were run

at 150, 175, 200, 250, and 300�C. The analysis

of these data requires special statistical methods

that are described in Chapter 9 of Nelson (1982),

Chapter 3 of Nelson (1990), and Chapters 3, 7,

and 21 of Meeker and Escobar (1998).

The developers were interested in estimating

the activation energy of the suspected failure

mode and the long-life reliability of the compo-

nents as characterized by the proportion of de-

vices in the product population that would fail

by 100 thousand hours (about 11 years).

The analysis here was done using PROC RELI-

ABILITY. Figure 4 is a lognormal probability plot

of the failures at 250 and 300�C along with the ML

estimates of the individual lognormal cdfs. The

di�erent slopes in the plot suggests the possibil-

ity that the lognormal shape parameter � changes

from 250 to 300�C. Such a change could be caused

by a change in failure mode. Failure modes with a

higher activation energy, that might never be seen

at low levels of temperature, can appear at higher

levels of temperature (or other acceleration fac-

tors). A 95% con�dence interval on �250=�300 is

[1:01; 3:53] (calculations not shown here), sug-

gests that there could be a di�erence.

These results also suggested that detailed phys-

ical failure mode analysis should be done for at

least some of the failed units and that, perhaps,
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Figure 4: Lognormal probability plot of the fail-

ures at 250 and 300�C for the new-technology in-

tegrated circuit device ALT experiment.

Table 2: Arrhenius-lognormal model ML estima-

tion results for the new-technology IC device.

95% Approximate

Para- ML Standard Con�dence Intervals

meter Estimate Error Lower Upper

�0 �10:2 1.5 �13:5 �7:4

�1 9:6 .85 8:05 11:45

� .52 .06 .42 .64

The loglikelihood is L = �88:36. The con�dence in-

tervals are based on the likelihood ratio approximation

method.

the accelerated test should be extended until some

failures are observed at lower levels of tempera-

ture.

Table 2 gives Arrhenius-lognormal model ML

estimation results for the new-technology IC de-

vice assuming a constant �. The con�dence in-

terval for �1 indicates that the temperature has

an accelerating e�ect on the failure of the devices.

The right hand side in Figure 5 is an Arrhenius

plot of the Arrhenius-lognormal model �t (quan-

tiles t:10, t:50, and t:90) of the new-technology IC

device ALT data. Because failures were only ob-

served at 250 and 300�C, the plot shows the rather

extreme extrapolation needed to make inferences

at the use conditions of 100�C. If the projections
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Figure 5: Lognormal probability plot showing

the Arrhenius-lognormal model ML estimation re-

sults for the new-technology IC device.

are close to the truth, it appears unlikely that

there will be any failures below 200�C during the

remaining 3000 hours of testing and, as mentioned

before, this was the reason for starting some units

at 200�C. The lognormal probability plot on the

left hand side of Figure 5 shows estimated lognor-

mal cdfs for all of the test levels of temperature

as well at the use-condition of 100�C. The slopes

of the lines are the constant � assumption.

5 Repairable System Data

The purpose of some reliability studies is to de-

scribe the failure trends and patterns of an overall

system or collection of systems. System failures

are followed by a system repair and data consist

of a sequence of system failure times for similar

systems.

Repairable system data can be viewed as se-

quence of reported failure times T1; T2; : : : in time.

Some applications have data on only one system.

In other applications there may be data from a

collections of systems. In either case failures are

typically observed in a �xed observation interval

(t0; ta), where, typically, t0 = 0. In some cases the

numbers of failures in intervals are reported and
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Figure 6: Valve seat event plot.

in other cases, exact times are recorded. System

reliability data are collected to estimate quantities

like: (i) the distribution of the times between fail-

ures, �j = Tj � Tj�1 (j = 1; 2; : : :) where T0 = 0;

(ii) the number of failures in the interval (0; t] as

a function of t; (iii) the expected number of fail-

ures in the interval (0; t] as a function of t; (iv)

the rate of occurrence of failures (ROCOF) as a

function of time t.

Times of replacement of diesel engine valve

seats. Repair records for a 
eet of 41 diesel en-

gines were kept over time. Table 3 gives the the

times of replacement (in number of days of ser-

vice) of the engine's valve seats. This is an exam-

ple of data on a group of systems. The data were

originally given in Nelson and Doganaksoy (1989)

and also appear in Nelson (1995). Questions to

be answered by these data include the following:

(i) Does the replacement rate increase with age?

(ii) How many replacement valves will be needed

in the future? (iii) Can valve life in these systems

be modeled as a renewal process (so that simple

methods for independent observations can be used

for analysis)?

Simple data plots provide a good starting point

for analysis of system repair data. Figure 6 is

an event plot of the valve seat repair data show-

ing the observation period and the reported repair

times.

Table 3: Times of replacement diesel engine valve

seats. From Nelson and Doganaksoy (1989).

System Days Replacement Time

ID Observed Days

251 761

403 593

252 759

404 589 573

327 667 98

405 606 165 408 604

328 667 326 653 653

406 594 249

329 665

407 613 344 497

330 667 84

408 595 265 586

331 663 87

409 389 166 206 348

389 653 646

410 601

390 653 92

411 601 410 581

391 651

412 611

392 650 258 328 377 621

413 608

393 648 61 539

414 587

394 644 254 276 298 640

415 603 367

395 642 76 538

416 585 202 563 570

396 641 635

417 587

397 649 349 404 561

418 578

398 631

419 578

399 596

420 586

400 614 120 479

421 585

401 582 323 449

422 582

402 589 139 139
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5.1 Nonparametric model for point

process data

For a single system, simple point process start-

ing at time 0, data can be expressed as N(t), the

cumulative number of failures up to time t. The

corresponding model, used to describe a popula-

tion of systems, is based on the mean cumulative

function (MCF) at time t. The MCF is de�ned

as �(t) = E[N(t)], where the expectation is over

the variability of each system and the unit-to-unit

variability in the population.

Point estimate of the MCF. Nelson (1988)

provided an unbiased estimator of the MCF, al-

lowing for di�erent lengths of observation among

systems. Nelson's estimate of the population

MCF can be computed as follows

� Order the unique tij among all of the n sys-

tems. Let m denote the number of unique

times. These ordered unique times are de-

noted by t1 < : : : < tm.

� Compute di(tk) the total number of repairs

for system i at tk.

� Let �i(tk) = 1 if system i is still being ob-

served at time tk and �i(tk) = 0 otherwise.

� Compute

b�(tj) =
jX

k=1

d�(tk)

��(tk)
=

jX
k=1

�d(tk);

for j = 1; : : : ; m where d�(tk) =Pn
i=1 �i(tk)di(tk), ��(tk) =

Pn
i=1 �i(tk),

and �d(tk) = d�(tk)=��(tk).

Note that d�(tk) is the total number of system re-

pairs at time tk , ��(tk) is the size of the risk set

at tk , and �d(tk) is the average number of repairs

per system at tk (or proportion of repaired sys-

tems if individual systems have no more than one

repair at a point time). Thus the estimator of

the MCF is obtained by accumulating the mean

number (across systems) of repairs per system in

each time interval.

For information on the computation of the stan-

dard errors of b�(tj) and nonparametric con�-

dence intervals for MCF, see Nelson (1989), Nel-

son (1995), and Meeker and Escobar (1998).

A plot of b�(t) versus age indicates whether the
reliability of the system is increasing, decreasing

or unchanging over time.

MCF estimate for the valve-seat replace-

ments. Figure 7 shows the estimate of the valve-

seat MCF as a function of engine age in days. The

estimate increases sharply after 650 days, but it

is important to recognize that this part of the es-

timate is based on only a small number (i.e., 10)

of systems that had a total operating period ex-

ceeding 650 hours. The uncertainty in the esti-

mate for longer times is re
ected in the width of

the con�dence intervals (the computation of such

con�dence limits is explained in Nelson 1995 and

Meeker and Escobar 1998).

Days
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Figure 7: Estimate of the mean cumulative num-

ber of valve seat repairs.

6 Final Remarks and Comments

6.1 Other resources available in SAS

The examples here highlight some of the rele-

vant features of PROC RELIABILITY. The pro-

cedure, however, provides many other features (no

discussed here) which facilitate the analysis of re-

liability data. These include: comparison of two

samples of repair data; analysis of Binomial and
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Poisson data; and analysis of Weibull data when

there are few or no failures.

PROC RELIABILITY can be useful to prac-

titioners in other areas like biostatistics, survival

analysis, etc. since it supplements the current ca-

pabilities of PROCs LIFETEST, LIFEREG, and

PHREG (see Allison 1995). For this purpose, it

would be necessary, however, to upgrade PROC

RELIABILITY to handle inspection data (read-

out data or life tables data) with a general struc-

ture. Currently the procedure only admits inspec-

tion data in which all the units have the same in-

spection schedule, this in general is too restrictive

for the analysis of time-to-event data.

6.2 Some other needs

As PROC RELIABILITY evolves, one would like

to see some new options, within the scope of the

current experimental version, that could enhance

the power of the procedure. In general, it will be

useful to have some options that permit a closed

graphical study of the likelihood as a function of

the parameters of interest. It would also be con-

venient to have options to plot the pro�le of quan-

tities of interest like parameters, failure probabil-

ities, and quantiles of the life distribution. Fur-

thermore, it would be nice to have the option of

requesting the computation and plotting of boot-

strap con�dence intervals for quantities of inter-

est.

Finally, there are many areas in reliability data

analysis that lack appropriate software. These in-

clude software for planning life tests; degradation

data analysis; Bayesian methods; system relia-

bility; planning of accelerated (degradation) life

tests, etc. Relevant statistical issues related to

these and other important topics in reliability are

discussed at large in Meeker and Escobar (1998).
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A SAS Code

%macro psfile(file);
%************************************;
%* Create postscript file 'file.ps'*;
%************************************;

goptions reset=goptions device=psepsf
cback=white colors=(black) noprompt
gaccess=gsasfile gsfmode=replace;
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filename gsasfile "&file..ps";
%put %str( );
%put %str(Graphics Device is--PSEPSF);
%mend psfile;
/************************************/
/* NAME: General options */
/************************************/
options nodate nostimer nonumber
source2 ls=76 ps=80;
goptions ftext=none htext=2 cell;
symbol1 v=plus h=2;
symbol2 v=x h=2;
symbol3 v=square h=2;
symbol4 v=circle h=2;
symbol5 v=star h=2;
title " ";
/************************************/
/* NAME: Chain link data analysis */
/************************************/
%psfile(figures/chain.link);
filename chainid 'data/chain.link';
data chain; infile chainid firstobs=3;
input cycles censor units;
run;
;
proc reliability data = chain;
label cycles='Cycles (thousands)';
freq units;
distribution Weibull;
probplot cycles*censor(2)/
lrclper pconfplt llower=30 plower=.1
pupper=40 noinset ;
run;
/************************************/
/* NAME: Shock absorber analysis */
/************************************/
%psfile(figures/shock.absorber);
filename shockid 'data/shock.absorber';
data shock; infile shockid firstobs=4;
input vehicle distance censor1 censor2
censor;
keep vehicle distance censor;
run;
;
proc reliability data = shock;
label distance='Kilometers';
distribution Weibull;
probplot distance*censor(2)/lrclper
llower=5000 lupper=30000 plower=1
pupper=80;
inset/height=2 cfill=white;
run;
/************************************/
/* NAME: new technology analysis */
/************************************/
%psfile(figures/new.tech.arrh);
filename newid 'data/new.technology';
data newtech; infile newid firstobs=9;
input time fail temp units;
run;
;
proc reliability data=newtech;
label time='Hours';
label temp='Celsius';
freq fail;
nenter units;
distribution lognormal;

model time = temp / readout
relation = arr lrcl;
rplot time = temp / readout
relation = arr
plotfit 10 50 90 fit=model
lupper=1e7 llower=1e2
slower=100 pplot noconf
plower=1 pupper=95 nopplegend;
run;
%psfile(figures/new.tech.pplot);
proc reliability data = newtech;
label time='Hours';
label temp='Celsius';
freq fail;
nenter units;
distribution lognormal;
probplot time=temp /
readout scale=.7 scinit overlay
pupper=95 plower=01
lupper=3000 llower=100
noconf;
run;
/************************************/
/* NAME: valveseat analysis */
/************************************/

%psfile(figures/valveseat);
symbol v=dot h=.7;
filename valveid 'data/valve.seat';
data valve;
infile valveid firstobs=3;
input id days value @@;
run;
;
proc reliability;
label days='Days';
unitid id;
mcfplot days*value(-1);
inset / cfill = white;
run;
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