
1

Using SAS Bitwise Functions to Scramble Data Fields with Key
Sheng Luo, Providian Corporation, Frazer, PA

Xinsheng Lin, IMS America, Plymouth Meeting, PA

Abstract

The data modeling in banks or insurance companies
often requires data files to travel from or to other
companies. Some data fields, such as credit card
numbers and social security numbers, while
necessary to be included in the file, need to be
unknown to other companies. Encryption is a way to
do this by replacing original characters in the file by
some other characters that make no sense. Annette I.
Ladan had an excellent discussion of the keyless
encryption algorithms in SAS, at the SUGI 20
Conference. This paper tries to extend the subject
further to algorithms of the keyed encryption in
SAS. A special effort is made to discuss bitwise
operations and SAS newly added bitwise functions,
as well as the pseudo bitwise operations that authors
used before SAS bitwise functions came out. A
sample SAS program and its result are also
displayed. Although the discussion is based on
results from UNIX system and ASCII data, the
algorithms and sample SAS program can be applied
to any operating system and any type of data.

Introduction to the Keyed Encryption

To perform data modeling in a large direct
marketing company, it is very common for a large
number of text files to flow in and out of the
company in order to overlay some external variables.
Some customer data fields, such as credit card
numbers, social security numbers and customer's
names are not for the other company who appends
data to know. Of course, the other company will not
know if these data fields are excluded from the file.
But we often cannot exclude them because we need
them for matching overlaid data back to our own
databases. The encryption is one way to protect
these sensitive data fields from public. What the
encryption does is to transfer original data values to
other values that look meaningless. When the file
comes back from the other company, we can decode
scrambled data fields back to their original values.
There are many ways to do the encryption. It can be
keyed or keyless. The keyless encryption algorithms
are conceptually simple in general, involving
changing positions of data values or changing one

character to another on one to one basis. Annette
Ladan's paper presented at the SUGI 20 Conference
provided an excellent discussion on algorithms of the
keyless encryption in SAS. The keyed encryption
algorithms can be conceptually complex, in the ways
of linking original characters and keys (or password)
by some mathematical expression. There could be
many kinds of the keyed encryption algorithms.
However, a good one should be able to encrypt or
decrypt the data values by the same program, which
is hard to do in a keyless encryption algorithm. A
good one is also able to replace the same original
character to different ones so that the scrambling
pattern is not obvious.

Many good algorithms of the keyed encryption
utilize bitwise operations, such as bitwise OR,
bitwise XOR(eXclusive OR), and bitwise AND.
Unlike regular Boolean comparisons that always
results in either 0 or 1, the bitwise operations
compare the each pair of corresponding bits of two
values independently. The result can be any integer.
For example, in the ASCII collating sequence, letter
'A' bitwise OR letter 'Z' is equal to the character '['.
The calculation goes like this; 'A' is equal to 65 in
the ASCII decimal and 01000001 in the ASCII
binary; 'Z' equals to 90 in the ASCII decimal and
01011010 in the ASCII binary. 'A' bitwise OR 'Z'
looks like:

A : 01000001
Z : 01011010

OR: 01011011

The resulted 01011011 equals to decimal 91 which
represent the character '[' in ASCII collating
sequence. Likewise, 'A' bitwise XOR 'Z' equals to 27
in ASCII decimal; 'A' bitwise AND 'Z' equals to
decimal 64 which corresponds to the character '@'.
The bitwise operations also include shifting bits to
the right or to the left, and complementing each bit.

Among all bitwise operations, the XOR is most
important for encryption. When performing XOR
between two bits, the result is one only if sum of two
bits is one. Otherwise, the result is zero. Any value

2

XORed by the second value, or the key, resulting in
the third value, can be restored by performing XOR
between the key and the third value. For example,
the letter 'A' bitwise XOR the character 'z' equals to
the character ';' as shown below:

'A' : 01000001
'z' : 01111010

';': 00111011

The character 'z' here serves as the key. When the
character ';' bitwise XORs the character 'z', the
original letter 'A' will be brought back. Therefore, by
performing bitwise XOR, any character can be
changed to other and restored back from other.

Other bitwise operations, such as bitwise AND,
bitwise OR, are also used in encryption expression
sometimes. However, they only serves to restrict
results to certain characters. Often their use can be
replaced by regular arithmetic expressions to achieve
the same results.

A good example of the keyed encryption algorithms
(see reference on Robert Alonso) is as follows:

Let's denote:
C{i} as ASCII value of the ith character of the data
field to be scrambled; and
P{k} as ASCII value of the kth character in the
password, or keys; and
OR, XOR and AND as birwise OR, bitwise XOR
and bitwise AND respectively unless specified
otherwise. Then

Step 1: X{i}=C{i} XOR P{k};
Step 2: Y{i}=[254-(254 AND i] OR (127 XOR i);
Step 3: Z{i}=X{i} XOR Y{i};

Thus Z{i} is scrambled value of C{i}. If we
exchange the positions of Z{i} and C{i} in the
algorithm, we can decrypt Z{i} to C{i}. The
expression in the second step is to limit values of
Z(i) between 128 and 255 and to further complicate
pattern of Z(i). Y(i) can be also considered as
another key.

Before the new bitwise functions were added to
SAS, it was difficult to perform keyed encryption as
described. Authors used PUT, INPUT,

TRANSLATE, BYTE, INT, MOD functions,
$BINARY format and BINARY informat to
perform bitwise operations for scrambling data
fields in SAS. Now with new bitwise functions such
as BXOR, BOR, and BAND, the encryption is made
much easier in SAS. The next section discuss in
detail how to encrypt data fields in SAS.

Encryption by Bitwise Operations in SAS

The newly added bitwise functions in SAS has
greatly improved efficiency of codes for encryption
in SAS. To illustrate, consider author's old pseudo
XOR, OR and AND operations between the letters
'A' and 'Z'.

First, we transfer these two letters to binary
representation by PUT function and $BINARY
format:

A_BINARY=PUT('A',$BINARY8.);
Z_BINARY=PUT('Z',$BINARY8.);

The value of A_BINARY is '01000001'; and value
of Z_BINARY is '01011010'. They are both
character variables.

Next, we sum up these two variables in $BINARY
format by coding:

AZ=A_BINARY+Z_BINARY;

The value of numerical variable AZ is 2011011.
Then we can perform AND, OR and XOR between
'A' and 'Z' by TRANSLATE function:

/* A AND Z by 2s to 1s and 1s to 0s */
A_AND_Z=TRANSLATE(LEFT(AZ),'01','12');

/* A OR Z by replacing 2s to 1s */
A_OR_Z=TRANSLATE(LEFT(AZ),'1','2');

/* 'A' XOR 'Z' by replacing 2s to 0s */
A_XOR_Z=TRANSLATE(LEFT(AZ),'0','2');

Remember the value of AZ is 2011011. Thus the
values of A_AND_Z, A_OR_Z and A_XOR_Z are
'1000000', '1011011' and '0011011' respectively.

To show the character representation of A_AND_Z,
A_OR_Z and A_XOR_Z, we use BYTE and
INPUT functions and BINARY informat in SAS:

3

/* RETURNS '@' */
C_AND=BYTE(INPUT(A_AND_Z,BINARY8.));

/* RETURNS '[' */
C_OR=BYTE(INPUT(A_OR_Z,BINARY8.));

/* RETURNS A FUNNY CHARACTER RELATED TO
ASCII CODE 27 */
C_XOR=BYTE(INPUT(A_XOR_Z,BINARY8.));

With SAS new bitwise functions, the above
operations can be simply as follows.

/* A AND Z */
A_AND_Z=BAND(RANK('A'),RANK('Z'));

/* A OR Z */
A_OR_Z=BOR(RANK('A'),RANK('Z'));

/* A XOR Z */
A_XOR_Z=BXOR(RANK('A'),RANK('Z'));

To show the character representation of A_AND_Z,
A_OR_Z and A_XOR_Z, we can use BYTE
function in SAS:

/* RETURNS '@' */
C_AND=BYTE(A_AND_Z);

/* RETURNS '[' */
C_OR=BYTE(A_OR_Z);

/* RETURNS A FUNNY CHARACTER RELATED TO
ASCII CODE 27 */
C_XOR=BYTE(A_XOR_Z,);

As you can see, the new bitwise functions are much
better in coding efficiency.

The choices of the keys or passwords in SAS coding
are numerous. Authors would like to present 4
options of the keys based on their own experiences.

The first option is to simply use ranged random
numbers as the keys to scramble credit card number,
as shown in following SAS codes:

Box 1: Random Number as the Key
%LET PASSWD=54321;
...
DO I=1 TO 16;
C=RANK(SUBSTR(CARD,I,1));
P=INT(UNIFORM("&PASSWD")*255);
Y=INT(UNIFORM("&PASSWD")*127)+128;
X=BXOR(C,P);
Z=BXOR(X,Y);
SUBSTR(CARD,I,1)=BYTE(Z);
END;

In this SAS program, both variables P and Y are
keys from random numbers. The variable Z
represents scrambled value of CARD. The macro
variable &PASSWD serves as seed in UNIFORM
function. We recommend to select the seed larger
than zero, in order to keep the same random number
stream for both encryption and decryption. Because
the same characters are unlikely to be scrambled by
the same random number, the pattern of scrambled
characters is very hard to identify. However, this key
is sensitive to the change of record order of the file.
If other party send back the same file with changed
record order, the above program can not decrypt
original value of CARD back..

To avoid of changing record order, the second option
is to use hard coded password as shown below:

Box 2: Hard Coded Password as the Key
%LET PASSWD=MY_SECRETS;
...
DO I=1 TO 16;
K=1+MOD(I,LENGTH(LEFT("&PASSWD")));
X=BXOR(RANK(SUBSTR(CARD,I,1)),
 RANK(SUBSTR(LEFT("&PASSWD"),K,1)));
Y=BOR(254-BAND(254,I*K),BXOR(127,I*K));
Z=BXOR(X,Y);
SUBSTR(CARD,I,1)=BYTE(Z);
END;

In this program, &PASSWD is the hard coded key.
The variable Y is another key based on the position
of the CARD. Using this same program, the field
can be encrypt or decrypt regardless the record
order. However, if two records have the same
character at the same column position, the scrambled
characters will also be the same.

The third option is to use other fields of the same
record to encrypt, as shown below.

Box 3: Other Field as the Key
INPUT @1 NAME $10. @11 CARD $CHAR16. @28 ZIP
5.;
DO I=1 TO 16;
X=RANK(SUBSTR(CARD,I,1));
K=MOD(I,LENGTH(NAME))+1;
P=RANK(SUBSTR(NAME,K,1));
CALL RANUNI(SUM(ZIP,54321), Y);
Y=INT(Y*127)+128;
Z=BXOR(X,P);
Z=BXOR(Z,Y);
SUBSTR(CARD,I,1)=BYTE(Z);
END;

4

Here both the variables NAME and ZIP are taken as
keys to scramble the CARD. Because it is
uncommon for two records to have the same pattern
of the NAME, ZIP and CARD, the chance of
repeating encrypted character from the same original
character is very small. In addition, the decryption
using the above SAS codes is not affected by any
change of the record order. However, it is affected
by the change in key variables, either their values or
location.

The last option is just any combination of previous
three options proposed.

Having demonstrated all these, the next section
shows a complete sample SAS program that apply
both hard coded password and other field as the key.

Sample SAS Codes and Results

The following SAS codes in Box 4 reads in a text
file named 'TEXT.DAT' shown in Box 5, scrambles
the file with password defined in a macro variable,
and with another field called ZIP, then output the
scrambled file named 'ENCODED.DAT' displayed
in Box 6. Please note that you can also change
formulas for assigning the password, and for
assigning value of Y(i) in this program to create
variety. This same program can also be used to
decrypt the scrambled file as long as the password is
the same. This program was executed in the UNIX
environment. However, it can be used in the
MVS/TSO, VM/CMS, MS/DOS etc.. The user
should be aware of the difference between ASCII
and EBCDIC though.

Box 4: Sample SAS Codes for the Keyed
 Encryption or Decryption
FILENAME IN 'TEXT.DAT';
FILENAME OUT 'ENCODED.DAT';

%LET PASSWD=MY_SECRETS;

DATA P;
INFILE IN;
INPUT @11 CARD $CHAR16. @28 ZIP 5.;
DO I=1 TO 16;
K=1+MOD(I,LENGTH(LEFT("&PASSWD")));
X=BXOR(RANK(SUBSTR(CARD,I,1)),RANK(
 SUBSTR(LEFT("&PASSWD"),K,1)));
CALL RANUNI(SUM(ZIP,54321), Y);
Y=INT(Y*127)+128;

Z=BXOR(X,Y);
SUBSTR(CARD,I,1)=BYTE(Z);
END;
FILE OUT;
PUT _INFILE_ @11 CARD $CHAR16.;
RUN;

Box 5: 'TEST.DAT', the File to Be Scrambled
LIU 4138262726507865 388647667
ZHUANG 4148406071033483 218334264
SAIVE 4176527885516672 144016577
WALDNER 4186131877231482 763236878
PERSON 4108403267711763 444513513
KARLSON 5815886015563054 341028115
CHEN 5261605313831506 768240486
PRAMORIC 5686027022044006 387230016
ROSKOPHA 5337883151814075 485157245
GATIANN 5040804235307386 534781530

Box 6: 'ENCODED.DAT', the Scrambled File
LIU °³½ ¬¹ª¾¼¦±²¹ ¨º 388647667
ZHUANG ¼¿¶¬¦³¢µµ-¸½± ª° 218334264
SAIVE “•š•ˆ•Œ’•†’•›•Š• 144016577
WALDNER òñôìíþëóûåôóýîäÿ 763236878
PERSON âáìòøíùéêõááíýúî 444513513
KARLSON ”Ÿšˆƒ’‹œš•”‘˜••• 341028115
CHEN ˜™‘••–„“–Š•˜–„‡• 768240486
PRAMORIC ¿º¸ ³¡·²¬º¸´¦ · 387230016
ROSKOPHA ŠŠ†”•Œ•ƒ•š‡ˆ•“’• 485157245
GATIANN •Œ„–˜•’…ƒ›‰Œ‡•˜‡ 534781530

Summary

We discussed some concepts of keyed encrytion to
data fields. We also compared old way to new way
of encrypting data fields in SAS. The SAS new
bitwise function certainly make the encryption much
easier. We then presented 4 options of seleting keys.
Finally, a sample SAS program and its result were
demonstrated.

References

SAS Institute Inc. (1990), SAS Language,
Reference Version 6, First Edition, Cary, NC: SAS
Institute Inc.

SAS Institute Inc. (1991) SAS Technical Report P-
222, Changes and Enhancements to Base SAS
Software, Release 6.07, Cary, NC: SAS Institute
Inc.

Annette I. Ladan, “Effective Data Encryption
Algorithms Using SAS® System", Proceedinds of
the 20th Annual SUGI Conference, pp451-452.

5

Robert Alonso, Quick C DOS Utilities, John Wiley
& Son, Inc, 1988, pp92-92.

SAS is a registered trademark of the SAS Institute
Inc. in the USA and other countries. ® indicates
USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

Author Contact

Sheng Luo
Providian Corporation
20 Moores Road
Frazer, PA 19355
Phone: (610)648-5065
Email: sheng_luo@providian.com

Xinsheng Lin
IMS America LTD.
600 W. Germantown Pike
Plymouth Meeting, PA 19462-0905
Phone: (610)832-5532
Email: xinshl@imsint.com

	Main TOC

