
1

BASIC AND ADVANCED USES OF SASDATES
Kenneth L. Goodwin, Inland Steel Company

Introduction

In my current position, I am frequently asked to retrieve and
report on information by date, whether it is to give
summaries by ship week, report production for a given
week, or produce charts for annual reporting. I have found
numerous methods for employing SASdates to accomplish
these tasks, including using them to reduce or eliminate the
need for date-related program maintenance. This paper will
explain SASdates and their basic uses, plus illustrate some
more advanced ways to utilize them to accomplish common
tasks more efficiently.

The Basics of SASdates

SASdate Structure

The SAS1 System can read, write, and work with values that
represent dates. These "SASdates" are values based on the
number of days before or since January 1, 1960. Figure 1
shows the corresponding SASdates for some sample dates.

The use of a sequence number to represent a date is not
unique to SAS. Other software packages such as FOCUS2

and LOTUS 1-2-33 also utilize this concept. The starting
date used is different but the usage is very similar. When I
first learned of this representation for dates it seemed
unusual, but as I began to use SASdates their power became
very apparent. They enable you to make date comparisons
very easily without having to worry about year turnover,
leap year adjustments, new centuries, etc. Through the use
of the many date functions, you can use all or part of the
date as needed, and you can utilize the various date formats
to ease date output. Additionally, you can subgroup dates
with formulas instead of employing a long series of IF
statements.

Getting the Date In

The first step is to transform the date from the format in
which it is stored to a SASdate value. This can be done
in many ways, three of which are explained here.

The first method is to use one of the date INFORMATs in
an INPUT statement, reading in the dates from input
records. Figure-2 shows some sample date INFORMATs
and their associated data forms.

Date functions are another method of creating SASdates.
Function

 DATE(), TODAY() Returns the current system date
as a SASdate value.

 DATEJUL(yyddd) Returns the SASdate value from
a Julian date value.

 MDY(mm,dd,yy) Returns the SASdate value for
 'ddmmmyy'D the entered month, day and year values.

Lastly, if you need to bring in a date that is stored in a
packed, or binary, field you can use either of the approaches
shown below to create a SASdate. You will notice,
however, how much more straightforward and streamlined
the second option would be. (The input date "datein" is in
the form of yyyymmdd.)

 Calendar Date SASdate value
 January 1, 1959 -365
 January 1, 1960 0
 January 1, 1961 366
 March 18, 1997 13591

Figure-1

DATA;

INPUT @4 DATEA_1 DATE7.
@17 DATEA_2 DATE11.
@35 DATEA_3 DATE9. /
@4 DATEB_1 DDMMYY6.
@17 DATEB_2 DDMMYY10.
@35 DATEB_3 DDMMYY8. /
@4 DATEC_1 MMDDYY6.
@17 DATEC_2 MMDDYY10.
@35 DATEC_3 MMDDYY8. /
@4 DATED_1 YYMMDD6.
@17 DATED_2 YYMMDD10.
@35 DATED_3 YYMMDD10.;

CARDS;
13SEP93 13 SEP 1993 13-SEP-93
130993 13 09 1993 12 09 93
091393 09 13 199309-13-93
930913 1993 09 13 1993/09/13
;

Figure-2

2

1) YEAR=INT(datein/10000);
MONTH=INT(datein/100)-YEAR*100;
DAY=datein-YEAR*10000-MONTH*100;
DATE=MDY(MONTH,DAY,YEAR);

2) DATE=INPUT(PUT(datein,8.),YYMMDD8.);

This latter example saves three statements, the creation of
three variables, and utilizes the powerful PUT() function,
which I use frequently.

Getting the Date Out

Just as there are INFORMATs which are used to input
dates, there are similar FORMATs to output dates. Some of
the common FORMATs are shown in Figure-3, along with
examples of their output form.

These formats can take on extended forms, depending on
the width value (w.) used. This can be illustrated using the
WEEKDATE format.

 Format Value Printed
WEEKDATE3. Tue
WEEKDATE9. Tuesday
WEEKDATE15. Tue, Mar 18, 97
WEEKDATE17. Tue, Mar 18, 1997
WEEKDATE23. Tuesday, Mar 18, 1997
WEEKDATE29. Tuesday, March 18, 1997

Date FORMATs must be used to print out SASdates.
Without these FORMATs, SASdates would merely print
out as the sequence number representing the number of days
before or since January 1, 1960. Figure-4 illustrates what
happens when you neglect to use a date FORMAT to print
dates.

Notice that the amount of time served in days and years is
printed just fine, but the HIREDT and LASTDT values are
not very useful printed as SASdate values. This example
illustrates two points: there is a difference between "dates"
(e.g. HIREDT, LASTDT) and "duration" (SERV, YRS),
and printing a SASdate in a understandable form requires
the use of a date FORMAT.

To correct the date formatting issue in this example, add
"FORMAT HIREDT LASTDT DATE.;" to the PROC
PRINT statement, as shown in Figure-5. The results are
much more useful.

Creating Record Selection Criteria

 Format Examples
DDMMYYw. 180397, 18/03/1997
MMDDYYw. 03/18/97
MONYYw. MAR97, MAR1997
WEEKDATEw. Tuesday, March 18, 1997
WORDDATEw. Mar 18, 97
YYMMDDw. 970318
YYQw. 97Q1

Figure-3

DATA SERVICE;
INPUT @1 NAME $10.

@15 HIREDT MMDDYY8.
@25 LASTDT YYMMDD6.

SERV = LASTDT - HIREDT;
YRS = SERV / 365.25;

CARDS;
CADE, J 12/01/73 851231
RAY, M 8/3/77 860102
;

PROC PRINT;

OBS NAME HIREDT LASTDT SERV YRS
 1 CADE, J 5083 9496 4413 12.08
 2 RAY, M 6424 9498 3074 8.42

Figure-4

DATA SERVICE;
INPUT @1 NAME $10.

@15 HIREDT MMDDYY8.
@25 LASTDT YYMMDD6.

SERV = LASTDT - HIREDT;
YRS = SERV / 365.25;

CARDS;
CADE, J 12/01/73 851231
RAY, M 8/3/77 860102
;

PROC PRINT;
 FORMAT HIREDT LASTDT DATE.;

OBS NAME HIREDT LASTDT SERV YRS
 1 CADE, J 01DEC73 31DEC85 4413 12.08
 2 RAY, M 03AUG77 02JAN86 3074 8.42

Figure-5

3

The ability to use SASdates in your record selection
statements adds another powerful tool to your tool kit.
SASdates can be part of a simple statement such as

IF BORN_DT LT '01JAN89'D ;

Or the statements can be more involved like this example,
which is used to automatically select all records from the
previous month.

TODAY=TODAY() ;
* last day of previous month ;
END =TODAY-DAY(TODAY) ;
* first day of previous month ;
START=END-DAY(END)+1;
IF datein GE START AND datein LE END ;

These are just two examples of selection criteria. I'm sure
that you can develop many more.

SASdate Functions

As you can see I have used a few of the many functions that
are available for manipulation of a SASdate. To go into
detail on all of them is beyond the scope of this paper, but I
will list several and recommend that you review your
documentation for more detail covering these and other
SAS date functions.

DAY Returns the day of the month from a
SASdate value.

INTCK Returns the number of specific time
intervals between two SASdates (e.g.
weeks, months, etc.).

INTNX Returns the SASdate value a given
number of specific time intervals from a
starting date (e.g. SASdate of 3 weeks
ago).

MONTH Returns the month from a SASdate value.
QTR Returns a 1,2,3 or 4, depending on the

quarter, from a SASdate value
WEEKDAY Returns the day of the week from a

SASdate value

Advanced Uses for SASdates

Using SASdates to Replace IF Statements

Subsetting information for processing based on date is often
done using IF statements. Using SASdates can make the
subsetting easier, more concise, and removes the need for
updating the IF statements as time passes.

1) Subgrouping by week

Since I am frequently asked to subgroup data based on
week, I looked for an efficient method of subgrouping by
week without using a complex set of IF statements. As a
result, I developed an algorithm to determine the week,
using Sunday as the first day of the week.

In essence, this algorithm assigns the same SASdate
(Sunday's) to the WEEKOF variable for each day of the
week. In that way, you can quickly use the WEEKOF
variable to subgroup by week.

WEEKOF = INT((datein-2)/7)*7+2;

While this looks awkward, it can be best explained by
thinking of it as a way to assign the same integer value to
seven different days. Hence, the "INT(x/7)*7" portion of
the algorithm. What is initially confusing is the introduction
of an offset of 2 into the algorithm. SASdate zero, or
January 1, 1960, was a Friday. Consequently, the first
Sunday was January 3rd, and so all must be offset two days
to align with a Sunday. Therefore, the algorithm first
subtracts two days from the "datein", performs the
"INT(x/7)*7" function to assign the same integer to each
day of the week, and them adds back the two offset days
originally subtracted. The result is that WEEKOF contains
the Sunday SASdate for each day of that week.

You can get the same result using the INTNX function.

WEEKOF = INTNX('WEEK',datein,0) ;

The INTNX function is used to advance a date by a given
interval and takes the form

INTNX(interval,start date,number of intervals).

The interval can any of the following: DAY, WEEK,
WEEKDAY, MONTH, SEMIMONTH, QTR,
SEMIYEAR, or YEAR. The start date has to be a valid
SASdate value, and the number of intervals is a positive or
negative value that represents the specific number of
time intervals to move from the start date. In this case,
moving 0 time intervals results in the function returning the
SASdate for the Sunday of that week.

Figure 6 shown on the next page shows the results of this
exercise.

4

2) Creating Month Variables

If you just need to know the month of a given date, the
MONTH function works directly with the SASdate and
returns a numeric value representing the month of the year
(e.g. 1 for January, 2 for February, etc.).

MONTHDAT = MONTH(datein);

If, however, you need the month to be displayed in a 3-letter
character format, you can use one of two methods:

IF MONTH = 1 THEN CHARMON = 'JAN';
IF MONTH = 2 THEN CHARMON = 'FEB';
IF MONTH = 3 THEN CHARMON = 'MAR';

.....
IF MONTH = 12 THEN CHARMON = 'DEC';

This is the traditional method of determining the
appropriate month name. It is straightforward, but it is
lengthy.

CHARMON = PUT(datein,WORDDATE3.);

This method is much shorter, and puts to use the power of
the PUT() statement and the WORDDATE INFORMAT.

Creating Alternative Date Representations

As described so far, SASdates, date formats, and output
statements enable you to print dates in many varied forms.
Sometimes, however, the form you want is not available as
a SASdate format. In these instances, you can develop brief
algorithms to manipulate the SASdates and create a new
variable which contains the date in the desired format.
Shown below are several examples of how to accomplish
this. Note the importance of clear code and liberal
comments.

1) YY/MM form

The traditional method of creating a variable containing a
date in the YY/MM form would be to use a series of IF
statements.

IF DATE GE 930101 AND DATE LE 930131
 THEN CHARMON = '93/01';
IF DATE GE 930201 AND DATE LE 930228
 THEN CHARMON = '93/02';

IF DATE GE 931201 AND DATE LE 931231
 THEN CHARMON = '93/12';

While effective, this code becomes a maintenance
nightmare, requiring an update each year to put in the new
year's value. It also requires a lot of statements to derive the
correct value. Contrast this with the following statements
that utilize SASdate functions.

YEAR = PUT(datein,YYMMDD2.); *returns yy;
MON = PUT(datein,MMDDYY2.); *returns mm;
CHARMON = YEAR||'/'||MON; *forms yy/mm;
DROP YEAR MON;

This code is concise, straightforward, and requires no date-
related maintenance. It also includes the lesser-known use
of the YYMMDD2. and MMDDYY2. formats to return just
the yy and mm, respectively.

2) MMM_YY form

A series of IF statements can also be used to create the
MMM_YY form.

IF DATE GE 930101 AND DATE LE 930131
 THEN CHARMON = 'JAN 93';
IF DATE GE 930201 AND DATE LE 930228
 THEN CHARMON = 'FEB 93';

IF DATE GE 931201 AND DATE LE 931231
 THEN CHARMON = 'DEC 93';

As mentioned above, this code will require annual
maintenance to update it for the new year, and it requires
many statements. The following SASdate algorithm
accomplishes the same date manipulation in only four
statements, and again requires no date-related maintenance.

 * returns 3-char month with space;
MON = INPUT(PUT(datein,WORDDATE3.),$4.);
 * returns yy;
YEAR = PUT(datein,YYMMDD2.);
 * forms mmm_yy;
CHARMON = MON||YEAR;
DROP MON YEAR;

Note that the first line of the algorithm combines both the
PUT() and INPUT() functions to return the three-character
month name using a four-character INFORMAT, thereby
adding a space to the end.

DATEIN SASdate WEEKOF
08MAR92 11755 11755
14MAR92 11761 11755

28DEC86 9858 9858
03JAN87 9864 9858

Figure-6

5

3) NN and YYYYNN form

I do a significant amount of reporting subgrouped by
calendar week number. The method that is used to
determine the numeric numbering of calendar weeks is
tricky at best, and confusing at worst. In trying to come up
with an algorithm to calculate week number (nn) and week
number with year (yyyynn), I must admit that I went
through many attempts before arriving at the one listed in
Figure-7. And while most of the code is fairly
straightforward, the parts of it that handle the first and last
weeks of the year are admittedly obscure. I ask that you
trust me on this one!

Note that the WEEKOF calculation, described previously,
was used here to facilitate determining the proper week
number.

This algorithm is not pretty, but it does work correctly and it
saves a tremendous amount of code and date maintenance in

many of my programs. Again, for the parts that are not as
straightforward, it is important to be liberal with comments.

Conclusion

I hope that this paper has enlightened you to the many
ways that SASdates can be used, and has inspired you to try
some of these ideas in your own programs. Once you get
past the mechanics of how SASdates are created and used,
the power of this sequential concept will become apparent.

I believe that the power of SASdates lies mainly in two
areas: streamlined code and reduced code maintenance. As
I have shown in the above examples, there are a wealth of
opportunities for adding SASdates to programs. I believe
that once you begin using them, you will amazed at the
applicability of SASdates. And I believe that you will find
significant time savings from reduced program
maintenance. SASdates should be carefully examined and
used to their fullest extent.

1 SAS is a registered trademark of SAS Institute, Inc.
Cary, NC USA.

2 FOCUS is a registered trademark of Information
Builders, Inc. New York, NY USA.

3 LOTUS 1-2-3 is a registered trademark of Lotus
Development Corp. Cambridge, MA USA.

Author
Kenneth Goodwin
Inland Steel Company
3210 Watling Street, MC 8-216
East Chicago, IN 46312
Phone 219/399-4938
Fax 219/399-4875
Email KLGOOD@INLAND.COM

DATA DATETEST;
 SET DATETEST;

 * determine week start of datein;
 * determine the year it is in;
 * determine week start of Jan.1 that year;
 * determine day of week for 1/1 & 12/31;

WKDATEIN = INT((datein-2)/7)*7+2;
YRDATEIN = YEAR(WKDATEIN);
WKJAN01 = INT((MDY(1,1,YRDATEIN)-2)/7)*7+2;
JAN01DAY = WEEKDAY(MDY(1,1,YRDATEIN));
DEC31DAY = WEEKDAY(MDY(12,31,YRDATEIN));

 * if 1/1 falls on Sun-Wed, it is in wk 1;
 * else it falls in last week of prev. year;
 * subsequent weeks are offset from this week;

IF (JAN01DAY GE 1 AND JAN01DAY LE 4) THEN
 WEEKNUM = (WKDATEIN-WKJAN01)/7+1;
ELSE
 WEEKNUM = (WKDATEIN-WKJAN01)/7;

 * create yyyynn form;

YEARWK = YEAR(WKJAN01+7)*100+WEEKNUM;

 * weeknum should be 1, not 53, if 12/31;
 * falls on Sun-Tues. Adjust YEARWK;

IF (WEEKNUM = 53) AND (DEC31DAY GE 1 AND
 DEC31DAY LE 3) THEN DO;
 WEEKNUM = 1;
 YEARWK = (YRDATEIN+1)*100+WEEKNUM;
END;

Figure-7

	Main TOC

