
Puzzles in 2D and 3D Visualized with DSGI and Perspective

Ted Clay, Clay Software and Statistics, Ashland, Oregon

ABSTRACT

Do you enjoy puzzles? SAS@ can be used to solve
not only abstract problems but also the physical
kind of puzzles you can hold in your hand. An
algorithm is presented which finds all possible
solutions to puzzles which require fitting a
collection of pieces in various shapes into a limited
space. This is applied to (1) Pentaminos, a flat
puzzle with 12 pieces to be fit into a 6x1 O
rectangle, and (2) a 3x3x3 cubic analog to
Pentaminos. Solutions are presented using
SAS/Graph@ and its DSGI component.

INTRODUCTION

This paper presents a SAS@ program which solves
certain kinds of puzzles. The goal of this
presentation is both share my own fascination with
puzzles and to pass along some SAS@ techniques
that were required along the way. In particular, the
techniques for displaying 3-D objects can be
applied to many other problems.

There are two basic requirements in any searching
algorithm: (1) to know where you are in the search,
and (2) to test out your alternatives in an organized
sequence. If you have tried to solve puzzles
yourself, you may know that part of the difficulty is
getting lost and finding that you end up going in
circles, trying the same dead end path more than
once. The computer, at Ieast, is good at keeping
track of a search, and making up with speed what it
lacks in insight.

PENTAMINOS

In the Pentaminos puzzle, there are 12 pieces,
each of them a different configuration of 5 squares.
That makes 60 squares total. (As an aside, these
12 pieces are the only ways 5 squares can be
combined.) They are to be packed perfectly into a
board that is a 6 by 10 rectangle. The pieces can
be flipped over and rotated in any direction to fit
into the board.

Each piece has its own symmetry properties. The
most symmetrical piece, the cross, has only one
orientation, while the most asymmetrical pieces
have 8 different ways in which the piece can be
placed on the board. In all, there are 63 different

orientations of the 12 pieces.

Mapping

I use the word
“shape” to mean a piece” in a particular orientation.
Figure 1 shows each of the pieces and their 63
difierent shapes.

1 Way: 2 Ways:

+

4 Ways

rum

I-igure 1-- The 12 Pentaminos pieces showing how
many ways each can be oriented as “shapes” -

So we have the concepts of a board, and shapes,
which belong to pieces. in its simplest form, the
solution algorithm we use is as follows: Repeatedly
pick an empty space on the board, which we will
call the target space, and try to fill it using one of
the shapes, If it fits, you put the shape on the
board and pick another target space to try to fill. If
no shape can be found to fill a space, you remove
the most recently placed shape and try the next
shape after the one you just removed. Obviously
the fewer things you have to try, the quicker the
solutions will be found. We will come back to this
algorithm in more detail, but first we must deal with
the issue of how these concepts are represented in
the computer.

Data Structures and Coordinates

The board is represented in a SAS data step as an
array, in this case two-dimensional.

ARRAY BOARD_ {0:5,0 :9} boardl-board60;

One can think of the (0,0) square as being in the
top left comer of the board, and coordinates
representing points as (col, row) or (x,y).

The shapes are also represented by a series of
(x,y)points relative to some origin. Obviously the
origin could be anywhere, but it made the most
sense to have the origin or (0,0) square be one of
the five squares making up the shape. There are
5 squares in each piece, so there are 5 different
ways to define the coordinates of a shape. Since
one of the five points is always the origin, with
coordinates (0,0), we only really need to. store the
coordinates of the other four points. We let these
be stored in SAS variables Xl-X4 and Y1-Y4. We
now have all the machinety to “place” a shape on
the board. We adopt the convention that the origin
square on the shape is the one that fills the target
square on the board. The following SAS code
shows how a shape could be placed on the board at
the column BDX and row BDY of the board
(assuming that it fits). .

ARRAY x_ {•} xl-x4;

~y Y_ {•} Y1-Y4 ;
BOARD_ (BDX,BDY) = shapenum;
DO 1=1 TO 4;

BOARD (BDX+X (I),BDY+Y_ (I))= shapenum;
END; – –

Notice that we mark a square on the board as
“taken” by storing a shape number in the array
element for that square. So 5 board array
elements would be assigned the same shape
number. Solutions are stored by outputting an
observation with the board array variables.

So we see that each alternative to be tested can be
represented as a set of coordinates. Now let’s look
at the following question: How many different sets
of coordinates is it necessary to search? Suppose
you pick an arbitrary square on the board and want
to fill it. There are five different ways that a given
shape could be placed onto the empty square. (Not
all of them would fit, of course, but we can’t know
that until we test each one.) Each way
corresponds to picking a different square as the
origin square for that shape. If there are 63
different shapes, there must be 5 times 63 or 315
different sets of coordinates to be tested.

We could construct an array of four X,Y
coordinates for a total of 315 different combinations
to try, but a convenient trick allowed us to cut the
possibilities down to 63.

A Helpful Trick

The above discussion is true if you are considering
how to fill any empty square on the board. But if

you pick a particular empty space, you only have
to consider one choice of origin per shape, which
reduces the number of alternatives to try down
from 315 to 63.

The convention is as follows: Always pick the
upper-left-most empty square. Then you only need
to consider cases where the origin for the shape is
the upper-left-most out of the 5 squares on the
piece. (10 be exact, by “upper-left-most” is defined
as following: Locate the minimum row of the
squares having the minimum column.) Figure 2
gives an illustration of a partially filled board, and a
shape which has its origin in the upper-left corner.

Figure 2: The ‘upper-left” empty space and the
“upper-left” square of the shape being placed.

So the data structure required to store the list of
shapes to be tested consists of a matrix which is 63
shapes by 4 points by 2 dimensions (row and
column). For clarity these are stored as two arrays
instead of one:

ARRAY X_ {63,4) _temporary_;
ARRAY Y_ {63,4) _temporary ;—

The Solution Algorithm

There is only one more data structure that has not
been mentioned. This is a stack of “Placed
Pieces”. Whenever a piece is placed on the board,
a row is added to this table, recording the (x,y)
coordinates of the target square that was filled, and
the number of the shape that filled it. When a
piece is removed from the board, the (x,y)
coordinates of the target square that was filled by
that piece become the new target square to be
filled, and we continue the search Stafiingafierthe

number of the shape that was just removed. For
Pentaminos, this table would need room to hold all
12 pieces. It works as a classic stack, with a

pointer variable holding the index of the top of the
stack.

A shape is marked as ‘unavailable” if some other
shape from the same physical piece is already
placed on the board.

The objective was to locate all possible solutions to
the puzzle, not just one. When a solution was
found, the program outputs a SAS observation to a
dataset, allowing further manipulation of the
solutions later on. Add some attention to
initialization and termination, and you have a
finished algorithm. Figure 3 illustrates the overall
algorithm.

mSTART The Puzzle Solution Algorithm
trying=l
target==O,O)

1 Y
Shqx(hying)

PLACE SHAPE
kying=l

availableandfirs?

I
findnewtargel

n

H
&n

STOP

Figure 3: The general algorithm for puzzle-solving.

The variable “Trying” points to the shape number
we are trying to fit into the current target square on
the board. The most frequently-executed
operation the one which tests whether the current
shape fits into the current target square. The
“Remove” process pops the stack of placed pieces,
and sets to missing the occupied squares on the
board. The key point is that trying a piece and
having it not fit is equivalent to placing a piece and
eventually reaching a dead end. In either case,
you go on to the next shape in the sequence. Also,
in the search for all possible solutions, finding a
solution is logically equivalent to any other dead-
end in the search, and requires us to back ‘up, after
outputting the solution, of course. Any reader able
to “structure” the above algorithm can contact the
author for congratulations.

The Solutions to Pentaminos

There are 9356 solutions to Pentaminos. When
you flip and rotate the solutions, you find that there
are a mere 2339 truly unique solutions. It was
possible to use the statistical tools of SAS@ to find
unusual solutions among the entire set. Figure 4
shows the only unique solution which has the long
straight piece in the location shown.

Figure 4: The most unique out of 9356 solutions.

It was very simple to change the dimensions of the
Pentaminos board from 6 by 10 to other shapes.
Here are some of the other shapes and the number
of unique solutions to them:

6 by 10 has 2339 unique solutions.
5 by 12 has 1010 unique solutions.
4 by 15 has 368 unique solutions.
3 by 20 has 2 unique solutions.
8 by 8 minus 2 by 2, a square with a hole in the
middle, has 130 unique solutions. Interestingly
enough, this is much
shape.

DSGI Techniques

A way was needed
partial solutions to
Step Graphics

more than the similar 3 by 20

to illustrate the complete or
Pentaminos, using the Data
Interface component of

SAS/GRAPH@. The following DSGI calls were
placed inside a DATA step to create the graphic
segments just showing the pieces placed on the
Pentaminos board. They illustrate the minimum set
of DSGI statements needed for doing a graphical
display.

rc=gset (‘CATALOG’ ,‘sas’ ,‘pentacat’ ;
rc=ginit ();
rc=graph (‘CLEAR’) ;

● set up color numbers assigned to each
of 12 pieces;

3

rc=9set(’COLREp’ ,1, ’REDJ) ;
rc=gset (‘COLREPJ ,2,1BLUE~);

...
rc=gset(’COLREP’ ,12,’Yellow’) ;

rc=gset(~FILTYPE’ ,’SOLID’) ;

do
do

row=O to 5;
Col=o to 9;
● Look up he piece number (1-12);
piece = piece_(board_(row,col)) ;
* color number = piece number;
rc=gset(’FILCOLOR’ ,piece) ;
* 4 corners of square at row,col;
rc=gdraw(’FILL’,4,<coords>) ;

end;
end;

rc=graph(’UPDATE’) ;
rc=gtermo ;

The above code was used to display solutions
using color to distinguish one piece from the next.
Forthis papera modified version was used which
drewonlythe edges in black.

A 3-D PUZZLE

A 3-dimensional analog to Pentaminos turned out
to be a very simple modification to the Pentaminos
program. What proved to be the real challenge
with this puzzle was how to visualize the puzzle
and its solutions in two dimensions. This lead to
some research into the basic techniques of how to
map 3D into 2D with perspective.

The 7 puzzle pieces consist of 4 unit cubes glued
together in various shapes. (A unit cube is a cube
with an edge of length 1.) They are -to be fit
together into a larger cube with 3 units along each
edge, for a total of 27 unit cubes. Since this is
clearly impossible, one of the 7 pieces is made up
of only 3 unit cubes.

This puzzle has 11,520 solutions, which are made
up of the 24 possible rotations of 480 unique
solutions.

One of the puzzle pieces is shown in Figure 5.
Notice the forshortening and apparent distortion
created by the perspective transformation of the
pieces. They should appear as if they were viewed
through a camera placed a finite distance away
from the objects in the real world. This image was
created using the DSGI. The basic outline of the
DSGI program is the same as above with
Pentaminos, with the exception that the polygons

are no longer square, and hidden surfaces were not
rendered.

—
Figure 5: A 3-D renderina of a mzzle piece using
DSGI within a data step. - “

The Simplest of 3-D Theory

The 5 steps in displaying a 3-D image in a 2-D
medium are as follows:

Step 1. Build a set of 3-D points using a set of
natural coordinates known as the “world
coordinates.” Do this by picking an origin point, a
set of X,Y and Z axes. Then describe where every
other point of interest lies relative to it.

Step 2. Decide on your “view parameters”, which
describe the location of your camera and film. We
assume that the camera is always pointed toward
the origin of the world coordinates, and that the
camera cannot be tilted. The view parameters are:

X-Angle (xA): the angle between the view
and the x-axis. For example, an x-angle of O
degrees would result in a 2-D representation of the
x-axis as a line pointing straight down from the
origin. A positive X-angle would show it as a vector
pointing down and to the left.

Z-angle (zA): the angle between the line-
of-sight and the Z-axis.

Distance(CD): the distance from the
camera to the origin.

4

Screen-distance (SD). The distance from
camera to the 2-D screen onto which the 3-D world
is projected. It is assumed that the “screen” is a
plane perpendicular to the line of sight, located just
in front of the camera. A value of 1 usually works
fine.

Step 3: Transform each of the 3-D points (x,y,z) in
real-world coordinates into 2-D points (screen_x,
screen_y), using the following program statements:

newZ =-COS (XA)*sin (ZA)*x -
sin (XA)●sin (ZA)*y-cos (ZA)●z + CD;
* NewZ is a temporary variable

Screen_x = (-sin (XA)●x +cos (XA)*y) /
(NewZ/SD) ;

Screen= = (-COS (XA)*COS (ZA)●x -
sin (XA)●COS (ZA)*y+sin (ZA)*z)/
(NewZ/SD) ;

For increased efficiency, the coefficients can be
calculated ahead of time. For a thorough and more
analytical presentation of this material, please refer
to the book “Fundamentals of Three-Dimensional
Computer Graphics”, by Alan Watt.

Step 4: Display the 2-D points on a 2-D medium
using a scaling factor. The 2-D coordinates coming
from the previous step have the same scale as the
original 3-D world coordinates. So their scaling
needs to be adjusted to fit the scale (inches, pixels
or whatever) of the display medium. SAS@ does
this automatically when you use PROC GPLOT. In
addition, there may be points outside the range that
you want to display. These must be eliminated. But
suppose what you plan to do with a point is use it
as one end of a line segment, or as a vertex of a
polygon. Generally speaking, you would have to
carefully “clip” these objects to fit into your display
space, turning a long line, for instance, into a
shorter one ending at the edge of your window.
Once again SAS@ makes this easy, automatically
clipping line segments and filled areas to the edges
of your window.

Step 5: Adjust parameters until the scene looks
right. Whenever you modify the camera distance,
the image will grow larger or smaller, which you
can compensate for by modifying the scaling factor
used in Step 4. When you increase the camera
distance there will be less distortion due to the
perspective projection, and the result till show
parallel lines closer to parallel. On the other hand,
a too-distant perspective results in a loss of the 3-D
effect. So we experiment to find the happy
medium.

These and other more complex 3-D tricks, plus
animation of the resulting scenes, are available
using the SAS@ NVISION software.

OTHER APPLICATIONS

The puzzle-solving algorithm has been successfully
adapted to the solution of other puzzles as well.
One is a flat triangular puzzle in which the patterns
on the edges of neighboring pieces have to match
up, much like a jigsaw puzzle. Another is a 3-D
puzzle with 25 pieces each made up of four
spheres stuck together in all possible ways, fitting
into a hollow pyramid shape. Currently the author
is working a puzzle which may win him a free para-
gliding trip to New Zealand. With or without the
laptop, that is the question.

CONCLUSION

The Data Step Graphics Interface opens up a world
of possibilities for graphical presentation of
information.

The application of SAS@ to the solution of puzzles
provides hours of entertainment, as well as the
satisfaction of seeing solutions emerge which
otherwise would defy the efforts of the human
puzzle-solver.

Ted Clay
Clay Software and Statistics
168 Meade St.
Ashland, OR 97520
e-mail: clay@ mind. net

	Main TOC

