
Developing a PC-SAS@
World Wide Web Database System

Faith Rene6 Sloan
FRS Associates, San

ABSTRACT

The first few months of 1996 have seen an
explosion of new Web-related technologies
hitting the cosmnercial marketplace as well as
being offered freely at numerous sites on the
Web. This is especially true in the world of
low-cost Web servers, databases, and Web-
database gateway software for desktop/personal
computers. It is now quite possible to develop a
functional Web site, complete with database
applications, on a desktop computer using the
SAS System in a matter of hours or a few days --
and often with only a small financial
investment.

This paper presents and describes in detail such
a systern: Developing Educators Resource World
Wide Web (WWW) Database System.

Background

The author was cosmnissioned as a consultant to
Hewlett-Packard to provide back-end programming
to a site dedicated to developing educators. The
system was developed using the Windows-NT 3.5
server as the operating system; Netscape
Enterprise Server 2.0 as the web server;
Informix as the database; and Netscape’s
LiveWire Pro as the javascript-based web
applicationdevelopment tool.

The setup and installation wasn’t as smooth as
she would have liked and the time to production
was lengthy indeed.

The author decided to embark upon an experiment
to replicate a mini-version of this application
using the SAS Software System.

The replicated system was designed, developed
and tested in about eight hours! This was
accomplished in spite of a lack of in-depth
knowledge of all of the tools and components
being employed. How was this possible? By taking
advantage of increasingly sophisticated features
within the SAS Systemr and by using the PERL
programming language as the Common Gateway
Interface.

Application Overview

The system described in this paper is an
information system geared towards educators but
can be applied to almost any ~ery- type

application. This project was undertaken to
demonstrate the feasibility of designing and
developing a low-cost, PC/SAS-based Web database

Francisco, California

while still providing a high level of
functionality, capabilities, and growth
potential.

The primary system requirements for the system

were as follow:

1. Use an existing personal computer

2. Use in-house software.
3. Use freely available tools and software to

the extent possible.

4. Minimize the amount of programming required

5. Demonstrate the sbility to obtain educators

resources based on user-specified input.
6. Have fun!

For these reasons the SAS Software System was
chosen as the primary development tool. Also
with the introduction of the experimental HTML
formatting tools within SAS 6.11, the time from
design to implementation was only about eight
hours! The simplicity in installing the O’Reilly
WebSite Pro server and the fact that it only
costs a few hundred dollars{ made it a hands-
down winner in regards to web servers. The
operating system of choice is the Windows NT 4,0
Server since it is the in-house platform.

Design

The Database,

Of course, the SAS Software was used to create the
SAS database. The database contains two tables.

The Resource table contains all resources available
to the educators. The fields are: the n-e of the
resource; the tYPe Of resource (Books, WebSites,
Xodels, etc.); business category code which is
mapped using the Category table; synopsis, and the
HTML file reference which facilitates access to the
actual online resource. See Figure 1.

-----AlphabeticListof Variablesand Attributes -----

Variable Type Len Pos Label

1 NAME Char 60 0 Name

2 TYPE Char 15 60 Type

3 CATEGCOE Char 5 75 Category Code

4 SYNOPSIS Char 200 80 Synopsis

5 HTMLFI LE Char 100 2S0 HTML Link

Sample Record:

Interactivity by Oesign Books OC How to Design whatever book5. htmlc/a>

Figsre 1: Resource Table Stzucture

The Category table is simply a lookup table for
the business category codes (M for

1

Analyze/Assessr DC for Design/Creater BB for
Business Basics, etc.). See Figure 2.

HTML Page:

The HTML code to generatethemain web page is as follow:

drrML>
<mAD>

<TITLB>Ssmple SAS/CGI Application using RTML Data and
Report Formatting Tools< /TITLB>
<fHsAD>
<Hl>SampleSAS/CGIApplicationusingPERL and the SAS
Institute 8s RTWL Data Formatting Tool< /Hi>
<P>
<FORM ACTION- q’http://207. 105,181 ,251/cgi-shl/sugi22 .Pl!r
MBTHOD-POST>
PleaSe enter your name:

<INPDT type-TEXT size.3 O name. hmername Ii>
<P>
Please Select Business Category:

<SELBCT nsme. locategcde 10>
<OPTION selected value. ,,~,,>AU Business Categories
<OPTION vslue. 8%AA1*>Analyze and Assess
<OPTION vslue. ‘~Rii>Achieving Business Result 8
<OPTION value. “AU)P”>Acceleratlng Learning, Development

snd Performnnce
<OPTION value- 8#BB”>Business Basics
<OPTION value- ‘C”>consult
<OPTION vslue- *CF”>Customsr Focus
<OPTION vslue- “CGPI>Consulting
<OPTION value- ‘CXn>Chsnge Management
<OPTION vslue. ‘CC”>Design/Create
<OPTION vslue. mBW >Bvsluate/Measure
<OPTION value-” FI n>Facilitate/Inst ruct
<OPTION value. ‘rIDm>Instructional Dssign
<OPTION value. uLDPT 11>Leaming, Development, and

Performance Theory
<OPTION vslue. %U’:>Msnage /Laad
<OPTION value. ‘SOB11>Out source/Broker
<OPTION vslue. ”PMI m>Project Management and

Implementation
<OPTION vslue. ”PT”>Performsnce Technology
<OPTION value. ”SF”>Scanning for the Fnture

</SELSCT>
<p>
PIRaSe Select Resource Type:

<SBLRCT nams-mtmetl>--
<OPTION selsotsd vslue.llALLtl>ALLResource Types
<OPTION vslue-UBooks ”>Books
<OPTION vslue. Wodelsm>Motiels
<OPTION vslue-iSPresentation S8>PreBentatbn
<OPTION vslue.11Re8earch*,>Research
<OPTION vslue. ”skills,,>skills
<OPTION vslue. !lT.emplatesl!>Templates
<OPTION vslue-tmTraining u,>Training
<OPTION vslue. mVendorseV>Vendors
<OPTION vslue.’’WebSites un>WebSLtes

</SBLBCT>
<P>
<m>
<P>
<INpm TYPE-submit VALUB-’iSukaait this request’’><INPUT
TYPE-’’reset” VAIJJB.’’Clearthe formSa></FORw<{P>
<BR CLRAR-ALL>
<HR sIzE.3 ALIGN-CBNTER>
<IBODY>
<Im%m>

Using an HTML form for Database access and the
applications user interface allowed us to use
one text-based entry field for the user’s name
and two scrolled lists to select the business
category and the type of resource one is
interested in. The web page displayed to the
user is located at
http://2O7.lO5.l8l.25l/sugi22/devedu.html and is
illustrated in Figure 3.

-----Alphabetic List of Variables and Attributes -----

Variable Type Len Pos Label

1 CATEGDSC Char 50 50 Description

2 CATEGCDE Char 5 0 Code

Sample Record:

Design/Create DC{ PRIVATE }

?+mlr- >. r.tza””?-u T.1-,la m-’rl,A-mF--=--- - -+.-=-.. ----- -..------

Figure3. The Web-baseduser Interface

When the user has made her selections, she can
then click on the ‘Submit this request button.
This will send a ‘request’ to the Web server
located at 207.105.181.251 to execute the
SUG122.PL PERL script (or program). This is
referenced in the HTML FORM as <FORM
ACTION=’’http://207.105.181.251/cgi-
shl/sugi22.pl” METHOD=POST>. The three
parameters which will be passed to SUG122.PL to
operate upon are name, categcde, and type.

Now we are ready to discuss the intricacies of
the SUG122.PL PERL program and the SAS
Institute’s HTML Data Formatting tool which is
the essence of the Developing Educators Resource
ilwblDatabase System.

The PERL Script - SUG122.PL:

Since this is not a PERL tutorial, this section
will only focus on the code which actually
creates the temporary pxxxx.html, pxxxx.sas, and
pxxxx.log files.

The script below uses the process id and time to
create the session’s unique temporary id (xxxx).
Being that there will potentially be many
educators accessing the Web site at any one
time, this ensures that a unique file will be
‘served’ to the each educator. Example file
names are: p121852472586.sas, p121852472586.10g,
and p121852472586.html where $pname
=P121852472586 .

2

The pxxxx.sas file is opened in write mode in
order to direct SAS source code to the file.
Subsetting based upon the user selections for
business category and resource type are
performed before the d2htm macro is called. See
the PERL script below.

The d2htm macro is a SAS Institute supplied
macro supported under the SAS Software system
version 6.11 and above. This is the HTML Data
Formatting Tool! It will be discussed in more
detail following this listing of SUG122.PL.

#
sub get request {

}
sub

#
#
#

}
S*

S–&2&tiIIe get_req’uest reads the POST or GET form
#request from STDIN into the variable $request, and
#then splits it i-nto its
-=value pairs in the associative array %rqpairs,
The number of bytes is given in the environment
#variable
CONTENl_LEN&ITl which is autmaatically set by the
#request generator.

if ($ENV(‘REQUBST_MSTHOD!) eq llPOST!l){
read(STDIN, $request, $SNV(l CONTSNT_LENGTH1]) ;

) elsif ($5NV(!mQWST_METHOD!) eq !lGET1!) {
$request . $5tiV{!QUERY_STSING 1);

)

%rqpairs = ();

@rqarray = liurl_&cOda (aplit(/[6=]/, $request)) ;
while ($key = shift (i?rqarray))

{
$value = shift (@rqarray);

if ($rqpairs{$key) ne lll!)

{
$rqpairs{$key} .= ‘1,11. $value;

)
else

{
$rqpairst$key) = $value;

)
}

url_&cO& (

Decods a = encoded string or array of strings
+ -> space

%xx -> character xx

foreach (@_) (
tr/+/ /;
s/%(. .)/pack (rfcrlrhex($l))/ge;

)
@_;

html_headsr {
Subroutine html_header sends to Standard Output the

necessary material to form an HHTML header for the
#document to be returned, the single argument is the
#TITLE field.
local ($title) = @_;
#added the print http statmnt since the browser
#keeps trying to download this script
print l!HTTP/l. O 200 OK\nTv;
print !’Content-~e: text/htd.\n\n*t;

print Wht3nltiea0\nt3;
print ‘!<title>$titlc+ title> \n!l;
print 37</heaO\nQmdy>\ n!q;

)
sub ht.ml trailer {

s~–routine html_traile. sends the trailing material
#to the HTML # on STDOUT.
local ($secr $minr $hourr $mday, $mon, $year, $wday,

$ydayr $isdst)
= gmtime;

local ($mname)
!!~n!!, !!~~!!,

!!DeC!!)[$mn] ;

local ($dname)
!!Fri!!,

s (,, Jm!, , ,,F&T, , ,,~,, , llAp=n , ,Imy,,,

T,*U9,, , “S*” r
Moat!,, !!NOV!! ,

= (TISunllrWon,,r f,TUe!Ir IIwed!!,!!~u!!,

“sat!!) [$wday] ;

print ‘v<p>\nGenerated by: <v=>$O</~~r>\nfr;
print “Date: $hour:$min:$sec ~ .. $dnams $mday

$— $year.<p>\n!t;
print “</bodyX/html>\nvv;

)
#
** USER ~oDIFIcAIIIoNs - BEcJ~ Hp,~ **

#
Note: you should not need to modify anything above
this line Your code should following this line.

#
#
suh error {

subroutine error sends an HTML error page to
STDOUT.

local ($msg) = @_;
6hti_header(~!SAS CGI Prooess Error,r);
print ‘7~l>SAS CGI Process Erxoti/Hl>\n$msg\ nT7;
&html trailer;
exit i;

)
This is the directory ~ will write its tenporary
files to; must be writable by the web serverrs userid ~
This is the directory that contains the .SAS files to
run.
$PROGROOT=tld;/wehsite/htdoas/sugi22 ~~;

This is the full path nam@ of the SAS Systea.
$SAS611=1’d:/sas/sas. exef;

This contains any special options you need to pass to
SAS .

The -noxcand option disallows X ccannanda in the s&5
program
COMMENT OUT THIS OPTION SINCE ITIS A UNIX C— d
#$c611=7T‘nOXCTlldV1;

Execute get_request subroutine

{
By using nrstr, special characters like semicolons
are allowed in the string. But we still have to
escape a few characters.
$value =- s/([%() !TT])/%$l/g;
print OUTFI ‘!%let $name = %nrstr($value) ;\nif;

)

print OUTFI 171ib- &am
‘d:\\website\\htdocs\ \sugi22 *;\n7T;
print OUTFI ‘r%letoutfl = %sysget(outfl) ;\ntl;
print OUTFI ‘rOptions 1s=S0 nocenter redate nonumber
~rint macrogen symbolgen; \n7V;

3

printOUTFI ‘Jtitle \‘t&usernams, Here are the WSOUraeS

You Requested! \‘I;\nn ;
print 00TFI !lfootnote i(Data from Resource. sd2) t;\n,, ;
print OOTFI ‘1%let where=; \n,,;
print 00TFI ‘f%macro subsetit; \n,,;
print OUTFI 11 %if \n&categcds\ ‘tne \7qti\ ‘t%then
%do;ln~p;
print OUTFI n %let oat=l” &categmie\ ‘j;\nyl;
print OUTFI 71 %end; \n!!;
print OUTFI ‘! %else *let cat=; \n,,;
print OUTFI 11 %if \‘t&type\ Ivne \Iv~\ ‘q%then %do;\nqf;
print OUTFI 17 %let t=\ ‘v&type\’1;\ntt;
print 09TFI 1* %end; \nT7;
print OUTFI !! %else %let t=;\nm ;
print 00TFI ‘r %if &cat ne aad &t ne %then %let
where=wher-ategcde. &cat and typa=&t, ;\nlr;
print OUTFI n %else %if &.9atma %thaa %let

w~re~Ze-~te9c*=scat, ;\n”:
print OUTFI 71 %else %if &t ne %then %let
wba2e=wbere=type= &t, ;\n,1;
print OUTFI ‘f%msnd; \nfl;
print OUTFI w%subsetit\nW ;

#Now let’s dacoda the categade field from devedu. html by
#using the category datafile to extract categdsc into
macro Var Catd
print 0U3!!?I11data _null_; \nV-;
print OUTFI ‘7 set damo. catsgory; \nn ;
print OUTFI ‘r where \‘t&categc&\ ‘r=oatagcde; \nn ;
print OUTFI ‘r call symput (\11catd\ W,trim (categdsc));\n~ ;
print 00TFI ‘rrun; \nlr;
#For the case when categcda=TIRLL1!
print OUTFI 11data null_; \nw ;
print OUTFI 11 if T!!Scakegcde\ 11=\ ~tATJi\‘tthen call

swut (\’’catd\”,trim(\!JALL\!!));\nt,;
print OUTFI 17run; \n lt;

We enco&=N in ordar to have hypartext links in my
tables
print OUTFI ‘1%ds2htm (html.file=$PROGROOT/$pnama. html, \nll;
print 00TFI ‘r encoda=l?,\nlr;
print 00TFI 17 bgtype=color, \nn;
print 00TFI ‘i bg=white, \nll;
print OUTFI 1[brtitle=Rasults of &usernama
Query, \nvr;
print OUT!rI ‘f ctext=red, \nv ;
print OUTFI 51 tbbgcolr~ellowr \nlf;
print OUTFI ‘v obgcolr=wbite, \nll;
print OUTFI ‘! Clbgcelr=pink ,\nV,;
print OUTFI ‘! csize=+2, \n71;
print 00TFI 77 opemno&=replace, \n!!;
print 00TFI ‘! data-~. resourae, \nV7;
print OUTFI 1$ obsnum~, \n7q;
print OUTFI ‘~ &whare\n!!;
print OUTFI 17 _ htmlfile synopsis, \nqT;
print OUTFI ‘! caption.Rssources where Business
Category= &catd and Resource Type. &type) ;\nT1;
print OUTFI nendsas; ‘f;
close (OUTPI) ;

Invoke sA5

#
syst~ (w$s2s611$OPTIONS-sysin $pRoGRoOT/$p_. sas

-log $PR~OOT/$Pnama .109

-print $pROGiIOOT/$p-. 1st
-sasuser $PROGROOT
-set outfl $PROGROOT/$pIUUIiS.h-

,,);

###
###############
Here we print the resultant ~ output file.

The output is now sentto the requesting
wab browser with HTML in it.

###
###############
print vrrrpjz10 200 OK\nlT;

print “Content-Type: text/html\n\nw ;

open (FILE, “$pROGROOT/$p_. html”) II die (”Could not
find H- file: $!\ll!!);

while (<FILIO) {
print;

}
close (FILE);

Remove t~orary files
C-nt these out when dsbugging.

unlink 1s$pROGROOT/$pZWM. sas,1;
unliak *1$PROGROOT/$p_. html W;
unlink ‘1$PROGROOT/ $pnama. log II;
exit;

The HTMli Data Formatting Tool -
D2HTM. SAS:

After downloading the HTML Data Formatting Tool
from the SAS Institute’s website, it was
installed in a matter of minutes . As written on
the website, “The HTML Data Set Formatter is an
experimental tool prOvided by SAS Institute. The
Data Set Formatter enables you to present any
SAS data set as an HTML-formatted table. All you
need is the Data Set Formatter macro and a Web
browser capable of displaying tables.”

Not only does the SUG122.PL script write the SAS
code; it also ‘executes’ pxxxx.sas and generates
the pxxxx.log SAS log file. The D2HTM macro
Outputs HTML which is written to pxxxx.html as
directed in the following statement:

The syntax for the HTML Data Set Formatter is:

$66S2HTM(argument-value,argument-value,...);

There’s a myriad of par~eters that may be
passed which enable you to control the
presentation of your SAS data set to WWW
clients. Here, I will. only those parameters
which were used in this application.

htmlfile.external-filename
specifies the name of the HTML file where the
formatted output will be written. If the file
you specify does not exist, it is created for
you .

encode=Y I N

specifies whether the Data Set Formatter

replaces angle brackets with the appropriate

ASCII character representation so that the

brackets display in the browser. To have the

Data Set Formatter check for the characters ,,<,,

and ‘“>” and encode them as ASCII characters,
select Y. This will display the actual brackets
in the browser. By default, the brackets will be
encoded. To not encode them and have the Data
Set Formatter pass the brackets to the browser
(where the browser will attempt to act on them
as an HTML-formatting instruction), select N.

Since the HTML links to the resources are stored
in the Resource data table, I used encode=li, In
this, way, these links will be displayed as
‘clickable’ hypertext links.

4

A future enhancement to the tool could be the
addition of a parameter (or two) which would
allow the developer to specify the table columns
she would like to display as hypertext links.
Therefore, rather than storing the HTMLFILE
field in the Resource data table as bookl.htmlr one
would simply store ../sugi22/bookl.html as the
HTMLPATH and bookl.html as HTMLFILE. The HTML
Formatting Tool would provide the HTML tag
appropriately.

At face value, one can argue that no savings are
derived from this enhancement. But if you are
dealing with gigabytes or even megabytes of
data, you would want to minimize the storage of
unnecessary characters in your database.

bgtype=NONE I COLOR] IMAGE
specifies the t-e of background for your Web
page. Since I specified COLOR as the value, it
was mandatory that I also use the BG argument.
COLOR - causes the Data Set Formatter to use the
background color specified in the BG argument.

kq=value
See bgtype above. In my call to ds2htm, I
specified white as the background color.

brtitle=value
specifies the value that appears as the title in
the browser window title bar. By default, no
title is displayed. For this application, the
browser title will be “Results of &username
Query” where &username is resolved to be the
username entered by the user.

ctext=value I DEFAULT
specifies whether you use the default global
text color defined by the browser or by the
color specified here. Here, all text will be
red.

tbbgcolr.value] DEFAULT
specifies a background color for the entire
table. The table background color is defined as
yellow.

obgcolr-value I DEFAULT
specifies a background color for the column that
contains observation numbers. This column will
be white as indicated by the passed parameter.

clbgcolr=value I DEFAULT
specifies a background color for the column
headers (column labels). The column headers
cells will be pink.

csize.value I DEFAULT
specifies the size of the font used to display
the caption text. Here a +2 was specified which
is a ‘relative’ font size depending upon the
browser’s default font size.

data.SAS-data-set-name
specifies the SAS data set that you want to
format using the Data Set Formatter. If you omit
this argument, the Data Set Formatter will use
the most recently created SAS data set.
Demo.resource is the data set which the HTML
formatter will process.

obsnum=Y I N

indicates whether the column containing
observation numbers should be included in the
table output. By default, the observation
numbers are not included. In this application,
the observation numbers will be displayed.

where-where-expression
specifies a valid WHERE clause that selects
observations from the SAS data set. The &where
macro variable will EITHER be
where=categcde=&cat and type=&tr OR
where=categcde=&cat OR where=type=&t, OR a null
string. It was necessary to populate the &where
macro variable with the complete where clause
since the user may not want ANY subsetting at
(in the case where categcde=’’ALL” and
type=’’ALL”). If this is indeed the case, then
&where resolves to a null string.

var-varl var2 ...
specifies the variables that you want included
in the HTML file and the order in which they
should be included. To include all of the
variables in the data set, do not specify the
argument. Do not use a comma in the list of
variable names.

caption-value
specifies the text that appears in the table
caption. “Resources where Business
Category=&catd and Resource Type=&type” is the
caption where &catd and &type are resolved
depending upon the values entered by the web

user.

Query Results

If the educator selects ‘Analyze/Assess’ as the
business category and ‘Books’ as the resource
type and finally clicks the ‘Submit this
request’ button, Figure 4 is displayed via the
client’s web browser:

openmode.AFPEND I REPLACE
indicates whether the new HTML output overwrites
the information currently in the specified file
or if the new output is appended to the end of
the existing file. For this application, REPLACE
was selected.

5

It provides the educator with a list of all
available resources where business
category.“Analyze/Assess-’n and resource
type=’’BooksII.

Conclusion

The development of the Developing Educators
Resource World Wide Web Database System
application met all of the primary system
requirements:

1. Use an existing personal computer

2. Use in-house software.

3. Use freely available tools and software to

the extent possible.

4. Minimize the amount of progranuning required

5. Demonstrate the ability to obtain educators
resources based on user-specified input.

6. Have fun!

It took about 8 hours; it was inexpensive; it<s
practical; it works; and most importantly, it
was fun!!

The SAS System in conjunction with a Web server,
and the PERL programming language provided all
the tools needed to develop this system.

A future enhancement of this application would
be to allow the user to make ‘multiple’ business
categories and resource types selections.
Another enhancement would be to implement a
boolean search mechanism which would allow the
user to search for strings within the resource
name and/or the resource synopsis.

Journey over to http://www.sas.com and check out
their wonderful web tools!!

CONTACT:

FRS Associates
2750 Market Street, Suite 101
San Francisco, CA 94114-1987
http://www.frsa.corn/
faith@frsa.com

SAS, SASIAF, and SAS/FSP Sre regstered trademarkof SAS Institute Inc., Cat’y, NC, USA

1-2-3 and Lotus are regstered trademarks of Lotus Development C.m’px’ation, Cambti&, MA, USA.

6

	Main TOC

