Exploiting Java™ Technology with the SAS® Software
Barbara Walters, SAS Institute Inc., Cary, NC

Abstract

This paper describes how to use Java™ technology with SAS software.
SAS Institute provides a beta SAS/SHARE*NET driver for JIDBC™. In
addition, we provide classes that allow Java applications and applets to
create a remote SAS session, submit SAS statements, and retrieve
results generated by the submitted statements. This paper describes
how to use these class libraries and address client/server configuration
and performance issues.

Introduction

Since its introduction in mid-1995, Java and applets have become an
integral part of the World Wide Web. Java is a rich programming
language that enables Web programmers to create sophisticated and
responsive client/server applications. Because Java is portable and
secure, users of Web applications can be confident that those
applications will execute properly and not corrupt their computers.

SAS Institute provides a SAS/SHARE*NET driver for JDBC, a driver for
Remote Computing Services, and several drivers to access both SAS
data and SAS computing facilities. By using these drivers, SAS
programmers can make SAS resources available to a much wider user
community via the Web.

Overview of Java

Java is an object-oriented programming language developed by Sun
Microsystems, Inc. Java source code is compiled to a byte stream,
which is merely a long sequence of bytes. The byte stream is interpreted
by the Java Virtual Machine (JVM). Since Java is interpreted, the code
will run on any platform that has an implementation of the JVM. This
enables Web authors to embed executable content, i.e., small programs
called applets, within their HTML documents and be confident that the
applets will execute properly on the receiving machine. Web browsers,
such as Netscape Navigator and Microsoft’s Internet Explorer, include a
version of the JVM as part of the browser.

Java provides libraries of classes that offer a rich set of functionality.
These include a library for graphical user interface (GUI) components
called AWT (Abstract Window Toolkit), an I/O library, and a network
access library. Java Developer’s Kit (JDK) Release 1.1 provides a
library for the JDBC driver manager. These libraries are standard and
are included with the JVM.

Java programs are often delivered via the Internet. In order to protect the
local machine from malicious programs, the Java language and the JVM
provide a secure environment for applet execution. The secure
environment ensures that the client machine (the machine where the
browser is running) is not corrupted by the downloaded program and that
no information is stolen from the client machine.

Java security is based upon the “sandbox” model. This means that the
downloaded Java code is restricted from accessing resources outside of
its sandbox. The sandbox is the set of resources the code is allowed to
access. Examples of resources are threads, socket connections, and
local files. Each application must define the limits of the sandbox.

Security is enforced by the Security Manager. The Security Manager is
responsible for enforcing the limits of the sandbox. Each Java
application has a Security Manager associated with it. The application
can tailor the Security Manager, so each application may, and in fact
does, allow different limits for the sandbox. For applets, the Web
browser is the application that owns the Security Manager. Each
browser may put different restrictions on applet behavior. The default
limits imposed by the Security Manager are: classes may not access the
local file system, read environment variables, execute other programs on
the local machine, or make socket connections to machines other than
the machine from which they were downloaded.

The JVM provided with Web browsers supports the Java “core” libraries.
These libraries contain classes that are standard with all JVMs and may
not be downloaded over the network. The JDBC driver manager is an
example of a core library. It must be available on the local machine; it is
ineligible for download.

All Java classes are included in a “package.” The package is the
hierarchical name associated with the class. Any class whose package
name starts with java is considered a core class. The package name
for the JDBC driver manager is java.sgl and is therefore one of the
core libraries.

As Java code starts executing, Java classes that are not available on
the local machine and are not core classes, are dynamically downloaded
from an HTTP server. Classes are loaded as they are needed, so the
number of classes downloaded from the network can be kept to a
minimum. Downloaded classes are subject to the restrictions imposed
by the Security Manager. Classes available from the local machine are
not usually subject to the same restrictions.

Since Java is portable, secure, and dynamically loaded, it is an ideal
language for writing Web-enabled applications. Applications written in
Java that are accessed via an HTML page are called “applets.”

The following is an example of an applet tag in an HTML document that
loads a Java class called testapplet.class

<applet code="testapplet.class" width=600
height=425>

Figure 1: Sample applet tag

When the browser encounters the applet tag, it invokes the JVM and
passes it the name of the applet class.

If the applet class itself was downloaded from the HTTP server, the
Security Manager restricts the resources for all classes executed as part
of the applet. If the applet class was available on the local machine, the
restrictions may be relaxed.

With JDK 1.1, Java classes may contain digital signatures. Applet
classes that are downloaded from the HTTP server and are not digitally
signed are considered “untrusted.” JDK 1.1 provides a Security API that
allows special privileges for digitally signed applets, which are “trusted
applets.” Unfortunately, JDK 1.1 beta was released in mid-December
1996 and cannot be addressed in this paper.

SAS/SHARE*NET Driver for JDBC™

JDBC is the Java Database Connectivity API created by JavaSoft.
JDBC is similar to ODBC, but for the Java environment. Users do not
need JDBC drivers installed on their machines. Drivers are dynamically
downloaded from an HTTP server as needed.

The JDBC API provides an SQL interface to databases. By using JDBC,
applications and applets can establish a connection to the database
server, submit SQL statements, and obtain result sets. Applications can
obtain information about the database (database metadata) and a
particular result set (result set metadata).

Database metadata contains information about the characteristics of the
database and what data it contains. For example, through database
metadata, a program can determine which numeric or string operations
can be used in an SQL statement. The program can obtain a list of valid
data types supported by the database. It may ask the names of tables
available at a particular database server, the names of the columns
within those tables, and the type of data contained in each column.

Although drivers themselves can be downloaded over the network, the
JDBC driver manager must be installed on the local machine. The JDBC
driver manager is included with JVMs based on JDK 1.1. JavaSoft
maintains information about JDBC and has the driver manager available
at its Web site. The SAS/SHARE*NET driver available for download
from SAS Institute’s Web site conforms to the JDBC 1.1 API
specification from JavaSoft. (For the URLs, see the References at the
end of this document.)

Using the SAS/SHARE*NET Driver for JIDBC

Databases are accessed through a unique style of URL that is defined
for JDBC. Each database protocol has a unique URL registered with
JavaSoft for use with JDBC. The format of the URL for
SAS/SHARE*NET driver is

jdbc:sharenet://host:port.

The name host indicates the TCP/IP address of the machine where the
SAS/SHARE*NET server is running and port references the port
number assigned to the server.

The code in Figure 2 creates all of the objects required to submit an SQL
query and retrieve results. This code segment is simplified and will not
compile properly as is.

In this code segment, the SAS/SHARE*NET server is running on the
machine named sharenetserver and portnumber is the number of
the port assigned to the SAS/SHARE*NET server. The SQL statement
requests all of the rows for the column named columnone in the table
named my.table

All of the classes for the SAS/SHARE*NET driver are contained in the
package named COM.sas.net.sharenet . The driver is written
entirely in Java and may be dynamically downloaded from the HTTP
server. Please keep in mind that the JDBC driver manager must be
available on the client machine. It may not be dynamically downloaded.

The name of the database metadata class is
java.sgl.DatabaseMetaData . This class supports the following
methods: getCatalogs , getSchemas , and getTables . “Schemas”
are analogous to SAS libraries; “tables” are analogous to SAS data sets.
There is no analogy for a JDBC catalog in SAS software. JDBC catalogs
are not the same as SAS catalogs.

The SAS/SHARE*NET driver cannot provide metadata information about
a foreign database such as Oracle. It can only provide this type of
information about the SAS databases.

The DatabaseMetaData object can be created after a connection has
been established to the database (i.e., a java.sql.Connection
object has been created).

The result set metadata class java.sql.ResultSetMetaData
provides methods for obtaining number of columns, column names,
labels, and other characteristics of a particular result set. The
ResultSetMetaData object can be created from any ResultSet
object.

The diagram in Figure 3 depicts a typical configuration for an untrusted
applet accessing a remote SAS/SHARE*NET server.

Code example :

import java.sql.Connection;

import java.sql.Driver;

import java.sql.ResultSet;

import java.sqgl.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Statement;

try {
Driver driver = (Driver)Class.forName

("COM.sas.net.sharenet.ShareNetDriver")
.newlnstance();

Connection connection = driver.connect
(“jdbc:sharenet://sharenetserver:porthumber”,
properties);

Statement statement =
connection.createStatement();

ResultSet resultset = statement.executeQuery
(“select columnone from my.table”);

while (resultset.next() == true)
String columnOne = resultset.getString(1);
System.out.printin(“Results: “ + columnOne);

} catch (SQLException e) {
System.out.printin(“Exception thrown: ”
+ e.getMessage();

}

Client Machine | |Server Machine

Web Browser
HTTP server
Java applet
I
/] SAS/SHARE*NET
server
[

Figure 2: Code to Create Objects

Figure 3: Untrusted Applet Accessing Remote Server

The Web browser on the client machine requests an HTML document
from the HTTP server. The document arrives at the client machine and
the browser detects the applet tag in the HTML document. The browser
invokes the JVM and passes the name of the applet class to the JVM.
The applet class is downloaded from the HTTP server and starts
executing.

The Java class loader requests the SAS/SHARE*NET driver class file
from the HTTP server. The driver class creates a
java.sgl.Connection object that establishes a socket connection
with the SAS/SHARE*NET server. It is not a requirement that JDBC
drivers use a socket interface, but that is the default for our driver.

The Connection object sends the SQL queries to the SAS/SHARE*NET
server and the server sends its response via the socket interface. The
Connection object communicates directly with the SAS/SHARE*NET
server.

It is very important to note that HTTP server and SAS/SHARE*NET
server are running on the same physical machine. If the applet is
untrusted and the SAS/SHARE*NET server is not located on the same
machine as the HTTP server, the socket connection is disallowed and a

Security Exception is thrown. This is a restriction imposed by the default
Java Security Manager, not a restriction imposed by our driver.

The SAS/SHARE*NET driver for JDBC also supports access to foreign
databases such as Oracle. By setting properties for the Connection
object, a programmer can specify another database. The properties
named dbms and dbms_options allow the programmer to specify the
database and the options needed for connecting to that database.

Java Classes for Remote SAS Compute Services

SAS Institute plans to provide Java classes that allow an applet to
create a remote SAS session, submit SAS statements, and retrieve
results. The classes also provide support for accessing SAS data sets
and downloading files. These classes provide a subset of the
functionality of a SAS/ICONNECT™ client. The plans do not include
support for a remote graphics driver. Sample applets using the classes
that provide access to a remote SAS session will be available from the
SAS Institute Web site. (See the References section for the site URL.)

Several different mechanisms are available to start a remote SAS
session. We provide a CGI program to start SAS on a remote system
and we provide a Java class that starts a SAS session using telnet. The
Java class that starts the SAS session is named

TelnetConnectClient . The code segment in Figure 4 shows how to
create a SAS session using the TelnetConnectClient class. This
code is still under development, so the class names and methods are
subject to change. This example starts the remote SAS session on the
machine named myhost and retrieves the log lines generated by SAS
software initialization.

new data set called results , obtain the list output, and print the list
output to standard out.

Code Example:

String lines = new String
(“proc means data=xyz mean;
var abc;
output out=results;
run;”);

tconnection.rsubmit(lines);
String logLines = tconnection.getLogLines();

String listLines = tconnection.getListLines();
System.out.printin(listLines);

Figure 5: Code to Create Data Set and Print Results

Access to SAS data is provided through a Single User server. A method
getSingleUserServer starts the server in the remote session. The
Single User server is made available as a JDBC Connection object. The
code segment in Figure 6 shows how to start the Single User server and
retrieve the contents of the data set WORK.AThis example uses the
TelnetConnectClient object named tconnection to start the
Single User server and return the java.sqgl.Connection object. The
java.sgl.Connection object is used to retrieve the contents of the
data set named WORK.RESULT$§enerated in the previous example.

Code example:

import COM.sas.net.connect.TelnetConnectClient;

String host = new String(“myhost”);

String loginprompt = new String(“logon:”);

String passwordprompt = new String(“Password:");
String portprompt = new String(“PORT=");

String cmdprompt = new String(“myhost>");

String sascmd = new String(“sas -dmr”);

String userid = new String(“myid”);

String password = new String(“password”);

try {
TelnetConnectClient tconnection =

new TelnetConnectClient();
tconnection.connect(

host, /* host */
loginprompt, /* login prompt ~ */
userid, /* login id */
passwordprompt, [* password prompt */
password, /* password */
cmdprompt, /* command prompt */

sascmd = sascmd /* command to enter */
portprompt, [* port prompt ¥/
);

String lines = tconnection.getLogLines();
System.out.printin(lines);

} catch (Exception e) {
System.out.printin(e.getMessage());

Code Example:

java.sgl.Connection suServer =
tconnection.getSingleUserServer();
Statement statement =
suServer.createStatement();
ResultSet resultset =
statement.executeQuery
(“select x from work.results”);
while (resultset.next() == true)
String x = resultset.getString(1);

Figure 4: Code to Start SAS Session with TelnetConnectClient

The TelnetConnectClient communicates with either the Telnet
daemon or the SAS/CONNECT spawner program on the remote host.
The TelnetConnectClient uses the variables passed to the connect
method to log in a user identified by userid and start a SAS session
using the sascmd variable. The documentation provided with the
package will describe how each of the parameters is used.

The code segment in Figure 5 shows how to submit statements that
compute the mean value from column abc in data set xyz and create a

Figure 6: Code to Start Server Using TelnetConnectClient

The classes that provide remote computing services communicate with
a remote SAS session in a very similar manner to the SAS/SHARE*NET
driver for JDBC. By starting the remote SAS session with the -DMR
option, the remote SAS session is listening on a particular port. The
Java classes establish a socket connection to that port and exchange
messages with the remote SAS session.

Client Machine | |Server Machine

Web Browser L
HTTP server
Java applet

Tconnection

object
SAS session with
single user server

SuServer " R

object N ‘

Figure 7: Applet Communicating with Remote SAS Session

Figure 7 depicts an applet communicating with a remote SAS session.
Since applet classes are assumed to be downloaded from the HTTP
server, the security restrictions apply and the remote SAS session must
run on the same machine as the HTTP server.

HTTP Tunneling

We find the requirement of having an HTTP server available on each
machine that has a SAS/SHARE*NET server or a remote SAS session
to be quite restrictive. In addition, many Internet users are behind
firewalls that will not allow socket connections to machines outside of the
firewall. We provide a solution to both of these problems through “HTTP
tunneling.”

“Tunneling” refers to the practice of encapsulating a communication
protocol within another protocol. By using a combination of CGI
programs and Java classes that provide HTTP protocol support, we are
able to encapsulate the proprietary protocol used by the
SAS/SHARE*NET driver and remote SAS session in HTTP requests
and HTTP responses. In other words, the proprietary SAS protocol is
wrapped in HTTP.

Many firewalls allow HTTP protocol to pass through. Since the SAS
protocol can be wrapped in HTTP, many users that previously could not
access remote SAS services can if the applet makes use of HTTP
tunneling.

Figure 8 depicts the components needed for HTTP tunneling.

Because the SAS Protocol Interpreter is maintaining the socket
connections, the restriction of having the remote SAS session created
on the same machine as the HTTP server is removed. The applet is
sending requests to the SAS Message Router, not directly to the remote
SAS session. The remote SAS session can be created on any machine
with which the SAS Protocol Interpreter can communicate.

To some extent HTTP tunneling is circumventing the Java Security
Manager. We are allowing applets to communicate with a machine other
than the machine from which the applet originated. The intent of the
Security Manager was to disallow socket connections to machines
within a firewall, if the applet was downloaded from outside a firewall.
The SAS Protocol Interpreter allows the administrator of the HTTP
server to restrict which machines are eligible for connections on behalf
of an applet.

Because the applets are using HTTP protocol to communicate rather
than direct socket connections, SAS services are available to users
behind firewalls that allow HTTP communication.

Client Machine

HTTP Server Machine

| |Remote Machine

Web Browser

SAS session with

single user server

Interpreter

Java applet HTTP server
SAS ;ISAS Msg Router
Connection
object

A 4
SAS Protocol

Figure 8: Components Needed for HTTP Tunneling

The SAS connection object, either a TelnetConnectClient or JDBC
Connection object, does not create a socket connection to the remote
SAS session. Instead, it sends HTTP requests to a CGI program
installed on the HTTP server machine. We refer to this program as the
SAS Message Router. The SAS Message Router passes the HTTP
request to the SAS Protocol Interpreter. If the SAS Protocol Interpreter is
not currently running, the SAS Message Router starts it. The SAS
Message Router is a CGI program that is run each time a request is sent
from the SAS connection object. It is not a persistent process. The SAS
Protocol Interpreter is a persistent process that maintains connections to
the remote SAS sessions.

The SAS Protocol interpreter opens and maintains a socket connection
to the remote SAS session. It sends the messages received in the HTTP
requests to the appropriate SAS session. The response from the remote
SAS session is received by the SAS Protocol Interpreter from the socket
connection. The SAS Protocol Interpreter wraps the SAS response in an
HTTP response that is sent back to the SAS connection object.

The SAS connection object supports a property that specifies the path
and name of the SAS Message Router. If this property is set, the
connection object will emit HTTP requests rather than use a socket
connection.

The configuration program associated with the SAS Protocol Interpreter
allows an administrator to tailor its capabilities. The configuration
program may include a list of machines that are allowed to provide SAS
services to Java applets or a list of machines that are not allowed to
provide services to applets. The administrator can configure the
interpreter to only allow certain commands to be used to start a SAS
session and disallow all others. The configuration program can restrict
the users that are allowed to use the SAS Protocol Interpreter. The
Interpreter can also be configured to close a connection after a certain
amount of time has passed.

Tips for Constructing Well-behaved Applets

Using Multiple Threads Within an Applet

The Java class java.applet.Applet is the base class for Java
applets. It provides the following methods:

init(), start(), stop() and destroy()

These methods are called by the browser. The init() method is called
when the applet is first loaded; destroy() s called when the applet is
no longer needed. The start() method is called when the applet is
visible to the user; stop() is called when the applet is no longer visible.
Start() andstop() may be called multiple times, if the user is
switching between HTML pages.

The applet will not be painted (i.e., the GUI components will not be
visible to the user) until the init() method has exited. All of our
sample applets establish communication with a remote machine.
Establishing the connection may take a substantial amount of time. We
feel it is unacceptable to write applets that do not provide status
information about the state of a connection. Since the applet will not
provide visual feedback until the init() method has completed, we do
not establish connections in the init() method.

In all of our sample applets, we create a TextField called status in the
init() method that displays status information, lay out the GUI
(graphical user interface), and exit the method. The status area is now
visible to the user.

Next, the applet’s start() method is called. Our sample applets create
a separate thread to establish the connection to the remote SAS
session. If the applet’'s main thread is used to create the connection and
the stop() method is called, the connection to the remote SAS session
may be left in some unknown state. Many conditions exist under which
the applet's stop() method may be called. If the main applet thread is

performing some operation that changes the state of the applet and the
stop() method is called, the applet may be left in some unrecoverable
state. If the applet is left in an unknown state, later the start() method
may not be able to successfully restart the applet. Therefore, any work
that is performed that changes the state of the applet should be
performed in some thread other than the main applet thread. The applet
thread can communicate with the other threads to inform them the

stop() method has been called. Once informed that the applet will stop
shortly, the other threads can complete whatever work they are doing
and leave the applet in a state so it can be successfully restarted.

The thread that is establishing the connection to the remote SAS
session can update the status field, so the user receives continuous
feedback concerning the applet’s activities.

Well-behaved applets will establish connections during the start()
method and close the connections during the stop() method. Applets
should release their resources when the stop() method has been
called.

Using Archive Files

Java classes may be dynamically downloaded from the HTTP server or
they may be bundled together in a Java Archive file (JAR file). If the
applet requires a number of classes, it may take a significant amount of
time to download each class file individually. Instead the classes may be
bundled together to reduce download time. JAR files are a standard part
of JDK 1.1. At the time this paper was written, neither Netscape nor
Microsoft had a browser that supported JDK 1.1. However, both of these
browsers supported some type of archive file. For Netscape Navigator,
uncompressed zip files could be used to contain multiple Java class
files; Microsoft Internet Explorer used CAB files. The sample applets
provided by SAS Institute on its Web site make use of archive files. They
significantly reduce the time it takes to start the applet and have it
perform useful work.

Summary

This paper described the Java classes provided by SAS Institute. We
provide a package for data access, the SAS/SHARE*NET driver for
JDBC, and a package for remote SAS computing services. We provide
Java classes and programs to support HTTP tunneling to alleviate some
configuration restrictions and provide access to users behind a firewall.
In addition, we provided some tips concerning applet behavior to help
the reader construct well-behaved applets.

NOTE: At the time of this paper, the code is still under development. We
expect that results from further testing will change some of the
functionality described here. For more up-to-date information, please
visit the SAS Web site listed below and follow the product links.

References

http://splash.javasoft.com/jdbc - Use this URL to review JDBC
information.

http://www.sas.com/rnd/web - Use this URL to download a beta of the
SAS/SHARE*NET driver for JDBC. SAS Institute provides sample code
with the SAS/SHARE*NET driver for JDBC.

SAS and SAS/SHARE*NET are registered trademarks of SAS Institute
Inc. in the USA and other countries. Java and JDBC are registered
trademarks or trademarks of Sun Microsystems, Inc.

® indicates USA registration.

Author: Barbara Walters
SAS Institute Inc.

SAS Campus Drive
Cary, NC 27513

(919) 677-8000 x6668
sasbbw@sas.com

	Main TOC

