
Reading and Writing Character Data

Craig Dickstein, ASG Inc., Weare, NH
Marge Scerbo, Univ. of Maryland Baltimore County, Baltimore, MD

ABSTRACT

This is the information age. Client server, dynamic data
exchange (DDE), object linking and embedding (OLE),
and open database connectivity (ODBC) have been
added to our vocabulary. Each of these allow quick
access to data in a variety of formats. But with ail these
advances, the need to read character data files and to
create ASCII text files is still a major function in the data
processing environment. The necessity to share data
across platforms, operating systems, and software
packages adds to the complexity of daily tasks and
often the most direct solution is character data. This
paper will discuss the process of reading and writing
character data. Examples will be provided with each
step. Beginning programmers will be able to follow the
conceptual process quite well, while the more
experienced analysts may gain some insight into
problem solutions. So, the short and tall of this paper
will include the simple and the complex.

INTRODUCTION

Just like people, data come in all shapes and sizes. In
a perfect world, sharing data across systems and
software packages would be a simple trick, requiring
little of the programmer’s time. Even in a single
organization, data may take many forms and reside on
a variety of platforms. The challenge for the data
processor is to be able to read, manipulate, and write
data in any form. Often times the solution is to treat the
data as character (text), even if it appears to be
numeric in content. The SAS@System provides many
tools for this task. This paper will present some of
these tools and suggest a philosophy for handling new
and unknown data sources.

A set of data will be tracked from input to output and a
practical approach built to deal with a variety of
problems inherent in new data sources. This data will
consist of customer level purchases containing the
following elements: Name, Store, Product, Items, and
Dollars expended. The tasks are to understand the
data file, read the data into a SAS data set, manipulate
it into a useable form, and to write the data out for use
in another system. Not all of the techniques
demonstrated herein are unique to handling character
data. For the novice, a process flow is established for
translation to other situations. The more advanced
reader should find some interesting techniques not

often utilized.

For the purposes of this discussion, ‘character’ data
values will be defined as the SAS System defines them:
simply a sequence of letters, numbers, and/or special
characters. A character type variable is defined on
INPUT when a $ follows the variable name or a
character informat is used. It can also be predefine by
a LENGTH or AITRIBute statement. Assignment
statements can create a new character variable as a
result of a ‘character’ operation. The default length of
character variables is 200 and the values are left
justified. The variable’s length can be alternately
defined in a variety of ways, By default, character data
is read in its original case. The CAPS/N OCAPS
system option will have an effect on how the case of
certain input sources are treated. This feature should
be studied and tested if there is any question on how
the data are treated. The UPCASE and LOWCASE
functions are also available for affecting the case of
character values and will be discussed later.

As a convention, this paper will use uppercase to
denote necessary SAS System keywords while
lowercase code will suggest user choice. The
examples will be in uppercase to suggest tried and true
code. Where necessary, in the code, lowercase may
be used in quoted character strings or data values.

KNOW THY DATA

Before attempting data manipulation or analysis on a
new source of data, it is imperative that the
programmer understand the format and content of the
file. Many hours of human and machine resource can
be conserved by employing a few simple techniques to
understand the data. While many new data sources
come with some layout description, it should, at a
minimum, be verified. This section looks at a few
simple programming statements to accomplish this
task.

To read a data file, the location of the file must be
defined. This definition will be contained in either the
FILENAME or INFILE statements, or a combination of
both. One interesting distinction is that FILENAME
must be used in conjunction with the INFILE statement
if an external device is required (e.g., tapes). If the
data source is on DASD (direct access storage device)
then the INFILE statement alone would be adequate.

Options are available to these statements for additional
definition.

The FILENAME statement serves the purpose of
defining a resource. In actual usage the statement may
define the input file or the output file. A FILENAME
statement is needed to define a device such as a tape.
The simple format of this statement assigns a file
reference (name) to the file, regardless of its intended
use:

FILENAME fileref ‘a:\filename.fIletype’;

The INFILE statement is used to point to an external file
from which data is to be read with the INPUT
statement. This statement also contains many options
for the definition of that file. Generically, an INFILE
statement will appear as:

INFILE fileref options ;

‘Fderef is the link between the FILENAME statement
and the INFILE statement. Alternately, without the
FILENAME statement, the same task can be
accomplished with a simpler form of the INFILE
statement. The location and name of the file must be
enclosed in quotes as is done in the FILENAME
statement.

INFILE ‘a:\filename.filetype’ ;

A variety of options is available for this statement and
may be platform specific. As one becomes familiar with
the data source through an iterative approach, one or
more of these optiins may become useful. Some of the
more useful ones are defined here and will be utilized
as necessary.

The reference fderef may also be used in the FILE
statement to point to the output file which will receive
the action of PUT statements. Please note, FILE is the
antithesis of INFILE and shares many of the same
options. Multiple FILENAME statements will most likely
be employed to define a variety of input and output
resources.

Options are available to define the physical layout of
the data. LRECL= defines the logical record length.
RECFM= defines the record format. LINESIZE= limits
the record length to be read. The default physical
layout of the file to be read is system dependent. For
example, in SAS 6.10 for Windows the file default is a
line size of 256 (LINESIZE=256) and is in variable

length format. Refer to host spe~fic manuals often!!

Often data extracted from a spreadsheet or database
will include delimiters. The INFILE option DELIMITER=

(optionally, DLM=) will allow for the definition of the
delimiter used. With Version 6.07 the DSD option was
added to the INFILE statement. Several useful default
actions occur with this option. First, DSD will cause the
reading of missing values between consecutive
delimiters. In the past, two commas side by side in a
comma delimited record would have been treated as a
single comma; with this option the variable which would
have occurred between the commas is set to missing.
Second, DSD allows for character data to be read
within quotes without including the quotes as data.
When data contains the defined delimiter within the
character string, the string must be quoted. Third, the
default delimiter is the comma such that defining
DLM=”,” is redundant. (See Technical Report P-222 for
more on this option.)

Flow control, or controlling the flow of data elements,
can be established with the following options.
MISSOVER prevents the input statement from reading
past the end of the line when the data does not entirely
fill the line. If the data is not in column format or if the
value of the last field is not complete, omitting this
option can cause the misreading of data. STOPOVER
will cause the processing of the DATA step to terminate
if the INPUT statement reaches the end of the current
record without finding values for all variables listed in
the INPUT statement. FLOWOVER is the antithesis of
STOPOVER and is the default. Given the chance, the
SAS System will read past the end of the current record
for the values of the defined variables.

When accessing external data these options may
become very useful and the reader is encouraged to
investigate them further.

A simple, yet effective, method for understanding the
physical appearance of the contents of a data file is as
follows:

FILENAME FRED ‘A:\NAMES.TXT’;
DATA _NULL_;

INFILE FREDFIRSTOBS=50BS=9;
INPUT;
PUT _lNFILE_;

The first and most necessary task, to dump a few
records for visual inspection, has been accomplished.
The data is on the A drive in a file named NAMES.TXT
and will be referred to henceforth as FRED. This
arbitrary file reference is chosen to emphasize the
ephemeral nature of fileref. It is used solely as a
pointer for the duration of the job or session. The data
need not be stored either permanently or temporarily so
the special data set name _NULL_ is used. The
INFILE statement points to the data source via the
fileref FRED and will read only five records starting with
the fifth record. The defaults, without this kind of

pointer control, would be to start with the first data
record and to read them all. Also, be aware that the
OBS value is not relative to FIRSTOBS. It is equivalent
to lastOBS= but is not spelled this way. The null INPUT
statement will read the entire record as one long
character field. The PUT statement will write each of
these records to the SAS log (default action without a
FILE statement).

Inspect the contents of the file and begin to formulate a
strategy for reading the file. Data which had been
converted from a spreadsheet to an ASCII text file may
appear as:

Mr. John H Doe, Sears, hardware,6,600

“Mr. and Mrs. Fred Saunders, Jr.’’,C.C. Penneys,,2,$60

“Dr. and Mr. Barb Wker Ph.D”,LL Bean,apparei,l ,400

J PricevExpensive, LTD”,ldtchen,3,’’7,9l9”

Mr. H. Donald Smith,,,,,

This file (NAMESI .TXT) appears to have been created
from a spreadsheet and several potential problems
(features) become evident. The file is comma delimited
with quoted strings containing commas. Some data is
missing. Punctuation is not always consistent. The
format of the dollar amount and the item quantity fields
are variable.

As a quick aside on delimited files, please note that the
primary advantage of delimited files is that the data
elements, and therefore records, can be of variable
length. Since no blanks are used to pad a character
field to align the data in columns, the file itself is more
efficient and more compact. Note that the end of the
record serves as a delimiter so that an explicit one is
not required. A delimited file is similar to a list format
file where the data are separated by spaces. For
those that have used list input technique delimited files
are not new. The blank separating values in simple list
input is the implied ‘delimiter’. Other characters can
and will be used by other software.

A file that is delimited with more than one blank would
look like:

Mr. John H Doe Sears hardware 6600
Mr. and Mrs. Fred Saunders, Jr. J.C. Penny hvo $60

Dr. and Mr. Barb Wke, Ph.D LL Bean apparel 1 400

Ms J Price Expensive, LTD kitchen 7,919

Mr. H. Donald Smith

This file (NAMES2.TXT) looks simple enough until
notice is taken that there is missing data. Special
techniques need to be employed here.

A tape file from a mainframe may have a distinct
column layout with two records per observation:

Mr. John H Doe Sears

hardware 6 600

Mr. and Mrs. Fred Saunders, Jr. J.C. Penny

two $60

Dr. and Mr. Barb Wire, Ph.D LL Bean

apparel 1 400

This file (NAMES3) would suggest a wholly different
technique for reading the data.

Without the time taken to dump a few records for visual
inspection, the next step would have been painful.

READING THE DATA

It is important to understand that there are many ways
to ‘skin a cat’ with the SAS System. The following
treatment is used to emphasize some important points.
In no way do the authors portend tight, efficient code.
Once the concepts are accepted as good, the reader
will discover many ways to employ them. So. . .

For the first set of data (NAMES I .TXT) a special case
of /ist input is employed. This is a special case
because the delimiter is not a blank but consistently a
comma and definable as such. Hence the following
code would be adequate:

DATA NAMETEST;
INFILE ‘A:\NAMESl .TXf’ DSD;
LENGTH NAME STORE $40

PRODUCT $12
ITEMS DOLLARS $8;

INPUT NAME $ STORE $ PRODUCT $
ITEMS $ DOLLARS $;

Note that all f~lds are read as character data due to the
problems noted on inspection. As a default, all data
can be read as character, debugged, and converted as
necessary at a later time. This is not true if it were to
be read as numeric data; all manner of chaos may
break out. Also, remember that the DSD option both
defines the default delimiter as a comma and accounts
for missing variable values. A LENGTH statement is
good form. Explicitly define the variable lengths,
otherwise, the default action may not be appreciated.

For NAMES2.lXT the following code would serve as a
basis:

DATA NAMETEST;
INFILE ‘A:\NAMES2.TXT’ MISSOVER;
LENGTH NAME STORE $40 PRODUCT $12

ITEMS DOLLARS $8 ;
INPUT NAME $ & STORE $ & PRODUCT $

ITEMS $ DOLLARS $;

In this case, the data was generated with two blanks
after each data value and missing data was written out
as blanks. The format modifier ‘& will allow for
character data with single embedded blanks to be read
without difficulty. Two or more blanks will act as the
appropriate delimiter. The apparent presence of
missing data will be handled by the MISSOVER option.
“Apparent” because the data step will not be aware of
missing data until it reaches the end of the record. The
offending record will still need to be dealt with since
values may not have been populated to the correct
variable.

NAMES3 appears to be nicely formatted in specific
columns and should be read as such. Note that the
data appears as two records per observation of
interest. For this example forrnafteo’ column input is
appropriate with the liberal use of pointer contro/s.

DATA NAMETEST;
INFILE ‘A:\NAMES3’ ;
INPUT @l NAME $40. @41 STORE $40. /

(@I PRODUCT $12. @26 ITEMS $8.
@41 DOLLARS $8.;

In this case the LENGTH statement is not required
since the informat, for example $40., assigns a length
to the character variables. The relative line pointer (/)
and the absolute column pointer serve to locate the
data. Careful inspection of the record dump suggest
that there are always two records per observation and
that the dollar and item fields are in variable format.
Again, to circumvent these anomalies, all data are read
as character type and will be manipulated to numeric
prior to analysis or permanent storage.

It takes experience to become comfortable with the
different methods of reading data files. There is no one
right method of reading every file. This may at times be
controlled by the structure of the file to be read.

Several rules of thumb should be remembered: 1)
always print a few of the raw data records for careful
inspection and iterative design of the input routine 2) all
data can be read as character data and processed as
such 3) test a small representative sample 4) print the
contents of the test SAS data set.

List irJpuf statements are the simplest and work well
with files containing only one record per observation
and those that are consistently delimited. Take care in
using this method; explore all options and techniques
available with the INFILE and INPUT statements.
Always PROC PRINT the input data to test if the
created data set indeed contains the data as in the
original file. List input is most useful with the new
DSD= option. This allows for the reading of many
types of spreadsheet and database output files.

A combination of column and formatted input is
probably the most used because of generally accepted
methods of storing data. Often, especially in older
shops or where large amounts of data are transported,
data have been stored in columns. A column format
data file is easy to eyeball for errors and allows for
nonspecific definition of missing data. It is also the
easiest to explain to new programmers and users. Use
of pointers allows maximum control within the INPUT
statement. Inforrnatting data in the INPUT statement is
easy to read and is most efficient from a maintenance
perspective.

No matter what method is used, it is always advisable
to print a limited number of records to validate the input.
If frequencies are appropriate, they also provide a
proofing opportunity. Due to the vagaries of character
data, every opportunity must be taken to proofread the
results.

DATA MANIPULATION

In this section a few of the more interesting functions
for manipulating character data will be introduced. This
is only meant as an introduction to the vast array of
functions available with the SAS System. Other
functions and additional uses of these functions are left
to the readers further digestion of the SAS Language
Reference manual.

In the example data the most interesting problem is
with the NAME field. There may be all manner of titles,
middle initials, and suffiies. The ‘project goals’ call for
retaining only a first name, middle initial if it exists, and
last name. The individual’s title and suffix are to be
ignored for further processing. For the sake of the
example suppose that the data were collected by a
variety of clerks (with no regard for consistency) and
stored as a spreadsheet. The data has been shipped
as such on diskette. Once the data are read in the
most generic of forms, as character data with all its
anomalies, it can then be parsed into cleaner forms
prior to further processing. Here is one method for
cleansing this field. Examine the following code:

DATA NAMETEST;
INFILE ‘A:\NAMESl .TXT’ DSD;
LENGTH NAME STORE $40

PRODUCT $12 ITEMS DOLLARS $8;
INPUT NAME $ STORE $ PRODUCT $

ITEMS $ DOLLARS $;
NAME=LOWCASE(COMPRESS

(NAME,’&.,:;’));

The result to this point is that NAME is now in all
lowercase with known extraneous punctuation
compressed out. It is very useful to arrive at a known
starting point such as this prior to attempting the

parsing of the character string. Next, the program
scans for known titles in the first word of NAME.

IF SCAN(NAME,I ,“ “)
IN ('mt,'mrs','ms', 'dr','drs','col','capt', 'lt','ltc',
‘maj’,’sgt’,’messr’,’messrs’,’rev’,’fr’,’hon’,
‘tong’,’brig’,’sr’,’miss’,’and’)

THEN DO;
FNAME = SCAN(NAME,2,” “);
MINIT = SCAN(NAME,3,” “);
LNAME = SCAN(NAME,4,” “);
SUFFIX = SCAN(NAME,5,” “);

END;

Ifan occurrence of a title is found, the other words are
scanned into the created variables. If not, there
appears not to be a title so the other words are
scanned into the appropriate variables.

ELSE DO:
FNAME= SCAN(NAME,I ,“ “);
MINIT = SCAN(NAME,2,” “);
LNAME = SCAN(NAME,3,” “);
SUFFIX = SCAN(NAME,4,” “);

END;

But, remember that on inspection ‘Mr. and Mrs’ is found
as a valid title. Other compound titles may exist. So,
the sewnd and third words in NAME must be scanned.
If found, the holding variables will be rewritten with what
should be the proper content.

IF SCAN(NAME,2,” “)
IN ~mr','mrs','ms', 'dr','drs','col', 'capt,'lt,'Itc',
maj’,’sgt’,’messr’ ,’messrs’,’rev’,’fr’ ,’
hon’,’tong’,’brig’,’sr’,’miss’,’and’)

THEN DO;
FNAME = SCAN(NAME,3,” “);
MINIT = SCAN(NAME,4,” “);
LNAME = SCAN(NAME,5,” “);
SUFFIX = SCAN(NAME,6,” “);

END;
IF SCAN(NAME,3,” “)

IN (’mr’jmrs’;ms’,’dr’,’drs’;col’;capt’;lt’;ltc’,
‘maj’,’sgt’,’messr’,’messrs’,’rev’,’fr’,
‘hen’,’tong’,’brig’,’sr’,’miss’,’and’)

THEN DO;
FNAME = SCAN(NAME,4,” “);
MINIT = SCAN(NAME,5,” “);
LNAME = SCAN(NAME,6,” “);
SUFFIX = SCAN(NAME,7,” “);

END;

At this point there should be a valid first name, middle
initial, last name and suffix. Since SUFFIX is not
required for retention it will be dropped. If required,
validation checking could have been handled as with
TITLE:

IF SUFFIX IN
(’jr’,’sr’,’iii’,’iv’,’dds’,’d d s’,’md’,’m d’,’c e o’,
‘c f, ‘d m d’,’esq’,’ii’,’jnt’,’m d m’,’mgr’,’o d’,
‘p e’;pres’,’dmd’,’s r I’,’v p’,’phd’)

THEN . . .

Since the only real guarantee is that there is a good
FNAME, begin at the rear and work backwards to arrive
at the other two variables of interest, LNAME and
MlNIT:

IF LNAME IN
(’jr’,’sr’,’ii~,’iv’,’dds’,’d d s’,’md’,’m d’,’c e o’,
‘c f ,’d m d’,’esq’,’ii’,’jnt’,’m d m’,’mgr’,’o d’,
‘p e’,’pres’,’dmd’,’s r I’,’v p’,’phd’)

THEN DO;
SUFFIX = LNAME;
LNAME = MlNIT;
MINIT = “ “;

END:

The LENGTH function is very useful for determining the
actual length of a variable value and then acting
accordingly. Please note that this is ~t the length of
the variable as defined by the LENGTH statement. The
result returned is the integer value of the position of the
right-most non-blank character in the argument’s value.
If the length of LNAME is 1 then the variabte is missing
and the middle name must be the last name.

IF LENGTH(LNAME) = 1 THEN DO;
LNAME = MlNIT;
MINIT = “ “;

END;

Since just a middle initial is required and not a whole
name, several other functions might be employed to
arrive at the correct result

IF MINIT NE “ “ THEN
MINIT = SUBSTR(MINIT,I,l) II ‘.’;

The required three components of NAME are ready for
further use. Be aware that all anomalies may not have
been taken care of. The two that come to mind are the
presence of a dual last name and dual middle initial
(e.g., Mr. Johan R. J. Von Snitzel). Further proofing of
the data and iterative manipulation code development
may be called for. Wti character data, 100% accuracy
may not be possible.

There is also a need to attend to the problems found
with DOLLARS. The techniques to employ would be to
compress out all dollar signs and commas, /efl justii
the value, and then to input the put of the character
data.

SALES = INPUT(PUT(LEFT(COMPRESS

(DOLLARS,’$,’)),CHAR.),8 .);

The sky is the limit for data manipulation. The proper
combination of functions and formats can be effectively
used to turn character data into useful information.

WRITING EXTERNAL DATA

There are times when others, both inside and outside
your organization, need your data. How to share this
will depend on their hardware and software capabilities.
If they have the capability of reading a SAS data set,
either as is or in transport format, this will provide an
easy method to share data. But as with reading data,
this is not always appropriate.

In the creation of an output text file, it is important to
understand the needs of the recipient of the file. How
the data is written to the file, the format of each
variable, etc., all should be taken into account before
file creation. For example, the format of each date
variable may depend on either or both the hardware
and the software to be used to read the file. Certain
software packages may require the date in a specitlc
format. This can be easily accomplished by using the
correct date format in the output data step.

When an output data file is created, indeed all the data
fields become ‘character’. This includes numeric data.
If this data are to be analyzed by software other than
SAS, missing values cannot be transferred in SAS
format. Instead, by using the system option
MISSING=” “, all missing numeric values will be output
as a blank rather than a period. Large numbers
containing decimals, including non-formatted dollar
amounts, may need to be rounded, truncated or
formatted for ease of use. By providing clean and
useful data to another user, their work might be made
easier and more efficient.

An example of this can be shown with the newly
calculated field SALES which could contain decimal
amounts and has not been formatted. On some
platforms, the value of $21.88 unformatted would be
stored and appear as 21.879989624. Rather than
include this number in the output file, a more useful
number will be output by using the statement

FORMAT SALES 10.2;

As with verifiitiin of an input file, so should output files
be carefully validated. If the data are output correctly,
it should be easily reread by a simple SAS input data
step. Before creating a very large file, use the OBS=
option to create a small file and visually check the
output. At the creation of the complete file, make sure
the output file contains the correct number of records
as stated in the log. If the output file contains multiple

records or lines of text per observation, the total
number of lines in the file should be evenly divisible by
the number of records per observation. If this is not the
case, unless specifically programmed to contain a
record identiier, the output file may be in error.

With the SAS System, data can be written in most any
form to a variety of locations. It is easy to simply ‘dump’
the contents of a SAS data set to a file. Consider the
following code.

DATA _NULL_;
SET NAMETEST;
FILE ‘A:RAWDATA.OUT’;
PUT _ALL_;

All SAS data set variables are written in /ist format to
the file defined by the FILE statement. Alternately a
combination of the FILENAME and FILE statements
could have been used as described above. The
generic format of these statements does not change
whether describing a source or a target. In order to
execute a data step without creating a data set, use
NULL as the data set name. Use of this special data
set name allows for more efficient use of resources.

Similar options as used on the INFILE statement can
be used with the FILE statement. The options LRECL,
LINESIZE, RECFM, PAD, FLOWOVER and
STOPOVER provide the same capabilities as with the
INFILE statement. Rather than a MISSOVER option,
the FILE statement contains a DROPOVER option
which discards data exceeding the line length.

The PUT statement is a powerful tool that will write
information to the defined file in a variety of formats, As
with the INPUT statement, the PUT statement can write
information in /ists, coh.mms, or formafted strings.

Consider the following code for writing the example
data set to a tab delimited external file that will be ready
for input by a spreadsheet

FILENAME 0UT2 ‘A:\EXCEL.TXT’;
DATA _NULL_;

SET NAMETEST;
FILE OUT2 LRECL=I 80 RECFM=F PAD;
DLM=’05’X;
PUT FNAME DLM MINIT DLM

LNAME DLM STORE ;
RUN;

The data will be output in the order of the variables
listed. Spacing will depend on the type of information
to be output. For regular list puts variable values will
always be followed by a space (i.e., the pointer will stop
at the second position following the end of a variable
value). Character strings will not be followed by a

blank; the pointer will reside in the first position
following the last character.

FILE DAT;

Note the use of the PAD option on the FILE statement.
The effect here is to generate fixed length records by
padding blanks out to the logical record length
(LRECL=). Also, the DLM= option is not available on
the FILE statement as it was on IN FILE. Since there is
the need to write a tab delimited file, assign the
hexadecimal value to the new variable DLM and
include it in the PUT statement. This again is system
specific. A somewhat more efficient method would be
to simply use the hex constant ‘05’X directly in the PUT
statement:

PUT FNAME ‘05’X MINIT ‘05’X . . .

An added value of using a hexadecimal delimiter, in
this case a tab, is that it ensures compatibility and
flexibility when the data is being ported to a different
platform.

With a view toward more consistent and documented
data files it is recommended that formatted output
techniques be utilized.

On completion of the output file, provide complete
documentation to the recipient. Provide the number of
records, the line size, logical record length, record
format, delimiter if applicable, the sequence of fields
included, and if in column format, the column locations.
If a format is applicable, include that information.

Just as there are many ways, some efficient, some
clever, some easy to document, of reading and
manipulating character data files, there are multiple
methods to create an output text file. The process of
writing a SAS program which will create a column
format data file can be tedious and often in error. In
addition, creating the documentation to match the
output is not a fun or interesting task for a busy
programmer. The code below, using ARRAYs and DO
loops, automates both tasks.

The program to create both the data and
documentation file is within one data step. The first
section of the program will create a null SAS data set
and define the two files to be output the data file and
the documentation file. The data to be output is stored
in the earlier created SAS data set, NAMETEST, and
the END= option will help identi when the end of the
data set has been read. The code for this portion of
the program is:

DATA _NULL_;
FILENAME DAT ‘A.IDATA.OUT’;
FILENAME DOC ‘A/DOC.OUT’;
SET NAMETEST END= ENDFILE;

The following SAS statements will define which
variables are to be RETAINed throughout the run of
the program and the three ARRAYs to be used. The
RETAIN statement will include the length of each
variable and RETAIN this value throughout the run of
the program. The first array, LENSC, will name
elements which will contain the lengths of each
variable. The second array, VARC, will name the
variables to be output. The third array, NAMEVAR, is
a character array and will contain the names of the
variables. This array will be used in the documentation
portion of the program.

RETAIN COL 1 LNAMELEN 20 FNAMELEN 15
STORELEN 40 PRODLEN 12
ITEMLEN 8 DOLLRLEN 8;

ARRAY LENSC (6) LNAMELEN FNAMELEN
STORELEN PRODLEN
ITEMLEN DOLLRLEN;

ARRAY VARC (6) LNAME FNAME STORE
PRODUCT ITEM DOLLARS;

ARRAY NAMEVAR (6)$8 ‘LNAME ‘FNAME
‘STORE ‘PRODUCT’ ‘ITEM’ ‘DOLLARS’;

Each new record output is counted and added to a
counter called RECCNT. A DO toop is now used to
PUT the data stored in the appropriate array element
from the array VARC in the correct column. This line
pointer position is held by using the trailing ‘@’ until all
array elements are output. The position of the next
COLumn pointer is then calculated by adding 1 to the
length of the variable stored in the associated array
(LENSC). The adding of 1 will place a blank between
columns. The RETAIN statement sets the initial
column position (COL) to 1. At the completion of the DO
loop, the COL variable is again reset to 1.

RECCNT + 1;
DO I= IT06;

PUT @?COL VARCS(I) @;
COL + LENSC(I) + 1;

END;
COL=I;

When the end of the data set is encountered, the
variabte defined in the END= option, EN DFILE, is set to
1 and the next portion of code is processed within an
IF THEN DO construct. First, the second output file is
referenced in the FILE statement. A header is added to
this file using a PUT statement with column pointers
‘@’ and line skips ‘/’. Then, another DO loop is
processed which calculates the beginning and ending
columns of each variable and PUTS the variable name
from the array NAMEVAR, column beginning and
ending locations, and length of the variable into the
second output file. The total number of records,

RECCNT, is printed at the bottom of the report, thus You may contact the authors at
satisfying the needs of the user.

Craig Dickstein
IF ENDFILE=I THEN DO; Voice: (603)529-381 8 FAX: by request
FILE DOC; EMS: cdd@asg-inc.com
PUT ‘NAME LIST’// ‘VARIABLES AND
Locations’// (Q3 ‘VARIABLE Marge Scerbo

@13 ‘BEGINNING’ @26 ‘ENDING’ Voice: (41 0)455-6807 FAX: 410-455-6850
@36 ‘VARIABLE’ /@3 ‘NAME’ EMS: scerbo@umbc.edu
@13 ‘NUMBER @26 ‘NUMBER
@36 ‘LENGTH’/ 43*’*’;

DO I= IT06;
ENDCOL = COL + LENSC(I) - 1;
PUT @l NAMEVAR(I) @16 COL

@28 ENDCOL @39 LENSC(I);
COL + LENSC(I) + 1;

END;
PUT /@l ‘TOTAL NUMBER OF RECORDS: ‘

RECCNT;
END;

So, one SAS program can be used to accomplish two
tasks. This program can easily be edited for use with
other data files. By editing the array elements, the
RETAIN statement, and changing the DO loops to the
cmect number, this program can be usable for many
files.

CONCLUSIONS

What seems like an easy task might become an all-day
project. Reading and writing character data can be
made more efficient by doing the up-front work and
carefully analyzing the problem ahead of time.
Understanding input data files is all important. By
incorrectly reading a text file and not catching the
inaccuracies, all further analysis can be null and void.

SAS provides multiple methods for both reading and
writing files containing character data. This paper
touched upon some of those methods, but as in most
cases when using SAS software, there are other
techniques. Have the SAS Language Reference
manual within arms reach and use it often. Test, test,
and ver~ each step until there is no question about the
correctness of the code. Data are still the core of all
information.

REFERENCES

SAS is a registered trademark of the SAS Institute Inc.,
Cary, NC, USA

SAS Institute Inc., SAS Language: Reference, Version
6, First Edition

SAS Institute Inc., Technical Report P-222

	Main TOC

