
1

Introduction to FRAME Entries in SAS/AF® Software
John C. Boling, SAS Institute Inc., Cary, NC.

Introduction

SAS/AF software, announced in 1985, is an application
facility for building interactive enterprise information
systems. As the user interacts with the application, the
application can customize and execute SAS source
code interactively, noninteractively, or even on a
remote machine.

Prior to the introduction of the FRAME entry, entries
within a SAS/AF application could not easily intermix
text and graphics.

The FRAME entry, introduced in Release 6.08,
supports the intermixing of text and graphics and the
use of industry accepted graphical user interface
widgets, objects, and controls.

Graphical User Interfaces

Graphical User Interfaces are multi-window, graphic-
oriented user applications. Typically, they contain
window elements such as bit-mapped and structured
graphics, icons, pull-down and pop-up menus,
command buttons, scroll bars, and sliders. Most also
use a mouse device and pointer control. With GUI-
based applications, users typically navigate through the
application by pointing and clicking on their selections
using a mouse.

Figure 1

GUI applications are often simpler and quicker to use
than command based interfaces. For example, GUI
menu choices can be icons that users select instead of
typing numbers or letters on a command line or
pressing function keys. GUI applications are also more
intuitive. Rather than requiring users to remember a
series of commands and options, the interface prompts
for the next action or choice. GUI applications enable
users to maneuver quickly and easily through a series
of tasks using graphical images.

Object Oriented Programming Terms

The FRAME entry is predicated on object oriented
programming structures. It is helpful to understand
these basic terms.

The design of an object oriented system begins not
with the task to be performed but rather the aspects of
the real world that need to be modeled in order to
perform that task.

Objects offer a very natural way of breaking down the
problem to be solved. Each object has a range of
behavior to be modeled and each has to maintain some
information about its status. Why look for some other
way to package procedures and data when the problem
has already organized them for you.

An object is a software packet containing a collection of
related data elements and a set of procedures called
methods for operating on those elements. The data
within an object can be accessed only by the object’s
methods. This arrangement, called encapsulation,
protects data from corruption by other objects and
hides low-level implementation details from other
objects and the rest of the system.

Everything an object knows about itself is expressed in
its instance variables. Everything it can do is expressed
in its methods.

Once defined, new types of objects can be used as
building blocks. This ability to create new, high-level
structures on demand and use them to build
applications is called data abstraction. This is a key
theme because it allows us to think in terms of the
problem, the task, the physical process, rather than the
data types of the language and the procedural flow.

Classes

Object-oriented programming supports the repeated
use of common objects through the use of classes. A
class is a general prototype which describes the

2

characteristics of similar objects. The objects belonging
to a particular class are said to be instances of that
class. Conceptually, it may be helpful to think of a class
as a rubber stamp template being used to stamp out
instances of itself.

Classes allow objects to be defined in a very efficient
manner. The methods and variables for a class are
defined only once, in the class definition, without
repeating them in every instance. The instances
contain only the actual variable values.

Although it is possible to define classes independently
of each other, classes are usually defined as special
cases, or subclasses of each other. Through a process
called inheritance, all of the subclasses for a given
class can make use of the methods and variables for
that class,

Inheritance increases the efficiency of the class
mechanism even further; behavior that’s characteristic
of larger groups of objects is programmed only once, in
the definition of the higher-level class, and the subclass
merely adds to or modifies that behavior as required for
their special cases.

Subclasses may be nested to any degree, and
inheritance will accumulate down through all levels.
The resulting treelike structure is known as a class
hierarchy.

Messages

Objects communicate with one another through
messages. A message is simply the name of a
receiving object together with the name of one of its
methods. A message is a request to carry out the
indicated method. Any number of objects can include
the same method, and each can implement it according
to its own unique needs. That allows any given
message to be sent to lots of different objects without
worrying about how the message will be handled or
even knowing what kind of object will receive it. The
ability to hide implementation details behind a common
message interface is known as polymorphism.
Polymorphism makes the object approach very flexible
because it allows new kinds of objects to be added to a
completed system without writing existing procedures.

Components of the FRAME

The FRAME entry utilizes a new interactive editing
environment and a set of predefined classes.

Region Manager

When you edit a FRAME, you use the Region Manager
(an interactive editing environment), for defining
rectangular areas called regions within the window. The
regions can be copied, resized, repositioned, emptied,
and removed.

Each region is filled with an object, an instance of a
widget class. Each object within the FRAME is
assigned and referred to by a unique name.

Figure 2

Widget Classes

The FRAME entry provides a group of predefined
classes from which you can create objects. The term
widget is often used to describe objects that are a
component of a graphical user interface that displays
information and/or accepts user entries. When you fill a
region with a widget, you are creating an object, an
instance of that widget class.

Definitions of the production widget classes in Release
6.12 are:

Widget Typical Use
Block provides a rectangular , text

based object for menu
selections

Catalog Entry
Viewer

displays the text records of
a catalog entry

Check Box provides a marker and
associated text that acts like
a switch

Command Push
Button

is a labeled button that
presents an action

Container Box provides a way to visually
group objects

Control provides a small push
button whose label is a
picture arrow

Critical Success
Factor

creates a graphical
representation of the
position of some value in a
range of data

3

Widget Typical Use
Data Table provides a tabular display of

multiple rows of a SAS data
set

Extended Input
Field

extends the functionality of
the Input Field including
multiple lines, colors, and
fonts

Extended Table creates a row containing
objects that are logically
grouped together and
repeated, the row is
repeated as a table

Extended Text
Entry

supports user entry of single
or multiple lines of text

External File
Viewer

displays the contents of an
external file

Graphic Text displays text using a variety
of fonts, colors, and sizes

Graphics creates and displays a
variety of charts and plots

Hotspot defines an area overlapping
another object that can
perform specific actions
when selected

Icon provides a pictorial
representation of an object
or task

Image displays bitmap images
Image Icon is a graphical equivalent to

the Icon class with
additional capability

Input Field creates one line text fields
that can accept user input
and display text

Input Field Label creates a one line label for
an Input Field

List Box provides scrollable lists of
text entries from which
users can make selections

Organizational
Chart

creates hierarchical charts
from data stored in SAS
data sets

Process Flow
Diagram

creates a diagram
composed of symbols with
connecting arrows and
descriptive text

Push Button provides a rectangle with
text representing an action

Radio Box provides a group of items
from which users can make
a single selection

SAS/GRAPH
Output

displays graphics output
from a GRSEG entry

Scrollbar are graphical objects that
allow users to move back
and forth

Slider allows users to select a
numeric value within a
range

Widget Typical Use
Text Entry accepts user input and

displays text information or
program output

Text Label a single line of protected
text that is used for labels,
titles

Toolbar allows FRAME developers
to have tool, action, and
style toolbars

Video Player plays a video clip in a
rectangular region

Work Area provides an area where you
can place functions

Screen Control Language

FRAME entries are controlled by Screen Control
Language (SCL) programs which are stored separately
from the FRAME in a SCL entry. By default, an SCL
entry has the same name as the FRAME. For example,
if the FRAME is named MAIN.FRAME, the
corresponding SCL entry is named MAIN.SCL.

Since SCL entries are stored separately from FRAME
entries, you can create more than one FRAME
interface that uses the same SCL program without
having to duplicate the SCL program for each FRAME
entry. The compiled SCL program piggy backs the
FRAME it is compiled from.

Some FRAME entries do not even require a SCL
program because widget attributes and methods allow
FRAME entries to perform many tasks without any
additional SCL programming statements.

SCL Programming Constructs

SCL is a programming language designed to facilitate
the development of interactive applications. The
language combines the syntax of the DATA step with
additional statements and functions that enable
developers to control the flow of their applications
based on user interaction.

Structure

SCL entries for FRAME entries contain labeled blocks
that execute when users perform an action on an
object, like selecting it or changing its value. Each label
block begins with a label and ends with a RETURN
statement. SCL statements are executed in sequence
within the labeled block. The label for each block of
code is the same as the object with which it is
associated.

4

In addition a SCL entry can also have an INIT, MAIN,
and TERM label.

Label Execution
INIT executes before the

FRAME entry is displayed
to the user

MAIN executes if any object is
activated after the
corresponding object
labeled sections have
executed

TERM executes when the
FRAME is closed by an
END or CANCEL
command

Methods

As part of its object-oriented nature, each widget class
includes a set of methods. These methods define the
operations that can be executed by any object you
create from that class. Although each widget class
includes a set of predefined methods, you can write
your own methods.

When you want an object to perform an action, you
send it the appropriate message. The message
contains the name of the receiving object together with
the name of one of its methods, To send messages,
use the CALL SEND or CALL NOTIFY routines in the
SCL program.

Illustrations

The remainder of this paper examines two FRAME
entries.

Example 1

In this example MAINMENU.FRAME contains five
objects. A SAS/GRAPH output object displays the
airplane, three icon objects (named EMP, OPER, and
FLYER respectively) display bitmap selections, and a
push button object displays an exit.

Figure 3

The MAINMENU.SCL program monitors the interaction
between the user and MAINMENU.FRAME.

 00001 INIT:
 00002 _msg=’Welcome to International Airways’;
 00003 return;
 00004
 00005 EMP:
 00006 call display(‘empmenu.frame)’;
 00007 return;
 00008
 00009 OPER:
 00010 call display(‘opermenu.frame’);
 00011 return;
 00012
 00013 FLYER:
 00014 call display(‘flymenu.frame’);
 00015 return;

Figure 4

The INIT label executes before the FRAME displays
and initializes the message string.

The EMP label executes if the user clicks on the EMP
icon. The CALL DISPLAY function displays the
EMPMENU.FRAME.

The OPER label executes if the user clicks on the
OPER icon. The CALL DISPLAY function displays the
OPERMENU.FRAME.

The FLYER label executes if the user clicks on the
FLYER icon. The CALL DISPLAY function displays the
FLYMENU.FRAME.

When the user terminates any of the frames branched
to, control returns to MAINMENU.FRAME.

5

When the user clicks on the EXIT push button, the SAS
command ‘BYE’ (programmed as an attribute for the
object) executes.

Example 2

In this last example CHART.FRAME contains three
objects. The list box object (named VARIABLE)
prompts for a variable name, the radio box (named
TYPE) object prompts for a chart type, and a graphics
output (named CHART) displays the chart.

Figure 5

The CHART.SCL program monitors the user’s
interaction with CHART.FRAME.

 00001 LENGTH var $8;
 00002
 00003 INIT:
 00004 call notify (‘chart’,’_set_sort_type_’,
 00005 ‘ascending’);
 00006 return;
 00007
 00008 VARIABLE:
 00009 call notify (variable’,’_get_last_sel_’,row,issel,
 00010 var);
 00011 call notify ’chart’,’_set_indep_var_‘,var);
 00012 return;
 00013
 00014 TYPE:
 00015 call notify(‘type’,’_get_value_’,graftype);
 00016 call notify(‘chart’,’_set_type_’,graftype);
 00017 return;

Figure 6

Line 1 declares the variable VAR to be character length
eight. Otherwise, character variables are declared
length 200 by default in a SCL program.

The INIT label executes before the FRAME displays.

The CALL NOTIFY function on Line 4-5 sends a
message to the CHART object to arrange the bars in
ascending order.

The VARIABLE label executes if a selection is made in
the listbox object named VARIABLE. The CALL
NOTIFY function on Line 9-10 sends a message to the
listbox to learn the last value selected. The CALL
NOTIFY function on Line 11 sends a message to the
CHART object specifying the name of the independent
variable.

The TYPE label executes if a selection is made in the
radio box object named TYPE. The CALL NOTIFY
function on Line 15 sends a message to learn the type
of graph chosen. The CALL NOTIFY function on Line
16 notifies the CHART object of the type of chart to
display.

Summary

The FRAME entry in SAS/AF software is predicated on
object oriented programming structures. Using a set of
predefined widget classes, developers can easily
compose graphical user interfaces to the SAS System.
A Screen Control Language program controls the
user’s interaction with the FRAME.

SAS and SAS/AF are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates
USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

	Main TOC

