
Implementing a Dimensional Data Warehouse with the SAS@System

Gregory S. Barnes Nelson
ASG, Inc.

SAS is a registered trademark or trademark of SAS Institute Inc.
in the USA and other countries. @ indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

Abstract
This paper will discuss the implementation of a dimensional
data warehouse. A dimensional warehouse is a design or
modeling technique that was developed by Ralph Kimball
(Kimball, 1996) to help us develop our data models in a
structured, visual way. Here we will discuss a strategy for the
design, development and implementation of this structure using
tools available with the SAS@ System. In addition, we will talk
about several modeling techniques, implementation of logical
and physical schemas, transformation and aggregation
strategies, and the loading and unloading of data to the
warehouse.

Scope of this Paper
Data warehousing can mean a Iot of things to a lot of people.
This paper will provide a broad level perspective on the
implementation of a simple data warehouse, or perhaps more
accurately, a data mart. Occasionally, we will dip down to a
technical level on specific issues and then resume our broad
perspective.

The example we will be using throughout the paper will be data
from the Northwinds Trading Company database that is
distributed with Microsoft Access. The database is an order
entry system for a company that sells a broad range of
consumable food products. We selected this database for
building our sample warehouse application for three reasons:
(1) it is available to anyone who has MS-Access, (2) MS-Access
is ODBC compliant and it was easy to get this data into SAS via
SAS/ACCESS to ODBC, and (3) it provides a classic example
of an operational system used in order processing that most of
us have some familiarity with. After all, building a warehouse is
typically done by extracting information from a transactional
system and denormalizing the database (more on this later.)

We will first talk about the design phase of implementing our
warehouse including discussions of what we mean by a
dimensional warehouse. This discussion will carry us through
some aspects of data modeling including the: business (process)
model, logical (dimensional) and physical models we will
create. This discussion will allow us to build our modeling

skills and create the data structure for the start of a SAS
application for the Northwinds Trading Company.

Modeling: Laying the ground work
Any architect tell you the most important part of building a
literal, or physical warehouse is the plans. Before any mortar is
poured or bricks are laid, the builders must have plans and
specifications. As architects of our data warehouse, our job is to
design a system that ends up with a tool that answers our
original questions. Unlike our counterparts in the physical
realm, the data architect builds a virtual world and has some
flexibility with changes that will occur to the design. As, Ralph
Kimball suggests, “The dimensional model is extremely robust.
It can withstand serious changes to the content of the database
without requiring existing applications to be rewritten”
(Kimball, DBMS, August 1996).

We know that the design phase of a warehouse implementation
is extremely important. Most of us are hard-core SAS
programmers, teething on our early days of PROC Summary
and the DATA step and haven’t had any real training in
building a data warehouse; much less formalized training as a
data modeler. So how can we be expected to build a system that
is flexible?

Types of Data Models

Data modeling is a science. Based on the use of well-defined
terms and procedures, it is our job to build an understanding of
our data. The data model helps us understand and even
visualize relationships among our data.

During the planning and design phase of the data warehouse
project, we really need to come up with a Requirements
Definition Document. This document should describe the end-
users expectations/needs, IT’s expectations and needs, define
what we want to try and tackle, a scope of work or work plan,
and laying out some models to help us understand our problem
(questions we want answered) and our data. This last piece is
what I’d like to cover.

1

Models help us understand how things are connected, visually.
Industry experts talk about a three model architecture (Inmon,
1993), and although they otlen refer to these models by
different names, they all refer to similar concepts.

● Business Process Model

● Logical (Dimensional) model

● Physical model

Business Model

The business model (Inmon calls this the high-level ERD or
entity-relationship level), helps us understand what business
questions we are asking. Here we focus on the what information
is available; i.e., the attributes and relations between them. We
do not try to put any thought into how the data should be
accessed or organized, nor what it will be used for. For example,
in Northwinds Trading Company database, we might want to try
and answer some of these questions during the business
modeling process:

1. Who bought the products (customers and their structure)?

2. Who sold the product (Sales organization, etc.)?

3. What was sold (product structure)?

4. When was it sold (time structure)?

5. What are the characteristics of the sale (discount, etc.)?

OLTP is from Mars vs. OLAP is from Venus

The way that we process information in a transactional system is
very different from the way we want to analyze that data. In
OLTP, or On-line transaction processing, systems such as
financial, order entry, work scheduling, and point-of-sale, we
want very fast response times with no redundancy and only the
most current data on-line.

In contrast data required by decision support analysts has a
lengthy time horizon, is redundant to the support of varying data
views, is often summarized and is non-updateable. In order to
provide data to decision support analysts, relevant operational
data is extracted from OLTP systems, cleansed, encoded (i.e.,
data and dimensions made to be consistent), and summarized.
After being transformed into a format suitable for decision
support, the data is uploaded into the data warehouse. The
systems that we use to analyze data from the OLTP programs
are called OLAP, or On-Line Analytical Processing. The data is
organized very differently in these two scenarios.

“breaking” information out into separate tables is know as data
normalization.

OLAP, on the other hand, needs the data efficiently structured
for end-user reporting and decision support applications. As a
result, the data tends to have a lot of redundancy. This process
is called de-normalization.

Typically the way in which we talk about a transactional system
(OLTP) is by reviewing its’ ERD or entity-relationship diagram.
Figure 1 illustrates the Northwind ERD. We can easily see the
main subject areas and relationships. (In Appendix A, you can
find the entire entity-relationship diagram for the Northwinds
database). -

b’%, ,

--i ~-

9

Categories
.—— Orders

Employees

F

Suppliers
Order Details

w-i
1.”
Figure 1. Main subject Area ERD

The diagram shows the relationships between tables in our
database. Notice that the Order table is where most tables feed.
This will be key in deciding which facts or subjects we want to
model.

In our analysis tool (OLAP), we want the data to be relatively
flat so we can calculate summary statistics without having to
perform complex joins whenever we want a simple report. Table
1 shows an example of data that has been flattened out, or de-
normalized. Note that the Order ID field contains duplicate
records whereas in the relational model, this would be stored in
a separate, normalized table.

C@win OnkrOat* Country .,, abfmmrr Extended Prica

11044 20-Apr-95 Poland .,, Margaret Peacock $591.60

11045 20-Apr-95 Canada .,. Michael Suyama $37.50

11045 20-Apr-95 Canada Michael Suyama $1,272.00

11046 20-A#r-95 Germany ,.. Laura Callahan $722.00

11047 21-Apr-95 UK ,,, Robert King $480.37

11077 03-May-95 USA Nancy Davolio $26.OQ

Table 1. De-normalized data structure

Questions we can ask

Understanding our business processes and asking questions, will
help us understand how our business is organized. This begins
the development of our functional requirements. Figure 2
shows us the main subjects found in our operational data.

OLTP uses a relational model in which all the data is broken out
into separate tables to reduce redundancy, and eliminate
duplicate key information, among other things. The process of

2

Time

Customers Employees

Products

Figure 2. Main Subject Areas

As we will soon find out, the main subject areas are our
“subjects” for analysis. At the intersection of each line, we can
answer questions about our data.

Note that up to this point we have not talked about data we have
in the system on our customers or our products. For example,
we want to ask the following question:

In order to complete this we have to figure out what level of
granularity (how far down does our detail data go) we have in
our data.

When considering a measure such as revenue or sales, it is
important to consider what data is available. Does sales
information exist for each of my products? Does sales data exist
for each of the sales reps? Does Sales data exist for the last five
years? Metrics, such as Sales, do not exist in isolation, but rather
in the context of dimensions such as Product, Employee,
Customers, and Time which define what type of data is
available. It is natural to think of data multi-dimensionally as
shown in Figure 2. Sales revenue is the metric and is qualified
by the dimensions of Customer, Product, Employee (Sales Rep)
and Time.

Our data doesn’t have marital status coded for each of our
customers. The other issue is one of effective dating. An
effective date in our operational system tells us something about
the customer on a given date. For example, even if we had the
customer’s marital status, we would not have known their
marital status for the time period we requested the data.

Dimensional (Logical) Model

During the analysis of the logical model we start to explore our
functional requirements. What is it that we really want from the
information we have about our organization, and how is it
structured.

Our next step is to define and agree upon our subject areas that
we identified in our business model. We developed some
questions about our data. This led to categorizing these into our
subject areas. Next we need to understand what time
information we have and how far down we want to go with each
subject. Here we decompose the data subjects into data entities
comprising facts and dimensions (here we introduce the
dimensional model).

A dimensional model is the proposed data modeling and design
technique for the structuring of warehouse data. Ralph Kimball
(Kimball, 1996) talks about the dimensional model (or start join
schema) as if we could visualize it as a cube. The dimensions of
the cube make up the dimensions of our warehouse. By using
the image of a cube, the model can be better understood.
“When a database can be visualized as a “cube” of three, four or
even five or more dimensions,” Kimball states, “people can
imagine slicing and dicing that cube along each of its
dimensions.”

For example, in our data we know we have customer, products,
employee and time. If we were to visualize this as a
dimensional model, we would first visualize the three primary
subjects: customers, products and employees in a cube.

~
Figure 3. 3-D Model of our Main Subjects

Our three dimensional example can be extended to four
dimensions by adding a time dimension to indicate the month of
the year in which a sale was made. Visualizing a fourth
dimension is more difficult than visualizing three. Imagine
twelve boxes depicting the months of the year into which our
cube is placed. When the box is placed in the JANUARY box,
the cells contain information for JANUARY. When in the
FEBRUARY box, the cells contain information for the month of
FEBRUARY, and so on.

Figure 4. 4-D Model with the time dimension

3

This paradigm can be extended to five or more dimensions.

Kimball suggests that the data loaded into the warehouse is one
of two types: a fact or a dimension. A fact is something that
can be measured, they are numeric and generally continuous
(e.g., sales) and are used to calculate some statistic.
Dimensions, on the other hand, are pieces of information which
categorize things. Examples here include, regions, sales people,
fiscal quarter and so on.

Let’s take this opportunity to review our example. In our dat~
the metric is sales revenue. We have four dimensions as
depicted in Figure 4. At the intersection of two or more
dimensions, we have a fact. For example, let’s take the example
of a two way intersection: product B sold to customer 2.

Figure5. 3-D Model of our Main Subjects

If we calculate a summary statistic, such as sum of sales
revenue, we could now answer: how much money did customer
2 spend on product B?

Obviously, we could come up with more complex questions for
ourwarehouse which involves three or more dimensions. This
is where the multi-dimensional database plays a significant role.
The ability for users to slice-and-dice the data is done at a
dimension level. Ranging is when users want to restrict their
view toattributes on a dimension. Inthisscenario, a user might
want just a few values from each dimension (e.g., I want to
know how much revenue was generated by two of my
employees from my two largest customers in the beverage and
produce categories.) Figure 6shows thissituation.

[

c

;=
T
of
M
E
R

Figure6. 3-D Model ofour Main Subjects

In sum, the logical model helps us think about how our data is
organized and whether or not we have the granularity in our
datatoanswer the question(s). Thenext phase istodevelop the
physical model.

Physical model

The physical model in the warehouse design gets into the nitty-
gritty of what data we have available and how should it be
stored. The physical design ofourdata is called a schema. A
schema for our data warehouse can be represented by one or
more design constructs such as:

● entity-relationship model

● star schemas

● snowflake schemas

● fact-constellation schemas

● persistent multidimensional stores

● or summary tables

Others have talked about the use of such modeling techniques
(e.g., Betancourt, 1996; Kimball, 1996; McGuff, 199 and Red
Brick, 1995; Raden, 1995), so I will skip this and let you review
those articles for your own edification.

In considering the data warehouse data model, it is useful to first
review the types of tables found in a data warehouse. The three
types of tables are:

● Primary Data Tables

● Descriptor Tables

● Characteristics Tables

Primary Data Tables contain both metrics and attributes, and
contain the data that end-users are seeking. In Figure 7, the
Primary Data Table contains the attributes: ProductID,
CustomerID, EmployeeID and the metric Sales. In large data
warehouses, the full-text attribute description is not stored in the
Primary Data Table, but rather in a Descriptor Table. Numeric
element ID codes are stored in the Primary Data Table. These
numeric ID codes index faster, yield smaller ind~ces, and
provide faster “WHERE” clause matching.

Descriptor Tables often contain only two columns, the attribute
ID code and the common-English description of the attribute.
There is a one-to-one relationship between the ID and the
description. These tables replace the ID codes used in queries
with common business terms familiar to the user. In Figure 7,
there are three Descriptor Tables which map ProductID,
CustomerID and EmployeeID codes to their respective user-
understandable business terms. In smaller warehouses, where
load performance and storage concerns are less of a problem,
text descriptors may appear in the Primary Data Tables this
increases data comprehensibility.

4

uProducttD

R

PmducUD

EmployeeID FrcductName Product

CustomerID
SupptierID Description
etc...

Primary Data EhploycdD
LastName
FirstName Employee

TMe Description

elc...

l-iiCustomedD
CustommName Customer

etc... Description

l—nCuslomedD
ContactName Customer
ContactTitle haracteristic
Address
C& (tEl)
Region(lS4)
POstatCOde(IE3)
Counby
1.=... I
I I

rigure 7. Data model depicting dal
rarehouse tables

1

Characteristics Tables contain additional information about an
attribute and can be used to segment data in an ad-hoc manner.
Each column in a Characteristics Table represents an additional
attribute that can be used as a filtering criterion in queries. In
Figure 7, there is a single Characteristics Table which contains
additional attributes related to the Customer attribute. Using this
Characteristics Table, Sales could be segmented by the location
of the customer, or any other attribute in the Characteristics
Table.

Our task is now to develop the databases to help us answer our
questions. The schema we use will guide our programming
tasks to that end. The star-schema and the snowflake are the
most widely use schemrrs.

Product

Pductro 4-
PmductName
SupplierW
CompanyName
CategOrylD
Catego~Name
Description
Discxmtinued

Fact Table

Employee

r~EmployeeLD
LastName
FirstName
Title
HireDate

Time—

•1
Date
WeekOf
Month
Quarter
Year

L pm---- 1~
Emr)loveeID

lCu:tornerID +-&

,....-.. OrderDate
~........ ShipDate

UnitPrice,.
Quantity
Dkcount
ExtendedPrice

L Customer

rCustomerID
CompanyName
City
Region
PostalCode

gure 8. Possible Star-schema model for the Northwinds Tradil
Company system.

The star schema model in figure 8 is based on a central Fact
Table surrounded by any number of Dimension Tables. The
fact table has few columns or variables but many observations.
These are linked by dimension tables that are typically short and
wide, that is, many columns, few observations.

The snowflake schema is similar to the star schema but
normalizes our data by breaking out the lookup tables (called
outrigger tables). One example of the data in the snowflake
schema is shown in Figure 9.

d-?Fp:z;E!!I........OrdcrDat.
Time

Customer
i.. .Shi,i)a(c—

❑
Date!UnitPrice

❑
Ctimerm

WeeLm Quantity
-Y~
q

MOnh Discount
Q!ati

w.

Year
Exte”dedPric POsllllcnta

@wlY

‘igure 9. Possible Snowflake schema model for the Northwind
Trading Company database.

Here the snowflake schema is normalized even more than the
star schema by breaking out the categories and supplier
information into outrigger tables. The normalization of the
dimension tables reduces storage overhead by eliminating
redundant data vaIues in the dimension table. Normalization
comes at the cost of complex queries which are often more
difficult to use and implement and require more processing at
run-time.

Implementing the Warehouse
There are a variety of tasks that are required. in order to build a
successful warehouse. We’ve reviewed the steps in building our
models which helped us understand and narrow our questions.
The logical and physical models helped us structure the data for
the end-user application.

Now we’re ready to start building our physical model. The
tasks now at hand are:

●

●

●

●

●

●

●

●

●

●

●

Extraction

Data Validation

Scrubbing (cleansing)

Integration

Structuring

Denorrnalizing

Summarizing

Create fact and dimension tables

Optimize our indexes and queries

Create views

and finally, develop an exploitation methodology that takes
advantage of the technology of multidimensional
databases, EIS, and other query tools.

There is no way that we could discuss all of these topics in this
paper. Instead, we’ll focus on what the users will see and how
we can structure the data in ways that are efficient for both the
end-user and the computer.

5

Extraction

Complicated data warehouse scenarios might entail pulling data
from multiple systems (e.g., VSAM, Oracle, Excel, SAS
datasets, etc.) and bring them together in a common fashion. In
the Northwinds example, we only have one data source that we
pull data from, albeit multiple tables. We are going to build a
fact table and join some dimension information by using the
SQL pass-through facility in SAS. I will also illustrate pulling a
lookup table from Microsoft Access and storing it as a SAS data
view rather than a data set.

Creating our Fact Table using the SQL Pass-
Through Facility

We need to pull several columns from the relational database to
form our fact table. After review, let’s say we decide to use the
star-schema for our physical design (Note: prior to running this
code, be sure to use the ODBC Administrator to set up the
Microsoft ODBC engine to- Access). I named my ODBC
database: Northwind.)

Here I show the SQL pass-through method that creates a table
called WORK. FACT. This will generate 2155 rows and 9
columns. Again, a fairly long and narrow table. You can use a
variety of methods to pull the data to form a fact table.

Creating our Dimension Tables using SQL
Views

The next step is to extract the dimension tables. Here we create
our three “real” dimensions (product, employee and customer)
and perform the extraction’s via SQL data views. There are a
variety of methods we can use, but I like SQL and am familiar
with Microsotl Access’ SQL extensions. Note that in the SQL
pass-through facility, we use the proprietary or native SQL of
Microsoft Access, not SAS.

Time Dimension

We really haven’t talked out the time dimension yet. Our time
dimension is a sort of virtual dimension since we have a date
stamp in which the order was placed (OrderDate) and a date
stamp when the order was shipped (ShipDate). In order to
effectively report on a given time period such as calendar week,
month, fiscal year and so on, we can create the data needed for
our time dimension with the following code.

Note that the code here uses the order and ship dates to
determine the date range and creates two macro variables
(&min_date and &ma_date) which contain the highest and

6

lowest date values in our data. We use this as input for creating
a format called calweek, that we will use later.

Data Transformations

Once we have all of our data extracted into our physical model
(e.g., star-schema), we are ready to start structuring the data for
our analysis application. Up to this point, we only have the
lowest level of detail, or granularity based on our fact table.
The level of granularity in our fact table is a single product
ordered by a customers, sold by a sales rep. Alternatively, we
could have rolled up our fact table to the order which would
have given us all products ordered by a given customer at a
particular time. The way in which we structure the data is
dictated by what kind of answers we look for. In this case, what
would be the implications of this structure?

For performance reasons, we have to decide how we want to
summarize our data. Normally at this step, we would do our
validation checks to look for invalid or missing dat~ out-of-
range values, duplicate records on our keys, etc.

Let’s talk for a moment about integration of our data. As I said
before, our data is coming from a single source: the Northwinds
Trading Company order entry application. In the “real worl&
we would probably integrate this data with other information.
For example, if we had additional information about employees
in the HR system or customer information in the accounting
system we would most likely want to integrate that information
into our warehouse.

Integration can be summed up pretty simply: in order for the
data to be of any use, there must be consistency in the way we
code the dimensions. Remember, data vahres must be consistent
(e.g.,, region numerically coded in the Sales revenue system, but
character codes are used in the accounting system). Also, in the
fact table, the metrics must be scaled similarly in order to make
any sense of the values they represent. Typically in the SAS
world, we can achieve consistency in one of the following ways:

● The SQL procedure

● DATA step statements

● FORMAT

● INFORMAT

● LABEL

● RENAME

● DATA step options

● RENAME

The last piece in our transformation strategy would be de-
normaiize our data. In the snowflake or star schema we have
done some de-normalization, but now we have to make it even
flatter. Combine the fact and dimension tables to form a subject
view of the world. Again in SAS, we typically do this by
joining tables with the SQL procedure or by merging data sets
with the MERGE statement. For example, in our data, if we
want to pull in a product description instead or in addition to the

product ID, we could use the following code to merge in the
product and category descriptions.

Once we’ve done this for all of our dimension tables, we should
have a single table that contains all of the information we need
and we’re ready to start summarizing or aggregating our data.

This code (see above) de-normalized all of the tables into one
central table, ready for summarization in a single SQL step.
Note that we have representation from all four dimensions in
this de-normalized table including the calendar week and year,

“ even though we didn’t have these in any of our original tables.

Aggregation Strategies

Once we have a fully de-normalized table, we can now start to
think about how we want to roll-up or summarize our data for
analysis. We can have the largest impact on performance by
utilizing optimization techniques that take advantage of pre-
summarizing our data. Knowing what to summarize and what
to leave to the user at run-time, will be something that you
hopefully gleaned from your interviews with the users. For
example, what dimensions are they most interested in seeing
(e.g., total sales by customer) or what crossings are most
important to them (e.g., total sales for each customer by product
category.) Let’s proceed as if we had some idea about how the
end-users want to slice and dice the data.

In SAS, there are at least three methods of summarizing data for
our purposes:

7

● SQL and the GROUP-BY option

● PROC SUMMARY

● PROC MDDB

I will discuss each of these by example.

A word about Hierarchies, drill-downs and
dimensions

In our warehouse, we know we have sales information for our
four dimensions: Time, Customers, Employees and Products.
Each of these have several levels that we know our users will be
interested in seeing. Table 2 shows us the four dimensions and
their hierarchies. -

I
EmployeeID Order Company

I

ProductID
Date Name

Region Calendar Region Category
Week

Country Quarter Country

Year

Table 2. Northwinds warehouse dimensions

For example, take note of Figure 10 below to review the
employee hierarchy.

WA UK
+

kgio WA

salrsRe
I I

0
Figure 10. Employee Dimension

Notice that region only has meaning in the USA, so we need to
consider that when adding a region level to the data. To review
the hierarchies in SAS, you can simply perform crossings with
PROC FREQ or PROC SUMMARY. For example, the code
below helps us understand the EMPLOYEE hierarchy.

This produces a summary output dataset containing all of the
possible combinations of salesrep, region and country. We can
use this in our end-user application for very quick
manipulations among the different levels within the dimensions.
Navigating the employee hierarchy is referred to as “rolling-up”
and “drilling-down”.

In Figure 10, we saw that users can roll-up and drill-down
through a single dimension, EMPLOYEE. Well designed
warehouses also allow users to roll-up and drill down through
multiple dimensions concurrently. Thus, in this example, an

end-user could hold the products, customers and employees
constant, while drilling-down or rolling up through sales figures
over the TIME dimension.

In addition to PROC SUMMARY as a method for creating these
aggregate or summary tables, we can also use PROC SQL or
PROC MDDB. The following codes shows these methods.

We used PROC SQL to create a summary table for salesrep by
region by country. Although, not as comprehensive as PROC
SUMMARY, PROC SQL has a tremendous amount of power
when it comes to the calculation of new information when you
create these roll-ups.

Finally, a new entry into the SAS family of products, PROC
MDDB provides methods to build a multi-dimensional database
with multiple hierarchies. The following code shows an
example of how we could build the employee, product,
customer and time hierarchies with PROC MDDB. For
simplicity, I included only the time and customer hierarchy
here.

The code was built to optimize drill-downs in our application.
To achieve an optimal set of subtables, we crossed the drilldown
hierarchies so that no matter where the user is in the hierarchy,
there is a subtable with the appropriate summary information.
Table 3 shows us this scenario.

Time Hierarchy Customer H:erarchy

_Ygar Otr Weekof -Jountrv Region
x x
x x x
x x x
x x x x
x x x x

Table 3. Sample Hierarchy Structure for Northwinds MDDB.

Note that when we build a MDDB dataset, we can only access
data through procedures specifically designed to access this data
(e.g., 3D Graph, Multidimensional Repo~ Org Chart and the
Graphic Variance EIS objects.)

Loading and Refreshing

After you have extracted and transformed your data into your
physical structure, de-normalized and created the summarization
scheme, you are ready to load the data into the warehouse.
There are a variety of methods to take data from your created
structures and develop tools for the users to analyze that

information. Betancourt (Betancourt, 1996) tells us that the
designer must consider three different loading strategies:

1. The loading of data that is already archived or off-line;

2. the loading of datacontained in existing applications; and

3. incremental changes from the operational system since the Iast
time the data was loaded.

We wont go into detail about these strategies in this paper.
However, one of the most exciting advancements in SAS is a
method introduced with PROC MDDB to “drip-feed” or update
our MDDB dataset. For this, we use the MDDB= option on our
PROC MDDB statement.

For example, to update our WAREHOUS.MYMDDB dataset,
we used the following syntax:

This would create a new MDDB data set from the new detail
information.

Conclusion
The goal of this paper was to provide the reader with a practical
guide to data modeling techniques and their implementation
with SAS software. Data warehousing is a complex topic; my
hope is that you leave with a better understanding of the issues
surrounding the design of a warehouse and what implications
those early design decisions have on the decision support
analysts.

We discussed the dimensional model that that helped us think
about, and organize our thoughts about, data warehousing. The
dimensional data warehouse provides not only a framework for
us, but is also a practical guide which fits well with tools in SAS
sotiare.

As the SAS toolset becomes more mature, we hope to see
additional tools to help us manage not only the physical
implementation of our schema(s), but also the business and
logical modeling components.

Acknowledgements
We would like to acknowledge the assistance of ASG, Inc., my
employer, with providing me the time and resources for
developing this paper. Also, a special thanks to John Anderson,
Randy Betancourt, and Mark Mooreman for their assistance in
reviewing this manuscript.

Bibliography
Betancourt, R. “The SAS System in a Data Warehouse Environment”.

Published in the proceedings of the annual convention of the
South Eastern SAS LJrrsersGroup. 1996

Inmon, W.H. “Building the Data Warehouse”. John Wiley and Sons
1993. ISBN 0-471-56960-7

Inmon, W.H. “Information Systems Architecture” QED.

Kimball, R. “The Data Warehouse Toolkit: Practical Techniques for
BuiIding Dimensional Data Warehouses”. John Wiley and
Sons 1996. ISBN 0-471-15337-0

Kimball, R. “Dangerous Preconceptions: Discovering the liberating
truths that can lead to a successful data warehouse project”.
DBMS Magazine. August 1996 from
http://www.dbmsmag. com/96O8dO5.html.

McGuff, F. “Data Modeling for Data Warehouses” October, 1996
from
http://members.aol .corn/fmcguff7dwmodel/dwmodel.htm

Red Brick “Star Schemas and STARjoin Technology” White Paper
from http://www.logicworks. corn. 1995

Address
Questions pertaining to this article should be addressed to:

Gregory S. Barnes Nelson
2000 Regency Parkway, Suite 355
Cary, NC 27511
919-467-0505
919-467-2469 (Fax)
gbnfjl,asg-inc.com

9

Appendix A. Entity-Relationship Diagram for the Notthwinds Trading Company
Database.

:mp toyee8

Empbyee ID

LastName
FiretName

Tik

T itleOfCar rb)
Birth Date

Hire Date

Address
cKy
Region

Postalcde
Country

Home Phone

Exlwmkm
Photo

Notes

Reports TO

Sh~pers

B

Sh~perlD

CompanyName

Phone

Cu8h3me rs

T

CusfnmerlD

CompanyName
ContatName

CorIktTitk

Add ress
cl-y

Regbn

I L
PO&lCale

— Country

Phone

I J ●——:
I Orders

OtierlD

C@omerlD ~~

EmpbyeelD (F~
O rde rkte

RequiredDate

Sh~pedkte
~ Sh~Vi (F9

Freight

Sh ~ Name
Sh@.ddress

Sh~City

ShpRegbn
S h@P@alCale

S h~Cm.I nty

Categorks

B

Category ID

CategoryName

Des+tiin
P“tiuE

CampanyName

ConktName
Con&iT Me

Add=aa

Cty
Regbn

P03talCde

‘, L-=3==-
County

L

Phone

Fax
.

h ●r
PKdu*

Unit80n Order

Reorde rkve I
Disomdinued I

10

	Main TOC

