
1

Beyond Field Validation:
Incorporating the Batch Edit Into the Total Data System

John Quarantillo, Westat Inc., Rockville, MD
Judy Rayner, Westat Inc., Rockville, MD

ABSTRACT

Computer Systems professionals have always been faced with the
problem of ‘dirty data’.  In the past, errors were detected using
batch edit programs to identify errors.  The output from these batch
edits was then reviewed, corrections were transcribed onto coding
sheets, then keyed, and finally applied to the data using a batch
update program.  With the advent of custom interactive data entry
systems, many edit checks were built into the data entry system,
replacing the batch edit process.  There are clear advantages to
this, but in the interest of speed and simplicity, the data entry edits
were not as robust or thorough as the batch edits of the past.
Many complex checks were left undone.  The approach that we
describe uses the SAS® system, and SAS/AF® to combine a
customized interactive data entry system with improved batch
systems, taking advantage of the strengths of each to produce an
integrated system for data entry and cleaning that is both thorough
and easy to use.  Methodologies such as those outlined here are
important additions to the front end of any data warehousing effort.
Our system is used under, but not limited to the MVS and Windows
environments.

INTRODUCTION

In the research environment, it is often difficult to have complete
control over the quality of the data that are collected.  This can be
due to errors in the original data, illegibility of the initial documents,
a failure to consult all available materials at the time of data
collection, judgment and/or careless errors on the part of the data
abstractors, and keying errors.  These errors have traditionally
been detected using a computer program that produces a  hard
copy listing of the potential errors on which clerical staff note the
corrections.  These corrections are then keyed and used to update
the data.  This process is repeated until the edit output contains no
errors, or only errors classified as “overrides” because for some
reason they cannot or should not be corrected.  At this point the
data are as “clean” as can be achieved with reasonable effort.

Although this methodology has successfully helped in the
resolution of errors for a number of years, it does have a number of
drawbacks, which, until recently, were accepted as unavoidable:

• errors can occur in both the abstracting step and the
keying step during data entry,

• while editing, there is no easy way to obtain information
about the keyed data that were not printed on the edit
output,

• additional errors can be introduced during both the
recording and keying of update records,

• the revised record cannot be viewed at the time the edit
decision is made,

• statistics about the nature of the errors are not easily
obtained,

• the update process seems excessively involved when
correcting a small number of errors,

• the same overrides must be reviewed on every pass of
the edit, and

• the update process is rather time consuming.

The project requirements for this application were that it address
the weaknesses listed for the existing edit methodology without
adding any new limitations.  The software needed to be easy to use
for non-programmers, and it had to run on both the IBM mainframe
and the PC with few apparent differences to the user.  There were
insufficient funds to develop two applications, so we needed to be
able to develop one product that would run in both environments.
We wanted to be able to use the same software both for data in a
large, expanding, multi-user data warehouse and also in a
separate, smaller, single-study application.  The final product would
also be integrated into a larger, interactive system that provides
data input, querying, reporting, and analysis support.  SAS®
software seems to offer one of the best environments today in
which to develop such versatile applications.

DESIGN OF REVISED PROCESS

We decided to use SAS/AF® software to create the data entry and
edit modules, because it provided the needed interactive support,
offered greater power and flexibility than SAS/FSP® software
procedures such as FSEDIT, and would run within the specified
hardware configurations.

Data Entry Component

This component of the system included application specific
interactive data entry whenever practical.  By using the data entry
component, the abstracting step was often eliminated.  Table
lookups, pop-up selection lists, and other real time data validation
methods were used to eliminate most keypunch errors.  Many
errors that would have been introduced at the time of abstracting
the hard copy data were also eliminated.  Examples of this type of
error are invalid codes, fields out of range, etc.  The user is notified
of such errors at the time of data entry, and the errors are corrected
before committing the record to the database.  However, edits for
more complex errors were not included in the data entry software.
Attempting to make the data entry system ‘foolproof’ would cause
the data entry component to be slow and cumbersome.  The more
involved edit checks were included in the batch edit that is to be run
separately from the data entry process.  There are also times when
data will not be entered using the system data entry software either
because it is already in electronic format or an abstract is just more
practical.  In these cases a full edit program will be needed.  Either
way it is apparent that the improved modes of data entry do not
eliminate the need for some editing support.



2

Batch Edit Component

Using SAS/AF allowed the batch edit to be incorporated easily into
the overall system.  The batch edit itself can be written using base
SAS software.  Existing batch edit programs could be incorporated
into the system.  Our application required a more complex batch
edit that traversed the relational database for each logical record,
so the batch edit was written using SAS/AF Screen Control
Language.  An interface was developed to create a menu driven
environment that was simple to use.  From the user’s point of view
the following steps are followed to edit a data file.

1. Run the batch edit.  A menu option is selected to run the
comprehensive edit on the file.  The first time the batch
edit program is run on a given data file, it creates an error
file containing information about the errors detected in the
file and initializes an archival error file.  It also creates a
hard copy listing, which optionally may be printed,
displaying the records with errors and printed information
about each error.

2. Review the hard copy output.   This step is optional, but
is highly recommended for large or complex data files.
This step involves taking the hard copy printout of the
errors and using it to resolve all of the more complicated
errors.  This listing can be taken to data experts, original
data sources, a convenient work space, or other locations
for resolving errors.  The listing offers a convenient place
for jotting notes on how to resolve the errors.

3. Interactively classify and correct errors.   The error
corrections and error types are now entered into the
computer.  If the data are simple, step 2 can be skipped,
and the person entering the corrections can sit down at
the computer and begin this step as soon as the batch
edit has completed running.  The error review/update
process is facilitated by an error correction module that
displays on the screen each error detected by the batch
edit.  The user has the option of processing the errors
sequentially or directly by searching for specific errors.
The user classifies the error by type, and the program
stores this code in the error file.  The user is also
permitted to skip errors and review them at a later time.
For our applications we have five valid error types:

• Override.   An override is a possible error that has
been found by the batch edit, but that for some
reason cannot or should not be corrected.  If, during
the review/update process an error is classified as
an override, that classification is stored in the error
file.  Any subsequent runs of the batch edit program
checks any errors found against the error file.  If an
error has been previously classified as an override,
that error is not included in the batch edit output.
The override status is removed if the value for the
field is, at some later point, changed.  This
eliminates the re-reviewing of previously identified
overrides.

• Pending.   A user would classify an error as
pending if the correct resolution cannot be
determined during this edit cycle, but a correction is
expected some time in the future.  The next pass of
the edit will not execute until an error type has been
entered for every error.

• Keypunch , Abstracting , or  Coding Error.   For all
other error types, the user is taken directly to the

data entry screen containing the problem field(s).
The user can then correct the error.  Because the
update program uses the original data entry
software, any of the simple edits included in the
data entry software are enforced at the time of error
correction, decreasing the likelihood of  introducing
additional errors.  The different classifications
distinguish between the perceived sources of the
error.  Clients often request statistics on error rates
for particular sources, so this type of data will
facilitate the reporting of these statistics.

4. Produce error summary report.   The program supports
the display and printing of error summary reports.  These
can be custom designed for the application and will
usually include tabulations on error codes and variable
names.

5. Repeat the process until the data are clean.   After a
code has been entered for all detected errors, step 1
should be repeated.  However, for all subsequent passes
of the batch edit, the actual processing is somewhat
different.  The edit program first appends the error file
which now includes error type codes to the error archival
file and re-initializes the error file for the upcoming set of
detected errors.  If an error is detected during a
subsequent edit pass, it is compared against the error
archival file to determine whether the same error has
been detected previously and, if so, what error code it
received.  Errors that have already been overridden are
not reported again.  Otherwise the steps are the same as
in the first pass.

The manner in which the records are accessed for error correction
was designed for quick movement to the most likely problem area
on the record for the error being processed.  In many research
studies, a considerable amount of related data are stored in
relational databases, where data for a single entity, such as a
person or an exposure survey, are contained in as many as four or
more related data sets.  Sometimes three or four data entry
screens are required to display the data from just one record in one
of these files.  Therefore, it can take a noticeable amount of time to
search for the correct record in the correct file and then page down
to the correct screen.  Taking the user directly to the most likely
problem area often  decreased access time by a factor of four or
even more.

One of the goals of our system was to develop something that the
users would find somewhat familiar, but better.  The revised
system, as described here, is still based on the batch edit.  This
strategy was chosen for a number of reasons.  Some of the logic
checks that get requested involve multiple files and between-record
checks that can be time consuming and inefficient when
implemented interactively.  When programming a collection of such
checks, it is often most efficient to pass through the data set
multiple times using different orders and relationships for different
checks.  However, most users prefer to see all the errors for a
given entity together so the hard copy records only need to be
pulled once.  In addition, the order in which they prefer the error
messages to be presented for a given entity is often different from
the order in which the errors are identified.  As a result there are
many reasons why the order in which errors are discovered is not
the order in which they should be presented.  Such reordering is
best handled by a batch job.  The printed output is often a large aid
in resolving the errors because it can be taken to the place or
person with the solution, provides a convenient place to jot relevant
notes, and can serve as a written record of the decisions.
Therefore a batch edit avoids tying up the system while



3

complicated checks are conducted, and it facilitates the creation of
a better error display layout and order.

ADVANTAGES OF REVISED PROCESS

By combining the data entry system with the batch edit, the end
product proved to be as powerful as it was useful.  Listed below are
the objectives met by the combined approach:

1. Eliminates Abstracting.   The implementation of the
interactive data entry system using SAS/AF allows the
users to perform data entry directly from hard copy.  All
coding of fields is handled using selection lists.
Therefore, errors or problems that would be introduced
during abstracting are avoided.

2. Interactive Data Entry System Reduces Errors.   Many
coding, abstracting, and keypunch errors are eliminated
by the implementation of edits during the data entry
process.

3. Amount of Data Keyed for Updates is Reduced.   All
the information identifying the potential error, its record,
and its field(s) are stored in the error file. This information
is used by the review/update program to zoom the user
directly to the proper place to update and correct the
record.  Therefore the user is only keying the update
information, not any of the identifying information
necessary to apply the update to the correct field.
Problems such as the miskeying of record and/or field
identifiers are minimized.

4. Speed of the Update Process is Increased.  The update
process speed is greatly increased by not requiring the
user to navigate to each offending field before making the
updates.

5. Number of Update Steps is Reduced.   By combining
the recording, keying, and actual updating into one step,
the coder makes the correction directly to the problem
record.

6. Subsequent Errors are Reduced.   By using the lookup
tables and other features of the interactive data entry
system, the data entry edits are applied to the updates at
the time of the error review/update process. Potential new
errors are caught before being introduced.

7. Updates are Done in Context.   It is often difficult to
discern the correct value for a field without the knowledge
of the contents of other related fields.  The update
interface connects you directly to  the data entry system,
giving you the ability to review all the fields on a record
and even other records, prior to keying the update.  After
keying the update(s), you see the revised record in
context, allowing you to see if the correction is
appropriate.

8. Re-review of Overrides is Eliminated.   The batch edit
must be run repeatedly after each update session until no
resolvable errors are identified.  It is wasteful to re-review
errors previously judged to be overrides.  Once an error is
identified as an override, that error is suppressed on all
subsequent batch edit runs.

9. Reports on Errors and Solutions.   The introduction of
the error file greatly facilitates reporting on the batch edit
process.  Descriptive information regarding number, type,
and source of errors can easily be presented.  Information

gained from these reports will allow data managers to
possibly revise the edit rules.  The table will also make it
easier to provide error rates that clients and project staff
might request.

CONCLUSION

This system combines an old methodology, the batch
edit, with some of the latest advances found in
interactive data entry systems often built into the data
warehousing approach.  The resulting product allows
experienced data editors to have the best of both worlds.
They can submit batch edit programs similar to ones
they have used for years.  They can obtain the same (or
better) hard copy output that they have found so useful in
the past.  But now they can quickly and easily record
error status codes and update the data.  Overrides no
longer need to be reviewed over and over again with
each edit pass.  Clients and managers will be happier
with more informative and accurate error status reports.
By integrating the old and new methodologies and
incorporating the result into a data warehouse type
system, a useful and successful product has been
achieved.

ACKNOWLEDGMENTS

We would like to acknowledge the following:

n David Utterback of NIOSH and Kathy Fraeman
of Westat Inc. for assistance in systems design.

n Savita Marathe of Westat Inc. for programming
the system.

SAS, SAS/AF, and SAS/FSP are registered trademarks
or trademarks of SAS Institute inc. in the USA and other
countries.  ® indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective companies.

For Further Information Contact:

John Quarantillo
Westat Inc.
1650 Research Blvd. Rm. WB236
Rockville, MD 20850

quaranj1@westat.com


	Main TOC

