
The Fast Food Approach to Data Warehouse Reporting:
Using SAS/AF@ and FRAME to Build a Non-Technical User Interface

Grace La Torra, New Mexico State University, Las Cruces, N.M.
Esther D. Steiner, New Mexico State University, Las Cruces, N.M.

Abstract

Many data warehouse implementations are hampered by the
inability of inexperienced users to construct accurate queries.
Users must either rely upon canned reports, or upon the whims
and availability of programmers. The development of a graphical
user interface (GUI) as a user tool can help alleviate these
problems by giving the user power to develop his or her own
queries without extensive knowledge of the structure of the data.

This paper describes the development and implementation of a
GUI front-end user interface called TABLES with SAS/AF”and
SAS Screen Control Language (SCL). This interface is Windows
compatible. TABLES allows the user to access a PC-based data
warehouse of employee related data maintained in SAS libraries.
By choosing from the available options, the user can select and
customize reports, including titles and footnotes. TABLES
provides power and flexibility for the inexperienced user, while
freeing programmers to spend more time programming.

Introduction

We are programmers trapped in a non-programming world. A
large part of our work involves providing ad hoc reports of many
different, but related, flavors. Over the course of the last year we
have designed and implemented a GUI that translates user
selections from button and list selections into SAS code, using
SQL and PROC TABULATE. This has greatly decreased the
amount of time that programmers spend rewriting reports.

Why Did We Do This?

Our office was inundated with requests, each varying slightly from
the others, for information on employee counts and
characteristics.

We have attempted to address this problem over the years
through a number of methods. We began by printing reports for
every information request we anticipated we could possibly have.
Not only had these reports grown to an immense size, but more
often than not the information needed this time was not included,
and yet another report would have to be added, requiring further
programming. Next we tried creating a program that included
every possible field and table, which could then be customized by
removing unneeded data. However, this still required programmer
intervention to customize the program for each request.

Faced with these problems, we wanted to maintain flexibility while
still reducing the amount of time programmers spent maintaining
and developing reports. To this end, we began developing a point
and click interface for the non-technical users.

What Is It REALLY?

The data are stored in a data warehouse, code-named ODYSSEY.
The data come from several different mainframe sources,
including the university’s personnel/payroll system, the financial
records system, and the student records system. Data are
downloaded from the mainframe each semester in ASCII files,
validated for accuracy and consistency, and then loaded into
permanent SAS data sets. There are 15 data sets, encompassing
records for approximately 10,000 employees per semester.
Additionally, there are 30 supporting data sets containing data
which varies little from semester to semester.

We chose to develop the TABLES program in SAS/AF because of
the availability of widgets with which to build a user interface.
Widgets are predefine objects with specific characteristics and
operations. Examples of widgets commonly seen in Windows
programs include radio buttons, check boxes, list boxes, push
buttons, and text boxes. A frame is a screen containing widgets,
and may also have supporting code, called Screen Control
Language (SCL), behind it.

We began developing the TABLES program by identifying the
different ways in which employees could be defined. Originally, we
had used a check sheet (Figure 1) for processing requests.
This request form was used as the basis for the program.

Faculty Types

Campus
❑ Main Campus

❑ Lbrary
❑ Coop Extension
❑ Evaryone Else

o Branches
❑ Alamogordo
❑ Carlsbad
❑ Dons Ana
❑ Grants

Tmebasa
❑ Fulltime
❑ Parttime

Paybaae
0 Annual
❑ Academic
❑ Semestar

Employee Type
❑ Regular
❑ Temporary

Contract Status (Tenura)
0 Contract (Tenured)
❑ Temporary(Tenure Track)
❑ Non-Contract (NONC)

Tenure Type
❑ RFTr (Reg. Ten. Track)
❑ EFTT (Extension)

Instructional
❑ Instructional
❑ Non-Instructional

Employee Classification
❑ Faculty
❑ Professional
❑ Claaaifiad
❑ Graduata Assistants

Leava Status
❑ Full Pay
❑ None

Gander (or ia it Sex?)
❑ Female
❑ Male

Other
❑ Graduate Faculty
❑ Adjunct Faculty

Figure 1.
We were already using SAW for Windows 6.10 on several PC
Pentium” processors. These computers are networked together
using Windows for Workgroups, with the data resid!ng on a
Windows” NT Sewer. We were not interested in introducing any
new hardware or software to meet our needs.

1

Eammand ===>

H,.Fulltime
Parttime

,.* ALL

B

f+cademic
finnua 1

.. .J%mest-er

.q;fiLL

H

Fema 1e
‘Male

*:Jf#LL

~FacUlty

g~:~:: :~a 1

Employee Reports

B@t;Department
Parent Department

ti~::~ Department

8
‘* Do not include employees on leave
~jlnclude only employees on full pay

8
‘Include employees on partial pay

~ tilnclude all employees

~lnclude only Graduate Faculty?

DExclude Extension Faculty?

~Tenured
~Tenure-Track

8

.Tenured and Tenure-Track
Nnn-Eontract

,,*,f) 11

Figure 2.

We began by identifying the different categories by which
employees could be described. We then decided which categories
were best displayed with check boxes or radio buttons. Check
boxes were used for those selections in which a choice was not
exclusive, and radio buttons were used in those cases in which
onlyone selection was appropriate. Insomecases, there were
too manychoices foreithercheck boxes orradiobutfons tobe
appropriate, so list boxes were used instead. At this point our
TABLESframe looked likeFigure2.

BehindtheScenes

BehindtheTABLES framewewrote.SCL codewhich checked the
values of each widget, and then constructed the appropriate SAS
code to generate the desired report. SCL has built in functions that
can be used to obtain the widget values. These include
_GET_TE~_and _GET_VALUE_.The widgetvalueswere then
placed in macro variables that can be used at any point within
SAS code. In our case, we used them to construct the WHERE
clause inaSQL query.ThisSQL querybuildsthe final datasetfor
use in reporting. The reports themselves wereproduced using
PROCTABULATE, whereonceagain theCLASS,TABLE, and
FORMAT clauses were constructed using the macro variables.
TheTABLESSCL code isshown in Appendix 1.

The list box widgets for Department and Tables are populated with
therecordsfrom SAS data sets. Newdepartments can beadded
to the department data set and these will automatically display as
the frame is constructed. Similarly, the names of all available
reports and the SAS code needed to create the reports are
maintained in a data set called TABLIST. These repori names are
also displayed in the list box as the frame is constructed.

When a user selects a table, the appropriate SAS code is
retrieved from the TABLIST data set. Through the use of macro
variables, this code is then included in a PROC TABULATE
statement and submitted to the SAS interpreter. In the interest of
saving time, the Tables list box allows the user to make multiple
selections before submitting the code for execution.

As a part of the TABLES process, the SCL also constructs
footnotes detailing the selections made by the user. This allows
the user to reproduce a given reporl and also provides a means of
documenting the report contents. An example of a reporl produced
by the TABLES program is shown in Figure 3.

Benefits

One significant benefit of this approach is the complete lack of
any hard-coding. New reports can be generated without any
further investment in programming. This empowers the user to
generate his or her own reports and frees the programmer for
other tasks.

2

Institutional Research and Planninn
ODYSSEY Data Warehnuse -- 1996 Fal~

------- -----.- ------- ------- ------- ------- ---
I
I I

I TIMEEASE ! 1,
I
I i

I ------------ i
I

i
I

! I
I FT II fILL I

1 I
1

1 , ------- -----+- -----
i :
I : N II N 11
I, ------- ------- ---+--- ------- --+---- -------- i

I
! GENDER II II I
1 1
I ------- ------- --- : I I

IF II 7.00! 7.00;
I,------ ------- ----+-- ------- ---+--- ------- --, I

:hLL II 7.00: 7.00:
------- ------- ------- ------- -------------- ---

Tables selection: Emp. Categcm-i~s - Faculty Professionals Classified
Timebase - ‘FT’J’PT’ payba~~ - ‘fIcfi~’, ‘f)NNL’, ‘FJEMR’ ~~nd~r - ‘F’, ’m’ ~tat

Departments - deptacrn in [’IRP’] Tenure Status - ANY
Does not includ~s employees on leave

Figure 3.

TABLES isalso easyto maintain. Newchoicescan beeasilv
addedtoexisfing widgets intheframe. Noeditingofthe SC~code
is required to accomplish this.

Conclusion

Use of TABLES within our office has decreased the amount of
time that programmers must spend responding toad hoc reporting
requests.These reporting requirements cannowbemet using
non-technical staff. Reports are self-documenting, with the
selection criteria automatically included in the footnotes.

References

SAS lnstitutelnc. (1989),SAS/AP’Software: Usagearrd
Reference, Version 6, First Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1993), SAS/AP Software: FRAME Entry Usage
and Reference, Version 6, First Edition, Cary, NC: SAS Institute
Inc.

SAS institute inc. (1993), SA&Cornpanion forfheMicrosoft
Windows Environment, Version 6, FirstEdition, Cary, NC: SAS
Institute Inc.

SAS Institute Inc. (1990), SAS Guide to Macro Processing,
Version 6, Second Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1989), SAS Guide to the SQL Procedure
usage and Reference, Version 6, First Edition, Cary, NC: SAS
Institute Inc.

SAS Institute Inc. (1990), SAS Screen Confro/ Language,
Reference, Version 6, First Edition, Cary, NC: SAS Institute Inc.

SAS lnstitutelnc. (1991), SAYScreen Contro/Language, Usage,
Version 6, First Edition, Caty, NC: SAS Institute Inc.

SAS and SAS/AF are registered trademarks of SAS Institute, Inc.
in the USA and other countries. Windows is a registered
trademark of Microsoft Corporation.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

Grace La Terra, NMSU, Box 30001 Dept. 3004, Las Cruces, NM,
88003-8001, (505) 646-6286, grace @?nmsu.edu

Esther D. Steiner, NMSU, Box 30001 Dept CS, Las Cruces, NM,
88003-8001, (505) 646-2096 esteiner@cs.nmsu .edu

3

Appendix I
p*.******.***.********..***********..***********.********.**..*
TABLES.SCL -- This program produces the faculty reports via a
screen selection.

Copyright 1996 by the Regents of New Mexico State University.

Grace La Terra, Institutional Research and Planning.
January, 1996.
******** ***** ************************.....*.**************** /

INIT

P“ Initialize SCL macro variables. ‘**/

length time2 $ 10;
length pay2 $ 25;
length tenstat2 $ 32;
length gender2 $ 10;
length status2 $ 15;
length extflag2 $ 25;
length gradflg2 $ 35;
length leavst2 3;
length deptlist 200;
length tablist2 200;
length nseld 5;
length nselt 5;
length deptsel $ 15;
length fasel $ 10;
length prsel $ 10;
length clsel $ 10;
length run $ 10;
length foottext $ 160;
length foot2 $ 160;
length foot3 $ 160;
length foot4 $ 160;

submit continue;

P** Create department and Tables list for display on screen. ***/

proc sql noprint;

create table depart as
select deptacro

from suppsems.depart
order by deptacro;

create table tablist as
select tabname

from support. tablist
order by tabname;

~“ Build an employee table containing all the information ‘“’/
/’” that MIGHT be needed. *** I

create table emps as
select *, ‘ ‘ as degcode, O as hireyrs, hiredate,

ansalary as acadsal
from all.personal,

empsem.perdata,
empsem.job,
empsem.jobtitle,
suppsems.depart

where personai.ssn = job.ssn
and perdata.ssn = job.ssn
and job.jobcode = jobtitle.jobcode
and job.deptacro = depart. deptacro;

update emps

set acadsal = acadsal * .75
where paybase = ‘ANNL’;

update emps
set degcode = (select min(degcode)

from empsem.degree,
support. degname

where emps.ssn = degree.ssn
and degree. degree = degname.degree
and highdeg = ‘Y);

create table emps3 as
select emps.’, degree, degdate

from emps left join
empsem.degree

on emps.ssn = degree.ssn
where highdeg = ‘Y’;

drop table emps;

create table emps2 as
select emps3.’, tenstat, tendate, ttdate,

tenure. deptacro as tendept, extflag
from emps3 left join empsem.tenure
on emps3.ssn = tenure.ssn;

drop table emps3;

create table emps as
select *

from emps2 left join empsem.rank
on emps2.ssn = rank.ssn;

drop table emps2;

data empssel;
set empssel;
hired2 = substr(hiredate, 3, 2);
hireyrs = 95- hired2;

run:

endsubmit;

return;

call notify (’OK, ‘_get_teX_’, run);

P** Run in this section so multiple reports can be created. ‘“/

if run = ‘RUN’ then do;

/*** Ask the Frame widgets for their present values. ‘**/

call notify (limebase’, ‘_get_text_’, time2);
call notify (’paybase’, ‘_get_tefi_’, pay2);
call notify (’gender’, ‘_get_tefl_’, gender2);
call notify (’tenstat’, ‘_get_teti_’, tenstat2);
call notify (’status’, ‘_get_teX_’, status2);
call noti~ (’extflag’, ‘_get_text_’, extflag2);
call notify (’gradflag’, ‘_get_teM_’, gradflg2);
call notify (’Ieavstat’, ‘_get_value_’, leavst2);
call notify (’deptacro’, ‘_get_value_’, deptlist);
call notify (’deptacro’, ‘_get_nselect_’, nseld);
call notify (’tablist’, ‘_get_value_’, tablist2);

4

call notify (’tablist’, ‘_get_nseiect_’, nselt);
call notify (’deptchck, ‘_get_teti_’, deptsel);
call notify (’fa’, ‘_get_text_’, fasei);
call notify (’pr’, ‘_get_tefi_’, prsel);
call notify (’cl’, ‘_get_teX_’, clsel);

~“ NOWfor the fun -- since the Department List box allows ‘“/
F multiple entries, we have to step through, finding each ***/
~“ value, and then build a coherent line of code from them. ‘“/

dept4 = ‘“ ‘ in (’ ‘)”;
if nseld >0 then do;

dept2 = getiteml(deptlist,l);
dept3 = getitemc(dept2, 1);
dept4 = deptsel II “in (’” II dept3;

do i=2 to nseld;
dept3 = getitemc(dept2, i);
dept4 = dept4 II ‘“, ‘“ II dept3;

end;
dept4 = dept4 II “’)”;

end;

fi” Set a default table in case none was selected, then do the ‘“/
~“ same thing for the tables that we just did for the *** I
~’” departments. However in this case, we must not only find ***/
~“ the selected table values, we must go get the code out of ‘“/
/’” the TABLIST dataset in the Support library. Rather than ‘“/
P“ using a datastep or sql, we use SCL. Yet another way to *“/
~“ get data! .*. /

if nselt = Othen
tab4 = ‘class gender rank; Table Gender all; table rank all;’;

else do;
tabs = open(’support.tablisf’,’i’);
vnum=varnum(tabs, ‘tabdesc’);
tab2 = getiteml(tablist2,1);
tab4 = 8‘;
do i=l to nselt;

tab3 = getitemc(tab2, i);
rc = where(tabs, “tabname =” II quote(tab3));
rc = fetch (tabs);
if (rc k O) then _msg_=sysmsgo;
tabdesc = getvarc(tabs, vnum);
tab4 = tab4 II tabdesc;

end;
rc = close(tabs);

end;

P* Here’s a nifty one! We found that just printing the output ‘“/
~“ without documentation of what went into it is VERY ***1

/“”’ confusing. To remedy this problem we now automatically ***/
~** generating footnotes that document the user selections. ‘“/
~“ Basically, the same macro variables that will be used in ***/
~’” the SQL select statement are placed into the footnotes. ‘*’/

foottext = ‘Tables selection: Emp. Categories -’;
if fasel A= ‘“ ‘,” then foottext = foottexf II ‘ Faculty’;
if prsel k ‘“ ‘,” then fooffexl = foottext II ‘ Professionals’;
if clsel A= ‘“ ‘“ then foottext = foottext II ‘ Classified’;
foot2 =‘ Timebase -‘ II time2;
foot2 = foot2 Ii’ Paybase -‘ II pay2;
foot2 = foot2 II ‘ Gender -‘ II gender2;
foot2 = foot2 II ‘ Status -‘ II status2;
if dept4 A= ‘“’ in (’ ‘)” then

foot3 =‘ Departments -‘ II dept4;
else foot3 =‘ Departments - ALL’;
if tenstat2 k ‘“ ‘ in (’ ‘)” then

foot3 = foot3 II ‘ Tenure Status - ‘ II substr(tenstat2, 10, 22);
else foot3 = foot3 II ‘ Tenure Status - ANY’;
if extflag2 A= ‘“’ in (’ ‘)” then

foot3 = foot3 II ‘ Extension Flag -‘II extflag2;
if gradflg2 A = ‘“’ in (’ ‘)” then

foot3 = foot3 II ‘ Graduate Flag -‘ II gradflg2;

if leavst2 = -1 then
foot4 = ‘ Includes all employees including those on leave’;

else if leavst2 = O then
foot4 =‘ Includes employees on leave with partial pay’;

else if leavst2 = 99 then
foot4 = ‘ Includes employees on leave with full pay’;

else if leavst2 = 100 then
foot4 =‘ Does not includes employees on leave’;

submit continue status;

proc sql;

P“ Now for the real fun -- select only those employees that ‘“/
~“ meet the specified criteria by including macro variables ***/
/*** that will resolve at execution time. *** I

create table empssel as
select * from emps

where empcat in (&fasel &prsel &clsel)
and timebase in (&time2)
and paybase in (&pay2)
and gender in (&gender2)
and status in (&status2)
and (Ieavpay = . or Ieavpay > &leavst2)
and &dept4
and &tenstat2
and &extflag2
and &gradflg2;

update empssel
set ffe = fte / 100;

P*’ Assign the newly created footnotes. ‘“/

footnotel “&foottext”;
footnote2 “&foot2”;
footnote3 “&foot33’;
footnote4 “&foot4”;

quit;

~“’ And run the tables! Note that a proc tabulate can contain ‘“/
~’” mUlfiPl13 table statements, so the user can send several at ***/
l’” once. *** I

proc tabulate data= empssel;
&tab4;

run;

endsubmit:

return:

TERM:

fi” They must be done! FINALLY! ‘“’/

if _status_ = ‘C’ then do;

/’”’ Clean up a little before finishing. Most importantly, put ““/
/’” the footnotes back to how they were before! *** I

submit continue:

footnotel ‘‘;

5

proc sql;

drop table emp~
drop table empssel;
drop table depart
drop table tabiist

quit;

endsubmit;
return;

end;

return;

6

	Main TOC

