
1

The Evolutionary Data Warehouse--An Object-Oriented Approach

Amy Turske McNee, Trilogy Consulting Corporation, Kalamazoo, Michigan

ABSTRACT

This paper describes techniques for designing both the front
and back end of a data warehouse in such a way that
companies can continue to evolve their warehouse and query
tools as their business changes, instead of continuously having
to restructure and rewrite their existing tools. Object-oriented
design and pattern languages are also discussed.

INTRODUCTION

One of the hottest topics in the industry today is data
warehousing and on-line analytical processing (OLAP).
Although, data warehousing has been around in some form or
another since the inception of data storage, people were never
able to exploit the information that was wastefully sitting on a
tape somewhere in a back room. Today, however, technology
has advanced to a point to make access to this information an
interactive reality. Organizations across the country and
around the world are seeking expertise in this exploding field
of data organization and manipulation. It is not a surprise,
really, that business users want to get a better look at their
data. Today, business opportunities measure in days, instead
of months or years, and the more information empowering an
entrepreneur or other business person, the better the chances
of beating a competitor to the punch with a new product or
service.

The interesting thing about this new genre of computer
ingenuity, is its dynamic nature. Business drives data
warehousing, and the only constant in business is evolution--
or elimination. Therefore, warehouses and OLAP tools also
need to be capable of change. Both need to evolve as the
business evolves. Unfortunately, repeatedly, as we have
spoken with those who have built "data warehouses" and
OLAP tools, this has not been happening in the real world.
Many businesses are on their second try to a build a successful
warehouse and the tools they need to reach their data.

Who's On First?

Often, developers are trying to mold the business around the
tool instead of molding the tool to meet business needs. This
happens when those charged with building the tools do not
understand the data, the users, or the business itself.

Many answers to design questions are found in the data.
Warehouse designers need to understand the fundamental

business issues stored on those tapes and hard drives. To build
a successful data warehouse, the designers must understand
the business and data generated from that business. If they
don't, the project will inevitably fail. They also need to
understand alternative design solutions to provide the most
effective solution. Sometimes designers fall into the category
of "If you have a hammer, everything looks like a nail." All
businesses are not alike, therefore not all warehouses are
going to be alike.

Many answers to questions about the user interfaces are found
with the users. End users need to be more involved in
interface design. They need to see work in-progress and
change it to meet their needs. This will also save time,
money, and energy by eliminating months of development that
does not address the issues that are important to the users.

Unfortunately, something inevitably changes the moment
everything is understood and delivered If the software and
data storage mechanisms are not equipped to handle it, the
users are back at square one. The SAS System recognizes
this integral business need to evolve by providing several
tools including SAS/AF® with its object-oriented capabilities,
SAS/CONNECT® with its ability to access several data
sources, as well as the core of the SAS System with its
portability across many operating systems. With the addition
of the new SAS Warehouse Administrator®, the SAS System
provides and end-to-end data warehousing solution.

"The Back End"

One interesting phenomenon that has occurred with data
warehousing projects is an inherent misunderstanding of what
is this thing we call a data warehouse. First, what it is not. A
data warehouse is not a shrink-wrapped product. Contrary to
what some vendors say, you cannot buy a data warehouse.
You can buy a product that facilitates building a data
warehouse, or a product that is a data storage system for a data
warehouse, but you cannot buy a data warehouse. Also, a data
warehouse is not drill-down. Drill-down is a feature that a
data warehouse provides nicely for, but drill-down occurs on
the "front-end."

Okay, so what is a data warehouse. My definition: A data
warehouse is a highly organized process by which you
cleanse, transform, replicate, and organize your data for
fast, consistent, reliable access by a user either interactively
or in batch.

2

A data warehouse is a mechanism for data storage and data
retrieval. Data can be stored and retrieved with a
multidimensional structure--hypercube or relational, a star
schema structure or several other data storage techniques. In
the interest of space, I am going to leave out the discussion of
cleansing, transformation, replication, and meta-data,
however these are also important issues that need to be
addressed and implemented in your data warehouse to ensure
a success.

The Basics

When you begin building the back end of your warehouse,
tread lightly. Sometimes a cigar is not a cigar, and just
because someone says they have a data warehouse does not
mean they do. Let's start with a basic example related to one
warehouse for which we developed a front end. It contained
hundreds of small DBF files. Some data was collected
manually and stored in Excel spreadsheets and then converted
to DBF files. Furthermore, the design of the individual DBF
files set the evolutionary process up for failure.

Let's start with the manual data collection process. This
process was a mess. Human error ran rampant. Every time
somebody decided to change around their spreadsheet, add a
column here, a title there, the programs that converted this
data to DBF files crashed. This process also took upwards of
two days every month.

Next, let's talk about the file layout. The files were set up
horizontally instead of vertically. This may be easier
understood with an example. For instance, Company A sells
diapers and wants to maintain three years of data in their
warehouse. The following is an example of one file:

Filename: A051996

Variable List: RegSmall
PreSmall
RegMed
PreMed
RegLarge
PreLarge
DollRS
DollPS
DollRM
DollPM
DollRL
DollPL

 Day

This is a fair representation of the way the company stands
today. They carry two styles of diapers, regular and premium,
and three sizes, small, medium, and large. They maintain
both the number of diapers sold per day and the corresponding
dollar amount. Furthermore, the name of the file indicates the

date, for instance this file represents "May 1996."

If the company maintains three years of data they will keep
thirty-six files (12 months per year X 3 years). The files will
range from 27 records to 31 depending on the month. Also,
all of the data is numeric, it is either a number representing the
count or a number representing the amount.

The first question that should pop into your head, is "Hey,
what if they add a new style?" What happens is an unhappy
IT person has to go back and add the appropriate variables to
all thirty-six files. In our example company A reports on three
sizes, for both count and amount so our unhappy IT person
has to add six more variables and change all of the programs
that need to take these into account.

Another repercussion of adding variables like this, is some
data storage devices have a limit on the record length. If there
is a limit on the record length, there are only so many styles
and sizes the company can maintain by storing this
information horizontally.

Let's change things around a little bit. For instance, since we
have several sizes for diapers, let's create a variable called
"Size" and store the actual size in the field, i.e., 'Small'. Let's
also create a variable called "Style" and store the name of the
style, i.e., 'Premium'.

We also need to create two more variables called "Amount"
for the dollar amount and "Count" for the number sold.

Now our file looks like this:

Filename: A051996

Variable List: Day
Size
Style
Amount
Count

Instead of having a short, fat file, we will have a tall, skinny
file. We will never have to worry about exceeding the record
length with this technique (that is, unless you store other
extraneous information, i.e., at what absorption level leakage
will occur.)

Another benefit to this technique is that if we start collecting
data on new styles or sizes, none of the files need changing, so
to speak, and our IT person is happy again.

For instance, say Company A decides to expand their product
line to also include extra-small and extra-large sizes. Nothing
in the data warehouse will change, except maybe some
transformation and cleansing programs, to handle the new

3

sizes. They will simply fall under 'Ex-Small' and 'Ex-Large' in
the Size Variable.

Another difference is that data can be stored the way it should
appear to users on reports or during interactive querying. This
eliminates the need to apply formats at run-time. In our
example, the performance will probably not be affected
because we our not dealing with a large amount of data.
However, when data gets to be in the hundreds of gigabytes or
even terabytes, every CPU second counts.

What About Summarization?

In this DBF example, there is another problem that can cause
terrible response time when doing interactive querying. If a
user wants to look at all three years of data, summarized over
each year, essentially every table will be joined. This is a
common request that a user would make. Joins can be very
expensive in terms of time and you cannot make as good a use
of indexing.

Adding More Data

The last issue I am going to address in this example is
maintaining additional data. Currently, Company A only
looks at three years of data. After they have access to the new
interactive querying tool, they decide that it would be great to
look at five years of data. By maintaining separate DBF files
for each month, for every year Company A wants to add, there
will be a minimum of twelve new files for every data source.
This can cause meta-data and performance nightmares. There
is nothing dynamic about this process, it is highly manual.
Changes have to be carried over to programs as well as
modifying any meta-data structures in place.

A better approach to this would be to keep a "Date" variable
instead of the "Day" variable we currently maintain and store
all of the data in one, long, skinny file. You might think,
"But the file will be so large, we will never be able to manage
it!" Now we are talking about data warehousing. When you
hear terms like "hypercube," "multidimensional," and "star-
schema," these are the things that address those large files.

History

Some of this may seem a bit fundamental, however, these are
easy mistakes to make for inexperienced warehouse
designers. One reason for this is current on-line transaction
processing systems (OLTP). Many OLTP systems date back
ten, fifteen or more years, and many are set up horizontally.
Since transaction systems are the basis for the data warehouse,
many designers make the mistake of copying the same style.

Beyond the Obvious

Once we move beyond the fundamentals, they are some
important decisions that need to be made about how to
organize your warehouse for fast access. Let's go back to my
hammer and nail example. Not all data fits well into a
multidimensional structure. If it can't be summarized, it can't
be put into a multidimensional structure. In this case, the
designer will need to decide if a star schema or snowflake
would be appropriate. When I refer to multidimensional
structures, I am not speaking in terms of hypercubes.
Hypercubes are also an alternative, however, since they
summarize across every possible combination of variables,
they get large quickly. Hypercubes are unrealistic when you
are speaking in terms of very large data warehouses.

The Marketplace

Before SAS Institute released its multidimensional product,
we had a client whose data fit well for pre-summarization.
They also wanted to use the SAS System to develop and
continue building and evolving their data warehouse. In the
interim, we developed our own multidimensional navigator by
applying object-oriented design techniques utilizing SAS/AF.

In general, the Marketplace is a program comprised of several
object classes that allows navigation through summarized and
detail level tables, and through a bidding process, determines
which table can solve a problem the most efficiently.

The Marketplace is organized around three types of objects,
query processors, queries, and resources.

Queries are requests submitted to the Marketplace
encapsulated as objects. All the information defining the
query such as group-by variables and where clause variables
are represented in the object.

A query processor resolves the query, via SQL, DATA Step,
etc. The Marketplace currently supports only an SQL query
processor. The query processor knows what to look for in a
query and how to transform that to work in an SQL code
generator.

 A resource is the source of information necessary to resolve
the query. Resources can be individual tables or entire data
marts. The tables can be either summary tables or detail level
data. There is no distinction between the two in the
Marketplace during the bidding process. It only requires that
a resource exist to solve a query.

4

Another Example

Via a front end tool, a user creates a request, i.e., "Show me
the revenues generated from third quarter 1995". The request,
or query, is sent to the Marketplace to determine which
resource, i.e., data mart or data set, can provide the result. It
does this with the use of query processors, which look at all
possible resources, and determine first, if they can process the
request and second, which resource can process the request
most efficiently. The result is returned in the form of a data set
and displayed to the user in a graph or report form.

Who Does What!

The following are the core methods necessary for the
marketplace to function: "CAN_PROCESS," "ESTIMATE,"
and "EXECUTE." There are many other methods contained
in the classes that make up the Marketplace, but I am not
going to cover them.

Can_Process

"CAN_PROCESS" not only determines whether an
individual table can solve a problem, but which data mart it
needs to solve that problem. Also, we have encapsulated
inside "CAN_PROCESS" the ability to not only pre-
summarize data but to pre-apply where clauses for common
groups of data. For instance, the company for which we
initially began development of this design is a manufacturing
company. They look at certain product lines a majority of the
time, so by applying a where clause to the summary level
data, we excluded hundreds of thousands of records from
certain tables to ensure fast access to the most common
queries.

Estimate

"ESTIMATE" is the implementation of the bidding process.
Currently, we base bidding on the number of records in a
table, however, bidding can be based on whatever the
developer chooses by altering one method. We have
considered adding a clustering technique on which to base
bidding as well. Clustering is a means by which you sort and
index your data to reduce the number of pages retrieved into
memory at once thereby increasing the speed with which a
query can be solved.

Execute

"EXECUTE" is the method that resolves the query.
"EXECUTE" delegates to different code generators necessary
to resolve the queries. By delegating to these objects, we can

have different code generators for different problems or
different data marts. Delegation is a technique in object-
oriented programming that allows one object to "delegate"
responsibility for a task to another object by giving control to
that object until the task is completed.

Patterns

By building this design, we have the flexibility to add and
remove data marts or new summary level information at will.
We also have built in performance meta-data to help
determine which summarized tables are being used and which
ones need building.

We accomplished this with the help of several design patterns
taken from the following book: Design Patterns: Elements
of Reusable Object-Oriented Software (Gamma 1995).
Patterns guide the developer in structuring applications for
change and provide the vehicle for developing successful
object-oriented programs.

First, a short explanation of a pattern. The following is a
definition taken from the aforementioned book: A design
pattern names, abstracts, and identifies the key aspects of a
common design structure that make it useful for creating a
reusable object-oriented design. Think of a pattern as a
generalized description of a common programming problem
written in terms of object-oriented design. The two major
patterns used in the design of the Marketplace were the
"Composite" pattern and the "Command" pattern.

A Composite lets individual objects and compositions of
objects be treated uniformly. This is how we can allow either
entire data marts or individual tables to be resources.

The Command pattern encapsulates a request as an object.
The command pattern is what allows us to encapsulate the
details about individual queries and send them through the
Marketplace to be processed and resolved.

AND FINALLY...

Finally, there a few other topics that are worth mentioning.
The environment and indexing strategies that you choose can
make the difference in your warehouse's performance.

Indexing

Indexing is very important to data warehousing. An indexed
data set can dramatically improve the response time of a
query. Simple indexing is useful, but composite indexes can
make the difference between an immediate response and time

5

to get a cup of coffee. For example, on 150,000 records, a
composite index reduced the time from a minute and a half to
about twelve seconds. Indexing does increase the amount of
disk space needed for the data warehouse, however, the pay
off in speed is well worth the cost of disk drives.

Environments

The environment you choose to develop and store your data
warehouse in is one of the most important decisions you have
to make while attempting to complete this impossible task. It
can make the difference between success and failure. The
Institute has released a new product call the Scalable
Performance Data Server® (SPDS) that runs on the Sun
Solaris operating system for Unix. This essentially allows for
parallel processing to occur in SAS that is virtually invisible
to the developer.

Parallel processing is essential on very large data warehouses.
No matter how well you organize your data and clean it up, if
you try to process several gigabytes of data without multiple
processors, you will have time to drink a whole pot of coffee
every time you submit a query. If you are operating in a batch
environment, this may be acceptable, however, if you are
trying to provide interactive access to data, it is entirely
unacceptable.

Also, it is essential to have a separate data server entirely
devoted to your data warehouse.

WHAT ABOUT THE FRONT?

The user interface is the visual representation of the data in the
warehouse. No matter how well you structure your data
warehouse, if the user does not have an easy-to-use interface,
structured to make changes quickly and cost-effectively, the
warehouse will die. It has to have a well-designed foundation
to allow modification to existing functionality. Achieving this
takes some investment initially, but the payoff can be
incredible.

Objects Again!

It is important, from the very beginning, to design every tool
with the idea that some day, it will either change drastically or
will go away completely. (Remember the most dynamic tool
of all is your user!) Therefore, it needs to be easily changeable
or removable from the rest of the application. When you drop
a widget on a frame, determine how it relates to the overall
picture of that frame or even the entire application. Decide
what other tools or widgets it will affect. Keep the widget as
decoupled from any physical aspect of the system as possible.

One pattern that addresses this problem is called "Observer."
It is also known as Model-View-Controller, a term coined by
Smalltalk programmers several years ago. The idea of this, is
when changes are made to a widget (the view) that affect other
parts of the application, the changes are not made directly to
these other pieces. They are made through a non-visual object
(the model). The model then sends out a message to any part
of the system listening for that message that something
affecting them has changed. When a listening object hears the
message, they perform some predetermined action, for
example, a "_REFRESH_."

The benefit of this technique is objects can be added and
removed without affecting existing pieces of the application.
The benefit in the design of OLAP tools is that parts of tools
can be changed or removed without making major changes to
the entire application because all interaction occurs through
the model.

Also, whenever possible, dynamically create your widgets at
run-time. By creating your widgets at run time, you have the
utmost flexibility to change and add new features without
having to create new frames.

The SAS System allows you to position your widgets and add
attachments programmatically. Attachments are an important,
and often neglected tool. Attachments allow you to design
your interface to run in any screen resolution. This is always
important, but especially when you are developing for a
distributed, multi-user environment.

Composites

Composite widgets are also important when designing
interfaces for change. Composite widgets allow the designer
to build a custom widget derived from existing widgets. This
is a powerful feature of the SAS System. Developers can
build complex widgets that are reusable and easy to
dynamically place on a frame. Another reason to use
composites is related to how the SAS System uses resource
entries.

Resource Entries

The use of resource entries is what allows the frame to store
pointers to the classes that contain the definition for each
widget. (It should be understood, that a widget is also stored
as an object.) Resource entries contain aliases that identify the
type of object this class represents. For instance, a graphics
widget has an alias of "Layout."

Along with the alias, when a widget is stored in a frame
definition, the type is also stored. A command push button,

6

for example, has an alias of "Gbutton" and a type of
"Composit." By only storing a two-level name, the alias
and the type, i.e. "Gbutton.Composit," the developer can
switch resource entries at run-time by changing the search
path. Several patterns in the Design Patterns book use this
feature, the "Facade" pattern and the "Factory" pattern are two
examples.

Andrew Norton has written a paper called "Object Interfaces"
that goes into detail about this technique.

Caching

Another useful technique to use when designing and building
OLAP tools is "caching." That is, storing a result and reusing
it until it changes. This technique can save a tremendous
amount of computation, reducing the total time it takes to
return the answer to a query. For instance, when drilling down
through an application, storing the results on the way down
will eliminate the need to recompute the results on the way
back up.

It Really Works!

We installed a first version of a system for our manufacturing
company, and after some testing, they discovered that the
query building screen we initially built was too slow and
cumbersome. They also had additional features they needed
added before rolling the application out to their entire user
population. We also added additional functionality to the
marketplace.

The changes they requested were not trivial, however, we
delivered them in only a few weeks time, at a minimal cost.
Ripple effects were minimized because of the object-oriented
foundation that had been laid for this project. Definition: A
ripple effect is a bug that occurs in something that was
working as a result of fixing a bug in something that wasn't
working. This does not make for a happy programmer.

CONCLUSION

Business has been the driving force behind the data
warehousing initiatives, not academia. Why? They need
information faster and more reliable than ever before.
However, data warehousing is an expensive undertaking for
businesses, and if you don't get it right the first time, you may
not get a second chance. Objects let you get it close the first
time, but give you the flexibility to continue to improve and
eliminate mistakes through iteration.

Building evolutionary systems has always been a goal,
however the technology historically has not been available.

Today, we have the technology; now we need the training and
business understanding to build successful, progressive
systems. Data warehousing requires evolution, evolution
requires flexibility, and flexibility is provided by objects.

ACKNOWLEDGMENTS

Thank you to Andy Norton, without whose mentoring, I would
not be writing this paper and whose ingenuity crafted the
marketplace design.

SAS, SAS/AF, SAS/CONNECT, SAS Warehouse
Administrator and the Scalable Performance Data Server are
registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

Amy Turske McNee
Trilogy Consulting, Incorporated
5278 Lovers Lane
Kalamazoo, Michigan 49004
(616) 344-4100
akturske@trilogy-cnslt.com

REFERENCES

Gamma, Erich, Richad Helm, Ralph Johnson, John Vlissides
(1995), Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA: Addison-Wesley
Publishing Company.

Norton, Andy (1997), "Object Interfaces," in Proceedings
of the 22nd Annual SAS Users Group International
Conferenc. Cary, NC: SAS Institute, Inc.

	Main TOC

