
1

Summarizing Impossibly Large SAS® Data Sets
for the Data Warehouse Server

 Using Horizontal Summarization

Michael A. Raithel, U.S. Customs Service

Abstract

Data warehouse applications thrive on pre-summarized data.
When a warehouse's data originates on a mainframe computer, The summarization that PROC SUMMARY traditionally
it makes sense to take advantage of the mainframe's power to executes can be thought of as "vertical summarization". It is
summarize the data before porting it to the warehouse server. "vertical" because the SUMMARY procedure builds a vertical
The SAS System is the perfect tool to use to summarize data matrix in memory of the different levels/values of the class
bound for a data warehouse. However, summarizing very variables. For example, consider the following code:
large SAS data sets with many CLASS variables can be
problematic even on a mainframe computer. proc summary data=cdsales;

This paper introduces the concept of Horizontal var salesamt;
Summarization. Horizontal Summarization is a methodology output out=sumsales sum=;
that can be employed to summarize very large SAS data sets run;
by every combination of a specific set of CLASS variables.
Horizontal Summarization is designed to work with the The above code would Create the following basic vertical
mainframe operating system and avoid common out-of- matrix during execution of the SUMMARY procedure:
memory and work-space-shortage abends. Horizontal
Summarization was specifically developed and employed as
the front-end summarization tool for a data warehouse 0 total salesamt of all observations
application. 1 total salesamt for each discrete cdid

Introduction

When you need to summarize a SAS data set to create a fact 5 total salesamt for each discrete cdid/state
table for a data warehouse, the SUMMARY procedure is the combination
ideal tool. However, the method PROC SUMMARY uses to 6 total salesamt for each discrete city/state
summarize data via CLASS variables often makes it difficult combination
to successfully summarize a very large SAS data set with 7 total salesamt for each discrete
many CLASS variables. If you have ever attempted such a cdid/city/state combination
summarization, then you have probably experienced problems
with long-running batch jobs, memory abends, and/or work
space shortages.

The root of these problems lies in the way that the
SUMMARY procedure processes data via a CLASS
statement. The CLASS statement instructs the SAS System to
form subgroups based on every distinct combination and every
discrete value of each CLASS variable. PROC SUMMARY
keeps these combinations in a matrix in memory, sorting the
input observations as they are summarized. Because of this
approach, the CLASS statement is designed to handle a small
number of discrete values or distinct levels. Summaries
having CLASS variables with a large range of values, or that

have many CLASS variables, can experience processing
delays and computer resource problems.

 class state city cdid;

type Description

 2 total salesamt for each discrete city
 3 total salesamt for each discrete cdid/city

combination
 4 total salesamt for each discrete state

In the example, _type_ 1 through 7 would each be composed
of vertical sub-levels. Each sub-level would be constructed
from the discrete values of its CLASS variables. For example,
if there were 50 discrete values of STATE, _type_ 4 would
have 50 vertical sub-levels. Each sub-level would hold the
running total of SALESAMT for the particular value of
STATE. It is easy to imagine how the matrix could grow,
vertically, with 50 discrete values of STATE, and hundreds of
discrete values of CITY and CDID . That is the problem with
traditional, "vertical" summarization.

2

Horizontal Summarization Overview variables in a particular _type_. In the example,

Horizontal Summarization minimizes the "verticalness" of a
summarization by performing each _type_ of summary
separately. The separate summaries may be done sequentially,
or in parallel batch jobs. The resulting output SAS summary
data sets can then be combined into a single data set,
containing all summary _type_'s, or they can remain as B. Sort the data set by (the newly modified values of)
separate data sets. STRING.

In the example above, Horizontal Summarization would C. Execute PROC SUMMARY with the NWAY
employ eight different summaries to sum the CDSALES data
set. Each summary would use the NWAY option and the BY
statement. Each summary would use a single variable
combination that corresponded to one of the _type_'s, above.
For example, the second summarization, which corresponds
to _type_ = 1, would used only CDID as its BY variable.
The third, corresponding to _type_ = 2, would use CITY as
its sole BY variable; the fourth would use CDID*CITY , and
so on. Together, the eight output SAS data sets would contain
the fully summarized CDSALES SAS data set.

Horizontal Summarization of a SAS data set is realized by
implementing the following algorithm. The first three steps
get the data into the proper shape for the multiple
summarizations. The last step actually does the bulk of the
Horizontal Summarization work.

1. Create a new variable, called STRING, in the SAS data
set that is to be summarized. STRING is set equal to the
concatenation of the variables you intend to use in your
summarization. In the example above, we would have:

string = state || city || cdid;

2. Sort the original SAS data set by variable STRING.

3. Summarize the original SAS data set by STRING, using
the NWAY SUMMARY option and the BY statement.
This yields an output data set that is summarized at the
lowest level of granularity for the key variable, STRING.
Since STRING is the concatenation of all ("CLASS")
variables, the resulting data set is now summarized at the
highest value of _type_. In the example, STRING is the
concatenation of STATE, CITY, and CDID, so the output
data set is now summarized at the equivalent of _type_
= 7.

4. Iteratively modify, sort and summarize the SAS data set
created in Step #3 to get each of the other summary
type's. This is done by systematically doing the
following:

A. Blank out the portion of STRING that corresponds
to the variables not being used as “CLASS”

when the _type_ = 5 summary is about to be done,
the middle bytes of STRING, corresponding to
CITY are set equal to blanks. Thus, only the values
of CDID and STATE are taken into account in the
SUMMARY procedure.

option and a "BY STRING" statement.

D. In the output data set, decompose STRING back into
its original component variables via the SUBSTR
function. In the example, this would be coded:

state = substr(string,1,2);
city = substr(string,3,20);
cdid = substr(string,23,8);

Broken into its fundamental steps, Horizontal Summarization
is not overly complicated. By executing summarizations
serially, and limiting the number of "CLASS" variables to a
single BY variable (STRING) in each summarization, no
overly large CLASS variable matrix is created in computer
memory. The only real complication comes in having a
methodology to systematically control the execution of Step
#4.

Controlling Horizontal Summarization

Horizontal Summarization makes use of a binary counter and
bit testing to determine which SUMMARY _type_ should be
executed. The binary counter indicates which sub-field(s) in
STRING should have their values used in the summary, and
which should be set to blanks. Only the sub-fields that
contribute to a particular _type_ of summary are left non-
blank. To better understand this concept, consider the table
on the next page.

3

 STATE CITY CDID _TYPE_ Counter Represented
Binary Portion of STRING

 0 0 0 0 '000'b _____ ____ ____

 0 0 1 1 '001'b _____ ____ cdid

 0 1 0 2 '010'b _____ city ____

 0 1 1 3 '011'b _____ city cdid

 1 0 0 4 '100'b state ____ ____

 1 0 1 5 '101'b state ____ cdid

 1 1 0 6 '110'b state city ____

 1 1 1 7 '111'b state city cdid

In the table above, the variable CDID only contributes to the Macro %BIGLOOP in the code example, below.
summarization when the _type_ values are 1, 3, 5, and 7, and
the binary counter values are '001'b, '011'b, '101'b, and '111'b.
When the _type_ values are 0, 2, 4, 6, and the binary counter
values are '000'b, '010'b, '100'b, and '110'b, CDID does not
contribute to the summarization. So, the algorithm for
Horizontal Summarization blanks out the portion of STRING
occupied by CDID when the binary counter is equal to '000'b,
'010'b, '100'b, and '110'b. Of course, the same is done for the
non contributing binary counter values of STATE and CITY.

The binary counter is a variable of format binaryX. , where X
= the number of individual variables that were concatenated
to form STRING. In the example, the binary counter would
be declared: format counter binary3.; Horizontal
Summarization uses the binary counter to represent the 2**X
possible combinations of STRING summarization patterns.
In the example, since X=3, there are 2**3, or 8 possible
patterns for separate summarization of STRING. If there had
been 7 CLASS variables, then format counter binary7.
would be used; and there would be 2**7, or 256 possible
summarization patterns.

Notice that though there are 8 patterns for summarization in
the example, the binary counter values range from 0 ('000'b)
to 7 ('111'b). That means that the DO LOOP controlling
Horizontal Summarization has to range the binary counter
from 0 to 7, and not from 1 to 8. Of course, 0 to 7 is still eight
overall iterations. Put in more generalized terms, the DO
LOOP controlling Horizontal Summarization must range the
binary counter from zero to (2**X) - 1.

The binary counter is used in the logic outlined in Step #4.A,
in the preceding section. The counter is incremented with
every iteration of steps #4.A through 4.D. This allows
Horizontal Summarization to focus on each subsequent pattern
of STRING; blanking out the fields corresponding to zero in
the binary counter. To appreciate this concept, refer to the

Horizontal Summarization Example

The final pages of this paper contain a full example of the
code necessary to perform a Horizontal Summarization. In the
example, the goal is to supply a data warehouse application
with summarized data of CD sales. The data is already stored
in a large SAS data set. There are six variables that must be
summarized into every possible combination of values for
variables: YEAR, MONTH, COUNTRY, STATE, CITY,
and CDID.

Since there are six variables that are to be used in the
summarization, the binary counter is set to binary6. There
are 2**6, or 64 possible summarization patterns for the
concatenated field STRING. Thus, the binary counter will
range from 0 ('000000'b) to 63 ('111111'b).

The BIGLOOP macro produces sixty-four output data sets,
each with an output name of SUMxxx, where xxx = 000
through 063. Each of the output data sets contains the
individual variables that were used in the summarization,
though some contain blanks in the data sets where they did not
contribute to the summarization. Additionally, the binary
counter is included in each data set so that one can tell which
type of summarization the particular observation
participated in. This is VERY important if all of the
observations in all of the data sets are later combined into a
single data set.

Though there is not room enough to illustrate it in this paper,
the processing done in the BIGLOOP macro could easily be
optimized. This could be done by first splitting out and
running the part of the program that creates the
NEW.BASEDATA SAS data set. Then, multiple batch jobs,
that each processed a portion of the sixty three summarizations

4

could be submitted concurrently. For instance, if two
“BIGLOOP” batch jobs were submitted, the first would
contain the following do loop: %do bicount = 000 %to 032
%by 1; and the second job would contain the following do
loop: %do bicount = 033 %to 063 %by 1; Of course, they
would both read the same SAS data set (NEW.BASEDATA)
as input, but they would write to separate output SAS data
libraries.

Summary

Horizontal Summarization was developed to feed a data
warehouse application after a conventional PROC
SUMMARY failed. The original objective was to summarize
the values of 19 variables, in 980,000 observations, using 8
CLASS variables. The first attempt failed after over two days
of thrashing on a large IBM mainframe. Horizontal
Summarization completed the task during the course of a
normal work day. Horizontal Summarization is a powerful
methodology that can help you to feed your data warehouses
with summaries of impossibly large SAS data sets. Give it a
try!

Trademarks

SAS is a registered trademark or trademark of SAS Institute
Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

References

Raithel, Michael A.
Tuning SAS Applications in the MVS Environment
Cary, NC:SAS Institute Inc., 1995
303pp.

SAS Institute Inc.
SAS Procedures Guide, Version 6, Third Edition
Cary, NC:SAS Institute Inc., 1990
705pp.

Contact Information

Michael A. Raithel
PO Box 406
Garrett Park, Md. 20896
E-mail: maraithel@mcimail.com

Horizontal Summarization Example SAS Code

**;
* this data step concatenates the key variables to one *;
* long variable ('string'). then it outputs to a sas *;
* data set. *;
**;
data new.rawdata(drop=year month country state city
 cdid);
set base.rawdata;

length string $ 30;

string = year || month || country || state || city || cdid ;
run;

**;
* sort by 'string' for following summarization. *;
**;
proc sort data=new.rawdata;
 by string;
run;

**;
* summarize the data by 'string' to get the lowest *;
* level of granularity. this is the 'mother of all *;
* summarizations'-- every subsequent summarization*;
* will use the output dataset *;
**;
proc summary nway data=new.rawdata;
 by string;
 var totsales basprice numsold notsold numretur
 damaged;
output out=new.basedata(drop=_type_ _freq_) sum=;
run;

**;
* all of the data preparation work is done. the data set*;
* new.basedata will be used as input to the horizontal*;
* summarization iterations that follow *;
**;

5

 /***/ **;
 /* the big loop that executes the data & proc steps */ * sort and summarize the file by the large 'string' *;
/***/ * variable to get an nway summarization. *;
%macro bigloop; **;
%do bicount = 000 %to 63 %by 1; proc sort data=temp;
***; by string;
* this data step examines the binary counter and sets *; run;
* components of 'string' to blanks when the *;
* corresponding bit of the binary counter is zero. the *; proc summary nway data=temp;
* variable 'lenvars' is used to point to the beginning *; by string;
* of each variable that was concatenated to form *; id x;
* 'string'. *; var totsales basprice numsold notsold numretur
***; damaged;
data temp; output out=sum&bicount sum=;
set new.basedata; run;

format x binary6.; **;

x = &bicount; **;

lenvars = 1; delete temp;

if x = '0.....'b then
 substr(string,lenvars,4) = ' '; /*year*/ **;

 lenvars = lenvars + 4; * parts and write out to a permanent data set. *;

if x = '.0....'b then data new.sum&bicount(drop=string);
 substr(string,lenvars,2) = ' '; /*month*/ set sum&bicount;

 lenvars = lenvars + 2;

if x = '..0...'b then city $ 10 cdid $ 10;
 substr(string,lenvars,2) = ' '; /*country*/

 lenvars = lenvars + 2; month = substr(string,5,2);

if x = '...0..'b then state = substr(string,9,2);
 substr(string,lenvars,2) = ' '; /*state*/ city = substr(string,11,10);

 lenvars = lenvars + 2;

if x = '....0.'b then
 substr(string,lenvars,10) = ' '; /*city*/ **;

 lenvars = lenvars + 10; **;

if x = '.....0'b then delete sum&bicount;
 substr(string,lenvars,10) = ' '; /*cdid*/ run;

run; %end; /** end of the big do loop **/

* clean up the work area before proceeding. *;

proc datasets library=work;

run;

* de-compose the 'string' variable into its component *;

**;

 by string;

length year $ 4 month $ 2 country $ 2 state $ 2

year = substr(string,1,4);

country = substr(string,7,2);

cdid = substr(string,21,10);

run;

* clean up the work area before proceeding. *;

proc datasets library=work;

%mend bigloop; /** end of the bigloop macro **/

%bigloop; /** invoke the bigloop macro **/

	Main TOC

