
1

USING SAS SOFTWARE TO COMPARE STRINGS OF VOLSERS IN A
JCL JOB AND A TSO CLIST

RANDALL M NICHOLS, Mississippi Dept of ITS, Jackson, MS

ABSTRACT

The TRANSLATE function of SAS can be
used to strip out punctuation and other
unwanted characters resulting in a string
of words separated by blanks which can
then be compared word by word. This
process is generally considered a word
processing function and at first might not
seem relevant or appropriate to working
with JCL, SYSLOGS, CLISTS, or other
system related files and records.

Nevertheless, these types of files and
records can be visualized as a series of
words rather than individual bytes. The
third generation language model would be
to do a byte by byte comparison, build
tables, make comparisons, keep or
reject, write the record. Although SAS
can be used to do a byte by byte
comparison, it also allows us to consider
a different solution that in fact might be A solution was to write a SAS program to
more intuitive and easy to code. read the FDR JCL and the TSO CLIST,

INTRODUCTION

On a weekly basis we run three JCL
JOBS that consist of a series of FDR
steps to dump disk packs to tape. The
VOL parameter of this JCL contains a
string of tape VOLSERS which are
added to over time as the disk packs

become more saturated with data and
more tapes are needed for the dump.

Sometimes re-running a particular step is
necessary for the operators or the on-call
person. To simplify this process a TSO
CLIST was written that can be invoked to
build and submit the JCL to back up one
disk pack at a time.

Different personnel maintain the FDR
backup JCL and the TSO CLIST, so a
process was needed to simplify keeping
the FDR JCL and the CLIST in sync as
VOLSERS were added and removed from
the backup JCL JOBS. To do this
manually was a time consuming and
error prone process.

THE SOLUTION

find the string of VOLSERS in each, sort
and match-merge the VOLSERS, then
print a report of VOLSERS that appear in
the FDR JCL but not in the CLIST. This
report is used to update the CLIST so that
the strings of VOLSERS in it match those
in the FDR JCL.

2

 SAS FEATURES USED

� TRANSLATE FUNCTION
� INDEX FUNCTION
� INPUT /
� $VARYING INFORMAT
� ASSIGNMENT STATEMENT
� PROC SORT
� MERGE
� INPUT @@
� SUBSETTING IF
� FILE
� PUT
� INFILE

OPERATING ENVIRONMENT

MVS/ESA

SAS V6.06

THE PROGRAM

 DATA;
 INFILE AUTO;
 INPUT @1 REC $72.@;
 X=INDEX(REC,’SER=(‘);
 IF X > 0 THEN DO;
 LENVAR = (72 - (X+5));
 INPUT @X+5 VOLS $VARYING72.
 LENVAR
 / @3 BLANK $1.
 @4 VOL2 $69.
 / @3 BLK2 $1.
 @4 VOL3 $69.;
IF BLANK NE ‘ ’ AND BLK2 NE ‘ ’
THEN DO;
REC1=
TRANSLATE(VOLS,’ ‘‘,’/,=,(,)’);
FILE AUTO2;
 PUT @1 REC1 $80.;
 END;

IF BLANK EQ ‘ ’ AND BLK2 NE ‘ ’ THEN
DO;
REC1=
TRANSLATE(VOLS,’ ’ ‘,’/,=,(,)’);
REC2=
TRANSLATE(VOLS,’ ‘,’/,=,(,)’);
FILE AUTO2;
 PUT @1 REC1 $80.
 @80 REC2 $80.;
 END;
IF BLK2 EQ ‘ ’ AND BLANK EQ ‘ ’ THEN
DO;
REC1=
TRANSLATE(VOLS,’ ‘,’/,=,(,)’);
REC2=
TRANSLATE(VOL2,’ ‘,’/,=,(,)’);
REC3=
TRANSLATE(VOL3,’ ‘,’/,=,(,)’);
FILE AUTO2;
 PUT @1 REC1 $80.

 @80 REC2 $80.
 @160 REC3 $80.;

END;
 END;
DATA CLIST;
 INFILE CLIST;
 INPUT @1 REC $72.@;
 X=INDEX(REC,’VOL’);
 IF X > 0;
 LENVAR = (72 - (X+5));
 input @X+5 VOLS $VARYING72.
LENVAR;
REC1=
 TRANSLATE(VOLS,’ ‘,’/,=’(,)’);
 FILE CLIST2;
 PUT @1 REC1;
 DATA VOL1;
 INFILE AUTO2;
 INPUT VOLSER $ @@;
 AUTO=’AUTO’;
 PROC SORT;
 BY VOLSER;
 DATA VOL2;
 INFILE CLIST2;

3

 INPUT VOLSER $ @@; This statement calculates the length of
 CLIST=’CLIST’; the string of VOLSERS - maximum of 72
 PROC SORT; minus the value of x + 5. ‘Ser=(‘ is five
 BY VOLSER; bytes.
 DATA MERGE;
 MERGE VOL1 VOL2; BY VOLSER;
 IF CLIST=’ ‘;
 PROC PRINT;
 ID VOLSER;
 VAR CLIST AUTO;

PROGRAM DETAILS

 INFILE AUTO

Reads a concatenation of three PDS
members as in:

 //auto dd dsn=pds(disk1),disp=shr
 // dd dsn=pds(disk2),disp=shr
 // dd dsn=pds(disk3),disp=shr

 INPUT @1 REC $72.@;

This statement reads a record for a length
of 72 which is the maximum length these
records can be because the last eight
bytes are line numbers (80-8). The @
holds this record for additional
processing.

 X=INDEX(REC,’SER=(‘);
 IF X > 0 THEN DO;

The INDEX function is used to find the
strings that start with `ser=(‘. The
VOLSERS will follow this JCL parameter.
If x is greater than zero, then a string has
been found and you want the following
calculating to occur. .

 LENVAR = (72 - (X+5));

 INPUT @X+5 VOLS $VARYING72.
 LENVAR
 / @3 BLANK $1.
 @4 VOL2 $69.
 / @3 BLK2 $1.
 @4 VOL3 $69.;

The $VARYINGw. INFORMAT reads
variable-length fields of character data.
The w specifies the maximum width of a
character field for all the records in the
raw file. It is used when the length of a
character value differs from record to
record. LENVAR is a length variable that
was calculated previously and must be
used in conjunction with the $varying
INFORMAT. This variable contains the
actual width of the character field in the
current record.

The ‘ /’ advances the pointer to the next
input line. The BLANK variable is used to
determine if more VOLSERS follow; the
VOL2 variable is the possible VOLSER
string. The next two lines of code are for
the same purpose. This would normally
take care of the possible VOLSER
strings, but if not another series of these
lines can be added.

 IF BLANK NE ‘ ’ AND BLK2 NE ‘ ’
 THEN DO;
 REC1=
 TRANSLATE(VOLS,’ ‘,’/,=,(,)’);
 FILE AUTO2;
 PUT @1 REC1 $80.;

END;

4

 IF BLANK EQ ‘ ’ AND BLK2 NE ‘ ’
 THEN DO;
 REC1=
 TRANSLATE(VOLS,’ ‘,’/,=,(,)’);
 REC2=
 TRANSLATE(VOLS,’ ‘,’/,=,(,)’);
 FILE AUTO2;
 PUT @1 REC1 $80.
 @80 REC2 $80.;

END;
 IF BLK2 EQ ‘ ’ AND BLANK EQ ‘ ’
 THEN DO;
 REC1=
 TRANSLATE(VOLS,’ ‘,’/,=,(,)’);
 REC2=
 TRANSLATE(VOL2,’ ‘,’/,=,(,)’);
 REC3=
 TRANSLATE(VOL3,’ ‘,’/,=,(,)’);
 FILE AUTO2;
 PUT @1 REC1 $80.

 @80 REC2 $80.
 @160 REC3 $80.;

END;
 END;

For an explanation of the previous lines of
code, let’s examine the following JCL
statements:

 //TAPE1 DD DSN=B.DSK876,
 // UNIT=TAPE,DISP=(,CATLG),
 // VOL=(,,,9),SER=(DS8761,
 // DS8763,DS8764))
 //SYSPRIN2 DD SYSOUT=*
 //DISK2 DD VOL=SER=DSK877
 //TAPE2 DD DSN=B.DSK877,
 // UNIT=TAPE,DISP=(,CATLG),
 // VOL=(,,,25,SER=(DS8771,
 // DS8772,DS8773,DS8774,
 // DS8775,DS8776))
 //SYSIN DD DSN=PDS1(FDROPT)

After the initial VOLSER string is located
using the INDEX function to determine
where the character string ‘ser=(‘ begins
, it is then necessary to know how many
additional strings of VOLSERS follow.
The BLANK and BLK2 variables are used
for this check. If the third column of the
next line is blank and the third column of
the next line is not blank, then there is
only one additional line. If the third
column of both lines is blank then there
two additional lines. Additional checks
can be added for more strings of
VOLSERS if needed.

The TRANSLATE function is used to
substitue a blank for the following
characters: / , =(). This in effect puts a
space between each VOLSER making
the record a string of words which allows
the use of the INPUT @@ statement
later.

FILE and PUT statements are used to
write these strings of volsers to a
temporary data set.

The DO statements have their respective
END statements.

 DATA CLIST;
 INFILE CLIST;
 INPUT @1 REC $72.@;
 X=INDEX(REC,’VOL’);
 IF X > 0;
 LENVAR = (72 - (X+5));
 INPUT @X+5 VOLS $VARYING72.
LENVAR;
 REC1=
 TRANSLATE(VOLS,’ ‘,’/,=’(,)’);
 FILE CLIST2;
 PUT @1 REC1;

5

To follow the preceding lines of code, we
need to examine the following CLIST
fragment:

 Else if &pack=dsk877 then do
 Set vol1=ds8771,ds8772,ds8773
 Set vol2=ds8774,ds8775,ds8776
 Set vol3=ds8777,ds8778,ds8779
 Set vol4=ds877a,ds877b,ds877c
 Goto four
 End

INFILE CLIST reads a TSO CLIST from a
PDS as in:

//clist dd dsn=clists(backup),disp=shr

A record for a maximum of 72 characters
is held for additional processing by using
the trailing @. The INDEX function is
used to find the string that starts with
VOL. If this string is found, x will be a
number greater than 0. A length is
calculated and stored in variable
LENVAR.

The TRANSLATE function is used to strip
out the following: , / = ();

The record is then written a temporary file
referenced by CLIST2.

 DATA VOL1;
 INFILE AUTO2;
 AUTO=’AUTO’;
 INPUT VOLSER $ @@;
 PROC SORT; BY VOLSER;

 DATA VOL2;
 INFILE CLIST2;
 INPUT VOLSER $ @@;
 CLIST=’CLIST’;

 PROC SORT; BY VOLSER;

The preceding two SAS DATA steps
create SAS datasets which consists of the
VOLSERS from the FDR jobs and the
CLIST. ASSIGNMENT statements are
used to create a field to indicate whether
the VOLSERS came from the CLIST or
the FDR JCL . Note the use of the
INPUT statement with the @@. This is
useful when each INPUT line contains
values for several o b s e r v a t i o n s .

 DATA MERGE;
 MERGE VOL1 VOL2; BY VOLSER;
 IF CLIST=’ ‘;
 PROC PRINT;
 ID VOLSER;
 VAR CLIST AUTO;

The MERGE DATA step does a merge by
VOLSER of the two previous DATA steps.
If the CLIST variable is blank or missing,
then that indicates the VOLSER is in one
of the FDR jobs but not in the CLIST. A
report of the VOLSERS not in the CLIST
are printed. If there are none, then there
is no report.

CONCLUSION

Many times the data that programmers
have to code for does not exist in neatly
defined and delineated locations, but the
flexibility and power of SAS allows one to
find, compare and manipulate strings of
data with relative ease and with a
minimum amount of code.

6

DEFINITIONS

CLIST - Command List. It is a high level
interpretive language that enables one to
work more efficiently with TSO.

JCL - Job Control Language. It is a
series of control statements that provide
the means of communication between an
application program and the operating
system and computer hardware.

JOB - A JOB is the basic independent
unit of work.

SYSLOG - System Log. This is a record
of what has transpired on the system.

TSO - Time Sharing Option. It allows
users to interactively share computer time
and resources.

ACKNOWLEDGMENTS

This author thanks Russell
Ferguson, Deputy Director of
Mississippi Dept of ITS for reading
this paper and making suggestions.

SAS@ is a registered trademark of
SAS Industries INC.

FDR@ is a registered trademark of
Innovation Data Processing.

Randall M Nichols
301 N Lamar St Suite 508
Jackson MS 39201
601-359-2642
nichols@its.state.ms.us

	Main TOC

